lesson 9: the product and quotient rule

Post on 08-Jul-2015

827 Views

Category:

Education

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

How do we differentiate a product? We use the product, or Leibniz rule. The quotient rule is trickier, but we have nice mnemonics for both.

TRANSCRIPT

. . . . . .

Section2.4TheProductandQuotientRules

V63.0121.027, CalculusI

October1, 2009

Announcements

I Quiz2isnextweek, covering§§1.4–2.1I MidtermI isOctober15, covering§§1.1–2.4(today)I OfficeHourstoday3–4, checkwebsiteforcurrent

. . . . . .

Outline

TheProductRuleDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

Calculus

. . . . . .

. . . . . .

Recollectionandextension

Wehaveshownthatif u and v arefunctions, that

(u + v)′ = u′ + v′

(u− v)′ = u′ − v′

Whatabout uv?

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

..(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.

I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.

I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

. . . . . .

Isthederivativeofaproducttheproductofthederivatives?

.

.(uv)′ = u′v′?

.(uv)′ = u′v′!

Trythiswith u = x and v = x2.I Then uv = x3 =⇒ (uv)′ = 3x2.I But u′v′ = 1 · 2x = 2x.

Sowehavetobemorecareful.

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.

I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?.∆I = 5× $0.25 = $1.25?

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

...∆I = 5× $0.25 = $1.25?

.∆I = 5× $0.25 = $1.25?

. . . . . .

Mmm...burgers

Sayyouworkinafast-foodjoint. Youwanttomakemoremoney.Whatareyourchoices?

I Worklongerhours.I Getaraise.

Sayyougeta25centraiseinyourhourlywagesandwork5hoursmoreperweek. Howmuchextramoneydoyoumake?

..

.∆I = 5× $0.25 = $1.25?

.∆I = 5× $0.25 = $1.25?

. . . . . .

Moneymoneymoneymoney

Theanswerdependsonhowmuchyouwork already andyourcurrent wage. Supposeyouwork h hoursandarepaid w. Yougetatimeincreaseof ∆h andawageincreaseof ∆w. Incomeiswagestimeshours, so

∆I = (w + ∆w)(h + ∆h) −whFOIL= w · h + w · ∆h + ∆w · h + ∆w · ∆h−wh

= w · ∆h + ∆w · h + ∆w · ∆h

. . . . . .

A geometricargument

Drawabox:

..w .∆w

.h

.∆h

.wh

.w∆h

.∆wh

.∆w∆h

∆I = w∆h + h∆w + ∆w∆h

. . . . . .

A geometricargument

Drawabox:

..w .∆w

.h

.∆h

.wh

.w∆h

.∆wh

.∆w∆h

∆I = w∆h + h∆w + ∆w∆h

. . . . . .

Suposewagesandhoursarechangingcontinuouslyovertime.Overatimeinterval ∆t, whatistheaveragerateofchangeofincome?

∆I∆t

=w∆h + h∆w + ∆w∆h

∆t

= w∆h∆t

+ h∆w∆t

+ ∆w∆h∆t

Whatistheinstantaneousrateofchangeofincome?

dIdt

= lim∆t→0

∆I∆t

= wdhdt

+ hdwdt

+ 0

. . . . . .

Suposewagesandhoursarechangingcontinuouslyovertime.Overatimeinterval ∆t, whatistheaveragerateofchangeofincome?

∆I∆t

=w∆h + h∆w + ∆w∆h

∆t

= w∆h∆t

+ h∆w∆t

+ ∆w∆h∆t

Whatistheinstantaneousrateofchangeofincome?

dIdt

= lim∆t→0

∆I∆t

= wdhdt

+ hdwdt

+ 0

. . . . . .

Eurekamen!

Wehavediscovered

Theorem(TheProductRule)Let u and v bedifferentiableat x. Then

(uv)′(x) = u(x)v′(x) + u′(x)v(x)

inLeibniznotation

ddx

(uv) =dudx

· v + udvdx

. . . . . .

ExampleApplytheproductruleto u = x and v = x2.

Solution

(uv)′(x) = u(x)v′(x) + u′(x)v(x) = x · (2x) + 1 · x2 = 3x2

Thisiswhatwegetthe“normal”way.

