kdot column expert: pushing the envelope to … › conferences.k-state...kdot column expert:...

Post on 26-Jun-2020

10 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

KDOT COLUMN EXPERT: PUSHING THE ENVELOPE TO

EXTREME EVENTS

Hayder A. Rasheed, Ph.D., P.E., Fellow ASCE

Kansas State University

1

Presentation Outline

• Introduction

• Objectives

• Software Historical Perspective

• Software Interface

• Benchmarks Against Experiments

• Software Walk Through

• Conclusions

2

Introduction

• AASHTO LRFD extreme load event simulates truck impacts to bridge piers

• A 600 kip force applied at 0-15ᵒ, with respect to traffic direction, is specified

• No tools were available to assess the extreme ultimate capacity of bridge piers

3

Presentation Outline

• Introduction

• Objectives

• Software Historical Perspective

• Software Interface

• Benchmarks Against Experiments

• Software Walk Through

• Conclusions

4

Objectives

• Develop software that can predict the extreme interaction envelop of circular and rectangular bridge piers

• Include different aspects like transverse steel and FRP confinement

• Help the bridge engineer assess the actual capacity of bridge piers in light of the extreme load event imposed

5

Presentation Outline

• Introduction

• Objectives

• Software Historical Perspective

• Software Interface

• Benchmarks Against Experiments

• Software Walk Through

• Conclusions

6

Software Historical Perspective

• Years of Development

2007-2015

• KDOT Vision and Support Team

Ken Hurst

John Jones

Calvin Reed

Loren Risch

7

Software Historical Perspective

• KTRAN projects used to build the software

KSU-07-21 Circular Column: Confinement

KSU-10-06 Circular Column: FRP Confinement

and Rectangular Column: Phase 1

KSU-11-03 Rectangular Column: Phase 2

KSU-13-07 Rectangular Column: FRP Confinement

KSU-14-08 Circular Column: Shear-Flexure

Unfunded Rectangular Column: Shear-Flexure8

Software Historical Perspective

• K-State Development Team

Hayder Rasheed, Ph.D. P.E. F.ASCE (P.I.)

Ahmed Abd El Fattah, Ph.D., LEED AP, Developer

Ahmed Al-Rahmani, Ph.D., Developer

Alaaeldin Abouelleil, M.S., Developer

• Program versions released

Version 1.0, 1.1, 1.2, 1.3, 2.0, 3.0, 3.1, 4.0, 4.1, 4.2, 5.0, 5.1, 6.0, 7.0

9

Presentation Outline

• Introduction

• Objectives

• Software Historical Perspective

• Software Interface

• Benchmarks Against Experiments

• Software Walk Through

• Conclusions

10

Software Interface

11

1 2 3

4

5

Presentation Outline

• Introduction

• Objectives

• Software Historical Perspective

• Software Interface

• Benchmarks Against Experiments

• Software Walk Through

• Conclusions

13

Benchmarks Against Experiments

14

Diameter (H): 23.65 in

Clear Cover: 0.8 in

Longitudinal Steel: 16#8

Spiral Diameter: 0.394 in

Spiral Spacing: 2.95 in

F’c: 4.118 ksi

Fy: 43.5 ksi

Fyh: 43.5 ksi

• Case 1:

Source: Predictions of Ultimate Behavior of Confined Columns

Subjected to Large Deformations

By: Apostolos Fafitis and Surendra P. Shah

15

Benchmarks Against Experiments

16

Benchmarks Against Experiments

17

Benchmarks Against ExperimentsDiameter (H): 23.65 in

Clear Cover: 0.8 in

Longitudinal Steel: 16#8

Spiral Diameter: 0.394 in

Spiral Spacing: 1.97 in

F’c: 3.857 ksi

Fy: 43.5 ksi

Fyh: 43.5 ksi

Source: Predictions of Ultimate Behavior of Confined Columns

Subjected to Large Deformations

By: Apostolos Fafitis and Surendra P. Shah

• Case 2:

18

Benchmarks Against Experiments

19

Benchmarks Against Experiments

20

Diameter (H): 23.65 in

Clear Cover: 0.8 in

Longitudinal Steel: 16#8

Spiral Diameter: 0.394 in

Spiral Spacing: 2.76 in

F’c: 4.77 ksi

Fy: 43.5 ksi

Fyh: 61.3 ksi

Benchmarks Against Experiments

Source: Predictions of Ultimate Behavior of Confined Columns

Subjected to Large Deformations

By: Apostolos Fafitis and Surendra P. Shah

• Case 3:

