lecture 2 com 3362, april 5, 1999. composition example use three aspects simultaneously with three...

Post on 27-Dec-2015

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Lecture 2

COM 3362, April 5, 1999

Composition example

• Use three aspects simultaneously with three classes.

• Three aspects:– ShowReadWriteAccess– InstanceLogging– AutoReset

• Three classes: Point, Line, Rectangle

Shapes (Point, Line, Rectangle)AutoReset

ShowReadWriteAccess

InstanceLogging

Point

Line

Rectangle

Weaved Code

Inheritance between components

component ShowReadWriteAccess extends ShowReadAccess {

participant DataToAccess {

expect void writeOp(Object[] args);

replace void writeOp(Object[] args){

System.out.println(

"Write access on " +

this.toString());

expected(args);}}

}

InstanceLogging component(first part)

component InstanceLogging {

participant DataToLog {

expect public DataToLog(Object[] args);

replace public DataToLog(Object[] args) {

expected(args);

long time = System.currentTimeMillis();

try {

String class = this.class.getName() + " ";

logObject.writeBytes(""New instance of " + class +

at "" " + time + "" " \n");

} catch (IOException e)

{System.out.println(e.toString());}

}

}

InstanceLogging component(second part)

protected DataOutputStream logObject = null;

public init() {

try {logObject = new DataOutputStream(

new FileOutputStream(log));}

catch (IOException e)

{System.out.println(e.toString());}

}

}

AutoReset component

component AutoReset {

participant DataToReset {

expect void setOp(Object[] args);

expect void reset();

protected int count = 0;

replace void setOp(Object[] args) {

if ( ++count >= 100 ) {

expected(args);

count = 0;

reset();

}}

}

}

Composition of components

connector CompositionConn1 {

{Line, Point} is ShowReadWriteAccess.DataToAccess with

{ readOp = get*; writeOp = set*;};

Point is AutoReset.DataToReset with {

setOp = set*;

void reset() { x = 0; y = 0; }

};

{Line, Point, Rectangle} is

InstanceLogging.DataToLog;}

ShapesAutoReset

ShowReadWriteAccesses

NewInstanceLogging

Point

Line

Rectangle

Weaved Code

Composition of components

Connector graph CompositionConn1 Line, Point, Rectangle

ShowReadWriteAccess.DataToAccess * *

AutoReset.DataToReset *

InstanceLogging.DataToLog * * *

Modified composition

connector CompositionConn2 extends CompositionConn1 {

Line is AutoReset.DataToReset with {

setOp = set*;

void reset() {init();}

};

}

Composition of components

Connector graph CompositionConn1 Line, Point, Rectangle

ShowReadWriteAccess.DataToAccess * *

AutoReset.DataToReset *

InstanceLogging.DataToLog * * *

Connector graph CompositionConn2 Line, Point, Rectangle

ShowReadWriteAccess.DataToAccess * *

AutoReset.DataToReset * *

InstanceLogging.DataToLog * * *

Modify existing connection statements

connector CompositionConn3 extends CompositionConn1 {

Point is AutoReset.DataToReset with {

{ setOp = set;

void reset() {

x = 0; y = 0; }}

{ setOp = setX;

void reset() { x = 0;}}

{

setOp = setY;

void reset() { y = 0;}}

};

}

Composition of components

Connector graph CompositionConn3 Line, Point, Rectangle

ShowReadWriteAccess.DataToAccess * *

AutoReset.DataToReset ***

InstanceLogging.DataToLog * * *

overridden: ***

DataWithCounter componentpairwise interaction Data/Countercomponent DataWithCounter {

private participant Counter { int i=0;

void reset(){i=0;}; void inc(){…}; void dec(){…};}

participant DataStructure {

protected Counter counter;

expect void initCounter();

expect void make_empty();

expect void push(Object a);

expect void pop();

replace void make_empty(){counter.reset();expected();}

replace void push(Object a){counter.inc(); expected(a);}

replace void pop() {counter.dec();expected();}

}

}

DataWithLock Componentpairwise interaction Data/Lock

component DataWithLock {

participant Data {

Lock lock;

expect void initLock();

expect AnyType method_to_wrap(Object[] args);

replace AnyType method_to_wrap(Object[] args) {

if (lock.is_unlocked()) {

lock.lock();

expected(Object[] args);

lock.unlock(); }}}

private participant Lock {boolean l = true;

void lock(){…};

void unlock(){…};

boolean is_unlocked(){return l};}

StackImpl

QueueImpl

DataWithCounter

DataWithLock

Counter

Lock

First connectorconnector addCounter&Lock {

StackImpl is DataWithCounter.DataStructure

with {

void initCounter() {counter = new Counter();}

void push(Object obj) {push(obj));} // use name map instead

Object top() {return top();}

...

} is DataWithLock.Data

with {

method_to_wrap = {pop, push, top, make_empty, initCounter};

};

QueueImpl is DataWithCounter.DataStructure with {

... } is DataWithLock.Data with { ... };

}

DataWithCounter

DataWithLock DataWithCounter&Lock

Create composed aspects prior to deployment

component DataWithCounterAndLock {

participant Data =

DataWithCounter.DataStructure is

DataWithLock.Data with {

method-to-wrap =

{make_empty, pop, top, push}};

}

Second connector: Deploy composed component

connector addCounter&Lock {

StackImpl is DataWithCounterAndLock.Data with {

void make_empty() {empty();}

void initCounter() {

counter = new Counter();}

void push(Object obj) {push(obj);}

...

};

QueueImpl is DataWithCounterAndLock.Data with {...};

}

Defining New Behavior: The Publisher-

Subscriber Aspectan aspect can be multiply deployed with the same application, each deployment with its own mappings.