. . . . . .

ExampleApplytheproductruleto u = x and v = x2.

Solution

(uv)′(x) = u(x)v′(x) + u′(x)v(x) = x · (2x) + 1 · x2 = 3x2

Thisiswhatwegetthe“normal”way.

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]

Solutionbydirectmultiplication:

ddx

[(3− x2)(x3 − x + 1)

]FOIL=

ddx

[−x5 + 4x3 − x2 − 3x + 3

]

= −5x4 + 12x2 − 2x− 3

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbydirectmultiplication:

ddx

[(3− x2)(x3 − x + 1)

]FOIL=

ddx

[−x5 + 4x3 − x2 − 3x + 3

]

= −5x4 + 12x2 − 2x− 3

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbydirectmultiplication:

ddx

[(3− x2)(x3 − x + 1)

]FOIL=

ddx

[−x5 + 4x3 − x2 − 3x + 3

]= −5x4 + 12x2 − 2x− 3

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)

= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

. . . . . .

ExampleFindthisderivativetwoways: firstbydirectmultiplicationandthenbytheproductrule:

ddx

[(3− x2)(x3 − x + 1)

]Solutionbytheproductrule:

dydx

=

(ddx

(3− x2))

(x3 − x + 1) + (3− x2)(

ddx

(x3 − x + 1)

)= (−2x)(x3 − x + 1) + (3− x2)(3x2 − 1)

= −5x4 + 12x2 − 2x− 3

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x

=

(ddx

x)sin x + x

(ddx

sin x)

= 1 · sin x + x · cos x= sin x + x cos x

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x =

(ddx

x)sin x + x

(ddx

sin x)

= 1 · sin x + x · cos x= sin x + x cos x

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x =

(ddx

x)sin x + x

(ddx

sin x)

= 1 · sin x + x · cos x

= sin x + x cos x

. . . . . .

Onemore

Example

Findddx

x sin x.

Solution

ddx

x sin x =

(ddx

x)sin x + x

(ddx

sin x)

= 1 · sin x + x · cos x= sin x + x cos x

. . . . . .

Mnemonic

Let u = “hi” and v = “ho”. Then

(uv)′ = vu′ + uv′ = “hodeehiplushideeho”

. . . . . .

Musicalinterlude

I jazzbandleaderandsinger

I hitsong“MinnietheMoocher”featuring“hideho”chorus

I playedCurtisin TheBluesBrothers

CabCalloway1907–1994

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′

= ((uv)w)′

..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′

= ((uv)w)′

..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

. . . . . .

IteratingtheProductRule

ExampleUsetheproductruletofindthederivativeofathree-foldproductuvw.

Solution

(uvw)′ = ((uv)w)′..

.Applytheproductrule

to uv and w

= (uv)′w + (uv)w′..

.Applytheproductrule

to u and v

= (u′v + uv′)w + (uv)w′

= u′vw + uv′w + uvw′

Sowewritedowntheproductthreetimes, takingthederivativeofeachfactoronce.

. . . . . .

Outline

TheProductRuleDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

. . . . . .

TheQuotientRule

Whataboutthederivativeofaquotient?

Let u and v bedifferentiablefunctionsandlet Q =uv. Then

u = Qv

If Q isdifferentiable, wehave

u′ = (Qv)′ = Q′v + Qv′

=⇒ Q′ =u′ −Qv′

v=

u′

v− u

v· v

v

=⇒ Q′ =(uv

)′=

u′v− uv′

v2

Thisiscalledthe QuotientRule.

. . . . . .

VerifyingExample

Example

Verifythequotientrulebycomputingddx

(x2

x

)andcomparingit

toddx

(x).

Solution

ddx

(x2

x

)=

x ddx

(x2

)− x2 d

dx (x)x2

=x · 2x− x2 · 1

x2

=x2

x2= 1 =

ddx

(x)

. . . . . .

VerifyingExample

Example

Verifythequotientrulebycomputingddx

(x2

x

)andcomparingit

toddx

(x).