21

Benchmarks Against Experiments

22

Benchmarks Against ExperimentsDiameter (H): 23.65 in

Clear Cover: 0.8 in

Longitudinal Steel: 16#8

Spiral Diameter: 0.63 in

Spiral Spacing: 2.95 in

F’c: 4.71 ksi

Fy: 43.5 ksi

Fyh: 40.6 ksi

Source: Predictions of Ultimate Behavior of Confined Columns

Subjected to Large Deformations

By: Apostolos Fafitis and Surendra P. Shah

• Case 4:

23

Benchmarks Against Experiments

24

Benchmarks Against ExperimentsDiameter (H): 16 in

Clear Cover: 0.512 in

Longitudinal Steel: 12#4

Spiral Diameter: 0.25 in

Spiral Spacing: 1.26 in

F’c: 7.29 ksi

Fy: 71 ksi

Fyh: 68 ksi

Source: Behavior of Reinforced Concrete Columns Under Variable Axial

Loads.

By: Asad Esmaily and Yan Xiao

• Case 5:

25

Benchmarks Against Experiments

26

Benchmarks Against ExperimentsDiameter (H): 7.87 in

Clear Cover: 0.43 in

Longitudinal Steel:18(0.236 in)

Spiral Diameter: 0.157 in

Spiral Spacing: 1.1 in

F’c: 5.7 ksi

Fy: 65.2 ksi

Fyh: 36.25 ksi

Source: Capacity of Circular Bridge Columns Subjected to Base

Excitation.

By: Lawrence L. Dodd and Nigel Cooke.

• Case 6:

27

Benchmarks Against Experiments

28

Benchmarks Against ExperimentsDiameter (H): 19.68 in

Clear Cover: 0.98 in

Longitudinal Steel: 12#5

Spiral Diameter: 0.393 in

Spiral Spacing: 4.68 in

F’c: 4.06 ksi

Fy: 42.78 ksi

Fyh: 46.4 ksi

Source: Observed Stress-Strain Behavior of Confined Concrete.

By: J. B. Mander, N. M. J. Priestley, and R. Park

• Case 7:

29

Benchmarks Against Experiments

30

Benchmarks Against ExperimentsDiameter (H): 19.68 in

Clear Cover: 0.98 in

Longitudinal Steel: 8#9

Spiral Diameter: 0.472 in

Spiral Spacing: 2.04 in

F’c: 4.49 ksi

Fy: 42.9 ksi

Fyh: 49.3 ksi

Source: Observed Stress-Strain Behavior of Confined Concrete.

By: J. B. Mander, N. M. J. Priestley, and R. Park

• Case 8:

31

Benchmarks Against Experiments

32

Benchmarks Against Experiments

33

Benchmarks Against Experiments

34

Benchmarks Against Experiments

35

Benchmarks Against Experiments

36

Benchmarks Against Experiments

37

Benchmarks Against Experiments

38

Benchmarks Against Experiments

39

Benchmarks Against ExperimentsA Study of combined bending and axial

load in reinforced concrete members

Eivind Hogenstad

Length = 10 in.

Width = 10 in.

Cover = 1.5 in.

Long. Steel = 8 bars with

area of 2.4 in2 each.

fy = 43.8 ksi.

fc = 5.1 ksi.

Lateral Steel Diam. = 0.25 in.

fyh = 61.6 ksi.

Spacing = 8 in.

40

Benchmarks Against Experiments

41

Benchmarks Against ExperimentsDesign criteria for reinforced columns

under axial load and biaxial bending

Boris Bresler

Length = 8 in.

Width = 6 in.

Cover = 1.1875 in.

Long. Steel = 4 # 5 .

fy = 53.5 ksi.

fc = 3.7 ksi.

Lateral Steel Diam. = 0.25 in.

fyh = 53.5 ksi.

Spacing = 4 in.

42

Benchmarks Against Experiments

43

Benchmarks Against ExperimentsDesign criteria for reinforced columns

under axial load and biaxial bending

Boris Bresler

Length = 8 in.

Width = 6 in.

Cover = 1.1875 in.

Long. Steel = 4 # 5 .

fy = 53.5 ksi.

fc = 4.0 ksi.