Publisher

component PublisherSubscriberProtocol {

participant Publisher {

expect void changeOp(Object[] args);

protected Vector subscribers = new Vector();

public void attach(Subscriber subsc) {

subscribers.addElement(subsc);}

public void detach(Subscriber subsc) {

subscribers.removeElement(subsc);}

replace void changeOp() {

expected();

for (int i = 0; i < subscribers.size(); i++)

{((Subscriber)subscribers.elementAt(i)).

newUpdate(this);}}

Subscriber

participant Subscriber {

expect void subUpdate(Publisher publ);

protected Publisher publ;

public void newUpdate(Publisher aPubl) {

publ = aPubl;

expected.subUpdate(publ);}

}

}

}

Class for deployment

class ChangePrinter {

void public printR() {

System.out.println("Printer: " + this.toString() +

" read access has occurred ..." + \n);

}

void public printW() {

System.out.println("Printer: " + this.toString() +

" write access has occurred ..." + \n);

}

void public notifyChange() { System.out.println("CHANGE ...");

}

}

Deployment 1

connector PubSubConn1 {

Point is Publisher with

{ changeOp = {set*, get*};}

ChangePrinter is Subscriber with {

void subUpdate(Publisher publ) {

notifyChange();

System.out.println(”on Point object " +

((Point) publ).toString());

}

}

}

Deployment 2

connector PubSubConn2 {

TicTacToe is Publisher with {

changeOp = {startGame, newPlayer, putMark,

endGame}};

{BoardDisplay, StatusDisplay} is Subscriber with {

void subUpdate(Publisher publ) {

setGame((Game) publ);

repaint();

}

};

}

Deployment/write

connector PubSubConn3 {

Point is Publisher with { changeOp = set*;}

ChangePrinter is Subscriber with {

void subUpdate(Publisher publ) {

printW();

System.out.println("on point object " +

((Point) publ).toString());

}

}

}

Deployment/read

connector PubSubConn4 {

Point is Publisher with { changeOp = get*;}

ChangePrinter is Subscriber with {

void subUpdate(Publisher publ) {

printR();

System.out.println("on point object " +

((Point) publ).toString());

}

}

}

Overlap between connectors

The sets of operations of Point that are mapped to different notification operations of the subscriber participant need not be disjoint. For instance, we may want to distinguish between set operations that affect the x-coordinate, respectively, the y-coordinate of a point.

The set(int, int), however, will then fall in both categories. This is expressed by the connectors PubSubConn3_1 and PubSubConn3_2 below.

Deployment/write

connector PubSubConn3_1 {

Point is Publisher with { changeOp = {set,setX};}

ChangePrinter is Subscriber with {

void subUpdate(Publisher publ) {

printW();

System.out.println("on point object " +

((Point) publ).toString());

}

}

}

Deployment/write

connector PubSubConn3_2 {

Point is Publisher with { changeOp = {set, setY};}

ChangePrinter is Subscriber with {

void subUpdate(Publisher publ) {

printW();

System.out.println("on point object " +

((Point) publ).toString());

}

}

}

Mapping Participant Graphs

• Is the deployment of a component giving the intended result?

• Example: Three participants: A, B, C– A has a B; B has a C.

– A::f(int x1){get_b().f(x1);}

– B::f(int x1){get_c.f(x);} // x a local data member

– C::f(int x1){print(“at C: number at previous B”); print(x1);}

Expected output

• at C: number at previous B 78

MappingA CB

A BC

1..*0..*

Refinement

This property must hold between a PG and a corresponding CG or another PG. The intent of the refinement relation is to ensure that the behavior in the component will be properly instantiated at the place of use without ``surprising'' behavior.

A A

B BC C

D DE E

F F

G1

G2

G1 refinement G2

refinement: connectivity of G2is in pure form in G1Allows extra connectivity.

A A

B BC C

D DE E

F F

G1

G2

G1 refinement G2

refinement: connectivity of G2is in pure form in G1

A A

B BC C

D DE E

F F

G1

G2

G1 compatible G2

Compatible: connectivity of G2 is in G1

A A

B BC C

D DE E

F F

G1

G2

G1 strong refinement G2

refinement: connectivity of G2is in pure form in G1 and G1 contains nonew connections in terms ofnodes of G2

Key concepts: refinement

• Let G1=(V1,E1) and G2=(V2,E2) be directed graphs with V2 a subset of V1. Graph G1 is a refinement of G2 if for all u,v in V2 we have that (u,v) in E2 implies that there exists a path in G1 between u and v which does not use in its interior a node in V2.

• Polynomial.

Refinement

• For each edge in G2 there must be a corresponding pure path in G1.

• Pure path = in interior no nodes of G2.

• Refinement = strong refinement with “if and only if” replaced by “implies”.

A A

B BC C

D DE E

F F

G1

G2

G1 refinement G2

Implementation: create strategyconstraint map: bypassing allnodes

A A

BB

G1

G2

not G1 refinement G2

C C

Refinement means: no surprises

A A

BB

G1

G2

G1 refinement G2

C C

Refinement means: no surprises

X

A

B

G1G2

not G1 refinement G2

C

Refinement means: no surprises

A

B C

Alternative definition

a graph G is a refinement of a graph S, if S is a connected subgraph of the pure transitive closure of G with respect to the node set of S.

Pure transitive closure

• The pure transitive closure of G=(V,E) with respect to a subset W of V is the graph G*=(V,E*), where E*={(i,j): there is a W-pure path from vertex i to vertex j in G}.

• A W-pure path from i to j is a path where i and j are in W and none of the inner nodes of the path are in W.

Implementation issues

• Translate to AspectJ: requires source code access.

• What if aspectual components

top related