Solution

ddx

(x2

x

)=

x ddx

(x2

)− x2 d

dx (x)x2

=x · 2x− x2 · 1

x2

=x2

x2= 1 =

ddx

(x)

. . . . . .

Examples

Example

1.ddx

2x + 53x− 2

2.ddx

2x + 1x2 − 1

3.ddt

t− 1t2 + t + 2

Answers

1. − 19(3x− 2)2

2. −2

(x2 + x + 1

)(x2 − 1)2

3.−t2 + 2t + 3

(t2 + t + 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2

= − 19(3x− 2)2

. . . . . .

Solutiontofirstexample

ddx

2x + 53x− 2

=(3x− 2) d

dx(2x + 5) − (2x + 5) ddx(3x− 2)

(3x− 2)2

=(3x− 2)(2) − (2x + 5)(3)

(3x− 2)2

=(6x− 4) − (6x + 15)

(3x− 2)2= − 19

(3x− 2)2

. . . . . .

Examples

Example

1.ddx

2x + 53x− 2

2.ddx

2x + 1x2 − 1

3.ddt

t− 1t2 + t + 2

Answers

1. − 19(3x− 2)2

2. −2

(x2 + x + 1

)(x2 − 1)2

3.−t2 + 2t + 3

(t2 + t + 2)2

. . . . . .

Solutiontosecondexample

ddx

2x + 1x2 − 1

=(x2 − 1)(2) − (2x + 1)(2x)

(x2 − 1)2

=(2x2 − 2) − (4x2 + 2x)

(x2 − 1)2

= −2

(x2 + x + 1

)(x2 − 1)2

. . . . . .

Solutiontosecondexample

ddx

2x + 1x2 − 1

=(x2 − 1)(2) − (2x + 1)(2x)

(x2 − 1)2

=(2x2 − 2) − (4x2 + 2x)

(x2 − 1)2

= −2

(x2 + x + 1

)(x2 − 1)2

. . . . . .

Solutiontosecondexample

ddx

2x + 1x2 − 1

=(x2 − 1)(2) − (2x + 1)(2x)

(x2 − 1)2

=(2x2 − 2) − (4x2 + 2x)

(x2 − 1)2

= −2

(x2 + x + 1

)(x2 − 1)2

. . . . . .

Examples

Example

1.ddx

2x + 53x− 2

2.ddx

2x + 1x2 − 1

3.ddt

t− 1t2 + t + 2

Answers

1. − 19(3x− 2)2

2. −2

(x2 + x + 1

)(x2 − 1)2

3.−t2 + 2t + 3

(t2 + t + 2)2

. . . . . .

Solutiontothirdexample

ddt

t− 1t2 + t + 2

=(t2 + t + 2)(1) − (t− 1)(2t + 1)

(t2 + t + 2)2

=(t2 + t + 2) − (2t2 − t− 1)

(t2 + t + 2)2

=−t2 + 2t + 3(t2 + t + 2)2

. . . . . .

Solutiontothirdexample

ddt

t− 1t2 + t + 2

=(t2 + t + 2)(1) − (t− 1)(2t + 1)

(t2 + t + 2)2

=(t2 + t + 2) − (2t2 − t− 1)

(t2 + t + 2)2

=−t2 + 2t + 3(t2 + t + 2)2

. . . . . .

Solutiontothirdexample

ddt

t− 1t2 + t + 2

=(t2 + t + 2)(1) − (t− 1)(2t + 1)

(t2 + t + 2)2

=(t2 + t + 2) − (2t2 − t− 1)

(t2 + t + 2)2

=−t2 + 2t + 3(t2 + t + 2)2

. . . . . .

Examples

Example

1.ddx

2x + 53x− 2

2.ddx

2x + 1x2 − 1

3.ddt

t− 1t2 + t + 2

Answers

1. − 19(3x− 2)2

2. −2

(x2 + x + 1

)(x2 − 1)2

3.−t2 + 2t + 3

(t2 + t + 2)2

. . . . . .

Mnemonic

Let u = “hi” and v = “lo”. Then(uv

)′=

vu′ − uv′

v2= “lodeehiminushideelooverlolo”

. . . . . .