Lateral Steel Diam. = 0.25 in.

fyh = 53.5 ksi.

Spacing = 4 in.

44

Benchmarks Against Experiments

45

Benchmarks Against ExperimentsConfined columns under eccentric loading

Murat Saatcioglu. Amir Salamat and Salim Razvi

Length = 8.27 in.

Width = 8.27 in.

Clear Cover = 0.5 in.

Long. Steel = 8 bars with area

of 0.155 in2 each.

fy = 75 ksi.

fc = 4.97 ksi.

Lateral Steel Diam. = 0.364 in.

fyh = 59.45 ksi.

Spacing = 1.97 in.

46

Benchmarks Against Experiments

47

Benchmarks Against Experiments

Length = 8.27 in.

Width = 8.27 in.

Clear Cover = 0.5 in.

Long. Steel = 12 bars with area

of 0.155 in2 each.

fy = 75 ksi.

fc = 4.96 ksi.

Lateral Steel Diam. = 0.346 in.

fyh = 59.45 ksi.

Spacing = 1.97 in.

Confined columns under eccentric loading

Mural Saatcioglu. Amir Salamat amd Salim Razvi

48

Benchmarks Against Experiments

49

Benchmarks Against Experiments

50

Benchmarks Against Experiments

51

Benchmarks Against Experiments

52

Benchmarks Against Experiments

53

Benchmarks Against Experiments

f’c = 6.16 ksi

fy = 67.425 ksi

fyt = 66.625 ksi

Long. Steel Dia. = 0.77 in

Lat. Steel = #3

Spacing = 11.8 in

Ef = 2864.33 ksi (GFRP)

εfu = 2.28%

tf = 0.05 in

n = 2

Memon M, Sheikh S. Seismic resistance of square concrete columns retrofitted with glass fiber-

reinforced polymer. ACI Struct J 2005;102(5):774–83.

54

Benchmarks Against Experiments

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180 200

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

MS2

55

Benchmarks Against Experiments

Memon M, Sheikh S. Seismic resistance of square concrete columns retrofitted with glass fiber-

reinforced polymer. ACI Struct J 2005;102(5):774–83.

f’c = 6.19 ksi

fy = 67.425 ksi

fyt = 66.625 ksi

Long. Steel Dia. = 0.77 in

Lat. Steel = #3

Spacing = 11.8 in

Ef = 2864.33 ksi (GFRP)

εfu = 2.28%

tf = 0.05 in

n = 4

56

Benchmarks Against Experiments

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180 200

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

MS3

57

Benchmarks Against Experiments

Memon M, Sheikh S. Seismic resistance of square concrete columns retrofitted with glass fiber-

reinforced polymer. ACI Struct J 2005;102(5):774–83.

f’c = 6.28 ksi

fy = 67.425 ksi

fyt = 66.625 ksi

Long. Steel Dia. = 0.77 in

Lat. Steel = #3

Spacing = 11.8 in

Ef = 2864.33 ksi (GFRP)

εfu = 2.28%

tf = 0.05 in

n = 2

58

Benchmarks Against Experiments

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

MS4

59

Benchmarks Against Experiments

Memon M, Sheikh S. Seismic resistance of square concrete columns retrofitted with glass fiber-

reinforced polymer. ACI Struct J 2005;102(5):774–83.

f’c = 6.34 ksi

fy = 67.425 ksi

fyt = 66.625 ksi

Long. Steel Dia. = 0.77 in

Lat. Steel = #3

Spacing = 11.8 in

Ef = 2864.33 ksi (GFRP)

εfu = 2.28%

tf = 0.05 in

n = 1

60

Benchmarks Against Experiments

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180 200

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

MS5

61

Benchmarks Against Experiments

f’c = 2.94 ksi

fy = 77.5 ksi

fyt = 60 ksi

Long. Steel = 6 #4

Lat. Steel Dia.= 0.31 in

Spacing = 5.91 in

Harajli M, Rteil A. Effect of confinement using fiber-reinforced polymer or fiber-reinforced concrete on

seismic performance of gravity load-designed columns. ACI Struct J 2004;101(1):47–56.

