lesson 25: evaluating definite integrals (section 4 version)

Post on 12-May-2015

993 Views

Category:

Education

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

Computing integrals with Riemann sums is like computing derivatives with limits. The calculus of integrals turns out to come from antidifferentiation. This startling fact is the Second Fundamental Theorem of Calculus!

TRANSCRIPT

  • 1.Section5.3 EvaluatingDeniteIntegrals V63.0121, CalculusIApril21, 2009 AnnouncementsFinalExamisFriday, May8, 2:003:50pmFinaliscumulative; topicswillberepresentedroughlyaccordingtotimespentonthem . Imagecredit: docman . . . . .. .

2. Outline . . . . . . 3. Thedeniteintegralasalimit DenitionIf f isafunctiondenedon [a, b], the deniteintegralof f from ato b isthenumberb n f(x) dx = lim f(ci ) x n a i=1ba , andforeach i, xi = a + ix, and ci isapointwhere x =nin [xi1 , xi ].... .. . 4. Notation/Terminology bf(x) dxa integralsign (swoopy S) f(x) integrand a and b limitsofintegration (a isthe lowerlimit and b the upperlimit) dx ??? (aparenthesis? aninnitesimal? avariable?) Theprocessofcomputinganintegraliscalled integration. . . . . . 5. PropertiesoftheintegralTheorem(AdditivePropertiesoftheIntegral)Let f and g beintegrablefunctionson [a, b] and c aconstant.Thenb c dx = c(b a) 1.ab b b[f(x) + g(x)] dx =f(x) dx + g(x) dx. 2.a a abbcf(x) dx = c f(x) dx. 3.aab b b[f(x) g(x)] dx =f(x) dx g(x) dx. 4.a a a . . . . . . 6. MorePropertiesoftheIntegral Conventions: ab f(x) dx = f(x) dx ba af(x) dx = 0aThisallowsustohave cb c f(x) dx =f(x) dx + f(x) dx forall a, b, and c. 5.aab .. . . . . 7. ComparisonPropertiesoftheIntegralTheoremLet f and g beintegrablefunctionson [a, b]. 6. If f(x) 0 forall x in [a, b], then b f(x) dx 0 a7. If f(x) g(x) forall x in [a, b], then bb f(x) dx g(x) dx aa8. If m f(x) M forall x in [a, b], then b m(b a) f(x) dx M(b a) a . . . . . . 8. Outline . . . . . . 9. Socraticproof Thedeniteintegralofvelocitymeasuresdisplacement(netdistance)ThederivativeofdisplacementisvelocitySowecancomputedisplacementwiththeantiderivativeofvelocity? . . . . . . 10. TheoremoftheDayTheorem(TheSecondFundamentalTheoremofCalculus) Suppose f isintegrableon [a, b] and f = F foranotherfunction F, then b f(x) dx = F(b) F(a). a .. . . . . 11. TheoremoftheDayTheorem(TheSecondFundamentalTheoremofCalculus) Suppose f isintegrableon [a, b] and f = F foranotherfunction F, then b f(x) dx = F(b) F(a). a Note InSection5.3, thistheoremiscalledTheEvaluationTheorem. Nobodyelseintheworldcallsitthat. .. . . . . 12. Proving2FTCba Divideup [a, b] into n piecesofequalwidth x = as n usual. Foreach i, F iscontinuouson [xi1 , xi ] anddifferentiable on (xi1 , xi ). Sothereisapoint ci in (xi1 , xi ) with F(xi ) F(xi1 )= F (ci ) = f(ci ) xi xi1Or f(ci )x = F(xi ) F(xi1 ). . . . . . 13. Wehaveforeach if(ci )x = F(xi ) F(xi1 )FormtheRiemannSum:nn (F(xi ) F(xi1 )) Sn = f(ci )x =i=1i=1 = (F(x1 ) F(x0 )) + (F(x2 ) F(x1 )) + (F(x3 ) F(x2 )) + + (F(xn1 ) F(xn2 )) + (F(xn ) F(xn1 )) = F(xn ) F(x0 ) = F(b) F(a) . . . . . . 14. Wehaveshownforeach n, Sn = F(b) F(a)sointhelimitbf(x) dx = lim Sn = lim (F(b) F(a)) = F(b) F(a)nna .. .. . . 15. Example Findtheareabetween y = x3 andthe x-axis, between x = 0 and x = 1. . . . . . . . 