Outline

TheProductRuleDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)

=cos x · cos x− sin x · (− sin x)

cos2 x

=cos2 x + sin2 x

cos2 x=

1cos2 x

= sec2 x

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)

=cos x · cos x− sin x · (− sin x)

cos2 x

=cos2 x + sin2 x

cos2 x=

1cos2 x

= sec2 x

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x + sin2 x

cos2 x=

1cos2 x

= sec2 x

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x + sin2 x

cos2 x

=1

cos2 x= sec2 x

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x + sin2 x

cos2 x=

1cos2 x

= sec2 x

. . . . . .

DerivativeofTangent

Example

Findddx

tan x

Solution

ddx

tan x =ddx

(sin xcos x

)=

cos x · cos x− sin x · (− sin x)cos2 x

=cos2 x + sin2 x

cos2 x=

1cos2 x

= sec2 x

. . . . . .

DerivativeofCotangent

Example

Findddx

cot x

Answer

ddx

cot x = − 1sin2 x

= − csc2 x

. . . . . .

DerivativeofCotangent

Example

Findddx

cot x

Answer

ddx

cot x = − 1sin2 x

= − csc2 x

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)

=cos x · 0− 1 · (− sin x)

cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)

=cos x · 0− 1 · (− sin x)

cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

. . . . . .

DerivativeofSecant

Example

Findddx

sec x

Solution

ddx

sec x =ddx

(1

cos x

)=

cos x · 0− 1 · (− sin x)cos2 x

=sin xcos2 x

=1

cos x· sin xcos x

= sec x tan x

. . . . . .

DerivativeofCosecant

Example

Findddx

csc x

Answer

ddx

csc x = − csc x cot x

. . . . . .

DerivativeofCosecant

Example

Findddx

csc x

Answer

ddx

csc x = − csc x cot x

. . . . . .

Recap: Derivativesoftrigonometricfunctions

y y′

sin x cos x

cos x − sin x

tan x sec2 x

cot x − csc2 x

sec x sec x tan x

csc x − csc x cot x

I Functionscomeinpairs(sin/cos, tan/cot, sec/csc)

I Derivativesofpairsfollowsimilarpatterns,withfunctionsandco-functionsswitchedandanextrasign.

. . . . . .

Outline

TheProductRuleDerivationExamples

TheQuotientRuleDerivationExamples

MorederivativesoftrigonometricfunctionsDerivativeofTangentDerivativeofSecantandCosecant

MoreonthePowerRulePowerRuleforPositiveIntegersbyInductionPowerRuleforNegativeIntegers

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1

=ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n.

Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1

=ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

. . . . . .

PrincipleofMathematicalInduction

.

.Suppose S(1) istrue and S(n + 1)is true wheneverS(n) is true. ThenS(n) is true for alln.

.

.Imagecredit: KoolSkatkat

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1

=ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1 =ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1 =ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

. . . . . .

PowerRuleforPositiveIntegersbyInductionTheoremLet n beapositiveinteger. Then

ddx

xn = nxn−1

Proof.Byinductionon n. Wecanshowittobetruefor n = 1 directly.

Supposeforsome n thatddx

xn = nxn−1. Then

ddx

xn+1 =ddx

(x · xn)

=

(ddx

x)xn + x

(ddx

xn)

= 1 · xn + x · nxn−1 = (n + 1)xn

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n

= −nx−n−1

. . . . . .

PowerRuleforNegativeIntegersUsethequotientruletoprove

Theorem

ddx

x−n = (−n)x−n−1

forpositiveintegers n.

Proof.

ddx

x−n =ddx

1xn

=xn · d

dx1− 1 · ddxx

n

x2n

=0− nxn−1

x2n= −nx−n−1

. . . . . .

Whathavewelearnedtoday?

I TheProductRule: (uv)′ = u′v + uv′

I TheQuotientRule:(uv

)′=

vu′ − uv′

v2I Derivativesoftangent/cotangent, secant/cosecant

ddx

tan x = sec2 xddx

sec x = sec x tan x

ddx

cot x = − csc2 xddx

csc x = − csc x cot x

I ThePowerRuleistrueforallwholenumberpowers,includingnegativepowers:

ddx

xn = nxn−1

top related