62

Benchmarks Against Experiments

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

HR1-a

63

Benchmarks Against Experiments

Harajli M, Rteil A. Effect of confinement using fiber-reinforced polymer or fiber-reinforced concrete on

seismic performance of gravity load-designed columns. ACI Struct J 2004;101(1):47–56.

f’c = 3.06 ksi

fy = 77.5 ksi

fyt = 60 ksi

Long. Steel = 6 #4

Lat. Steel Dia.= 0.31 in

Spacing = 5.91 in

Ef = 33350 ksi (CFRP)

εfu = 1.5%

tf = 0.005 in

n = 1

64

Benchmarks Against Experiments

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

HR2-a

65

Benchmarks Against Experiments

f’c = 2.76 ksi

fy = 63.66 ksi

fyt = 52.93 ksi

Long. Steel Dia.= 0.79 in

Lat. Steel Dia.= 0.39 in

Spacing = 7.09 in

Wang, Y. C., and Hsu, K., (2007). “Design of FRP-wrapped reinforced concrete columns for enhancing axial load carrying

capacity.” Composite Structures, 82(1), 132-139.

66

Benchmarks Against Experiments

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

CS0

67

Benchmarks Against ExperimentsWang, Y. C., and Hsu, K., (2007). “Design of FRP-wrapped reinforced concrete columns for enhancing axial load carrying

capacity.” Composite Structures, 82(1), 132-139.

f’c = 2.76 ksi

fy = 63.66 ksi

fyt = 52.93 ksi

Long. Steel Dia.= 0.79 in

Lat. Steel Dia.= 0.39 in

Spacing = 7.09 in

Ef = 2972.5 ksi (GFRP)

εfu = 2%

tf = 0.05 in

n = 2

68

Benchmarks Against Experiments

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

CS2

69

Benchmarks Against ExperimentsWang, Y. C., and Hsu, K., (2007). “Design of FRP-wrapped reinforced concrete columns for enhancing axial load carrying

capacity.” Composite Structures, 82(1), 132-139.

f’c = 2.76 ksi

fy = 63.66 ksi

fyt = 52.93 ksi

Long. Steel Dia.= 0.79 in

Lat. Steel Dia.= 0.39 in

Spacing = 7.09 in

Ef = 2972.5 ksi (GFRP)

εfu = 2%

tf = 0.05 in

n = 6

70

Benchmarks Against Experiments

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90 100

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

CS6

71

Benchmarks Against ExperimentsWang, Y. C., and Hsu, K., (2007). “Design of FRP-wrapped reinforced concrete columns for enhancing axial load carrying

capacity.” Composite Structures, 82(1), 132-139.

f’c = 2.76 ksi

fy = 63.66 ksi

fyt = 52.93 ksi

Long. Steel Dia.= 0.79 in

Lat. Steel Dia.= 0.39 in

Spacing = 7.09 in

72

Benchmarks Against Experiments

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120 140 160 180

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

CR0

73

Benchmarks Against ExperimentsWang, Y. C., and Hsu, K., (2007). “Design of FRP-wrapped reinforced concrete columns for enhancing axial load carrying

capacity.” Composite Structures, 82(1), 132-139.

f’c = 2.76 ksi

fy = 63.66 ksi

fyt = 52.93 ksi

Long. Steel Dia.= 0.79 in

Lat. Steel Dia.= 0.39 in

Spacing = 7.09 in

Ef = 2972.5 ksi (GFRP)

εfu = 2%

tf = 0.05 in

n = 2

74

Benchmarks Against Experiments

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120 140 160 180

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

CR2

75

Benchmarks Against ExperimentsWang, Y. C., and Hsu, K., (2007). “Design of FRP-wrapped reinforced concrete columns for enhancing axial load carrying

capacity.” Composite Structures, 82(1), 132-139.

f’c = 2.76 ksi

fy = 63.66 ksi

fyt = 52.93 ksi

Long. Steel Dia.= 0.79 in

Lat. Steel Dia.= 0.39 in

Spacing = 7.09 in

Ef = 2972.5 ksi (GFRP)

εfu = 2%

tf = 0.05 in

n = 6

76

Benchmarks Against Experiments

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180

Axi

al F

orc

e (

kip

)

Resultant Moment (kip.ft)

CR6

77

Benchmarks Against Experiments

• f’c = 4.15 ksi

• fy = 53.07 ksi

• fyt = 53.36 ksi

• Clear Cover = 0.67 in

• Spacing = 1.97 in

• Axial Force = 48.33 kip

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

She

ar (

Kip

)