16. ExampleFindtheareabetween y = x3 andthe x-axis, between x = 0 andx = 1.Solution 11x4 1x3 dx =A= =44.00. . . . . . 17. ExampleFindtheareabetween y = x3 andthe x-axis, between x = 0 andx = 1.Solution 11x4 1x3 dx =A= =44.00Hereweusethenotation F(x)|b or [F(x)]b tomean F(b) F(a).aa. . . . . . 18. Example Findtheareaenclosedbytheparabola y = x2 and y = 1.. ... . . 19. Example Findtheareaenclosedbytheparabola y = x2 and y = 1. .. ... . . 20. Example Findtheareaenclosedbytheparabola y = x2 and y = 1. .Solution[ ]1 [ ()] 1x31 142 A=2x dx = 2 =2 =33 3311 . . . . . . 21. Outline . . . . . . 22. TheIntegralasTotalChangeAnotherwaytostatethistheoremis: bF (x) dx = F(b) F(a),a or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramications:.. . . . . 23. TheIntegralasTotalChangeAnotherwaytostatethistheoremis: b F (x) dx = F(b) F(a),a or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramications: TheoremIf v(t) representsthevelocityofaparticlemovingrectilinearly,then t1 v(t) dt = s(t1 ) s(t0 ). t0 .. . . . . 24. TheIntegralasTotalChangeAnotherwaytostatethistheoremis: bF (x) dx = F(b) F(a),a or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramications: TheoremIf MC(x) representsthemarginalcostofmaking x unitsofaproduct, then xC(x) = C(0) +MC(q) dq. 0 .. . . . . 25. TheIntegralasTotalChangeAnotherwaytostatethistheoremis: bF (x) dx = F(b) F(a),a or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramications: TheoremIf (x) representsthedensityofathinrodatadistanceof x fromitsend, thenthemassoftherodupto x is x m(x) = (s) ds. 0 .. . . . . 26. Outline . . . . . . 27. A newnotationforantiderivatives Toemphasizetherelationshipbetweenantidifferentiationandintegration, weusethe indeniteintegral notation f(x) dx foranyfunctionwhosederivativeis f(x). . . . .. . 28. A newnotationforantiderivatives Toemphasizetherelationshipbetweenantidifferentiationandintegration, weusethe indeniteintegral notation f(x) dx foranyfunctionwhosederivativeis f(x). Thus x2 dx = 1 x3 + C.3 .. . . . . 29. Myrsttableofintegrals [f(x) + g(x)] dx = f(x) dx + g(x) dxxn+1 xn dx = cf(x) dx = c f(x) dx + C (n = 1) n+11 ex dx = ex + C dx = ln |x| + Cxaxax dx = +C sin x dx = cos x + C ln a csc2 x dx = cot x + C cos x dx = sin x + C sec2 x dx = tan x + C csc x cot x dx = csc x + C 1dx = arcsin x + C sec x tan x dx = sec x + C1 x2 1dx = arctan x + C1 + x2 . ..... 30. Outline . . . . . . 31. Example Findtheareabetweenthegraphof y = (x 1)(x 2), the x-axis, andtheverticallines x = 0 and x = 3. .. .. .. 32. Example Findtheareabetweenthegraphof y = (x 1)(x 2), the x-axis, andtheverticallines x = 0 and x = 3.Solution 3(x 1)(x 2) dx. Noticetheintegrandispositiveon Consider0 [0, 1) and (2, 3], andnegativeon (1, 2). Ifwewanttheareaof theregion, wehavetodo 123(x 1)(x 2) dx (x 1)(x 2) dx +(x 1)(x 2) dx A=0 1 2 [1]1[1 3 ]2 [1 ]3 x3 3 x2 + 2x 0 3 x2 + 2x3323 x 2 x + 2x3x = + 3 (2)21 251511 = += .6666 .. .... 33. Graphfrompreviousexample y . . . . . x . 2 . 3 . 1 . . . . . . . 34. SummaryintegralscanbecomputedwithantidifferentiationintegralofinstantaneousrateofchangeistotalnetchangeThesecondFunamentalTheoremofCalculusrequirestheMeanValueTheorem... .. .

top related