Moment (K.ft)

Arakawa et al. (1987) Unit 6

Proposed work

Failure

78

Benchmarks Against Experiments

• f’c = 3.857 ksi

• fy = 43.935 ksi

• fyt = 43.5 ksi

• Clear Cover = 0.79 in

• Spacing = 1.97 in

• Axial Force = 966.64 kip

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

She

ar (

Kip

)

Moment (K.ft)

Ang et al. (1981) Unit 3

Proposed work

Failure

79

Benchmarks Against Experiments

• f’c = 4.814 ksi

• fy = 54.09 ksi

• fyt = 45.24 ksi

• Clear Cover = 0.67 in

• Spacing = 2.56 in

• Axial Force = 85.42 kip

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

She

ar (

Kip

)

Moment (K.ft)

Davey et al. (1975) Unit 1

Proposed work

Failure

80

Benchmarks Against Experiments

• f’c = 4.67 ksi

• fy = 48.87 ksi

• fyt = 43.5 ksi

• Clear Cover = 0.51 in

• Spacing = 5.31 in

• Axial Force = 124.76 kip

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200

She

ar (

Kip

)

Moment (K.ft)

Zahn et al. (1986) No.5

Proposedwork

Failure

81

Benchmarks Against Experiments

• f’c = 5.62ksi

• fy = 34.8 ksi

• fyt = 34.8 ksi

• Clear Cover = 1.3 in

• Spacing = 2.95 in

• Axial Force = 32.6 kip

0

5

10

15

20

25

30

35

0 10 20 30 40 50

She

ar (

Kip

)

Moment (K.ft)

Petroviski et al. (1984) M1E1

Proposed work

Failure

82

Benchmarks Against Experiments

• f’c = 13.05 ksi

• fy = 60.755 ksi

• fyt = 60.9 ksi

• Clear Cover = 0.32 in

• Spacing = 1.97 in

• Axial Force = 415.88 kip

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

She

ar (

Kip

)

Moment (K.ft)

Saatcioglu et al. (1999) Unit RC9

Proposed work

Failure

83

Benchmarks Against Experiments

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600

Shea

r (k

ip)

Moment (kip.ft)

Axial Force = 0 kip

Response-2000 KDOT Column Expert Experiment

Aboutaha, R. S., Engelhardt, M. D.; Jirsa, J. O., and Kreger, M. E., (1999). "Rehabilitation of shear

critical concrete columns by use of rectangular steel jackets." ACI Structural Journal 96(1): 68-78.

84

Benchmarks Against Experiments

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80

Shea

r (k

ip)

Moment (kip.ft)

Axial Force = 30 kip

Response-2000 KDOT Column Expert Experiment

Pujol; S., (2002). Drift capacity of reinforced concrete columns subjected to displacement reversals.

(Doctoral dissertation). Purdue University, West Lafayette, IN.

85

Benchmarks Against ExperimentsPujol; S., (2002). Drift capacity of reinforced concrete columns subjected to displacement reversals.

(Doctoral dissertation). Purdue University, West Lafayette, IN.

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80

Shea

r (k

ip)

Moment (kip.ft)

Axial Force = 60 kip

Response-2000 KDOT Column Expert Experiment

86

Benchmarks Against Experiments

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450

Shea

r (k

ip)

Moment (kip.ft)

Axial Force = 240 kip

Response-2000 KDOT Column Expert Experiment

Melek, M., and Wallace, J. W., (2004). "Cyclic behavior of columns with short lap splices", ACI

Structural Journal, 101(6), 802-811.

87

Benchmarks Against ExperimentsMelek, M., and Wallace, J. W., (2004). "Cyclic behavior of columns with short lap splices", ACI

Structural Journal, 101(6), 802-811.

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450 500

Shea

r (k

ip)

Moment (kip.ft)

Axial Force = 360 kip

Response-2000 KDOT Column Expert Experiment

Presentation Outline

• Introduction

• Objectives

• Software Historical Perspective

• Software Interface

• Benchmarks Against Experiments

• Software Walk Through

• Conclusions

88

Presentation Outline

• Introduction

• Objectives

• Software Historical Perspective

• Software Interface

• Benchmarks Against Experiments

• Software Walk Through

• Conclusions

89

Conclusions

• What are we waiting for, let’s go ahead and use it

90

91

Thank you for Listening

top related