lightweight concrete for accelerated bridge … lightweight concrete for accelerated bridge...

Post on 09-Mar-2018

236 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Lightweight Concrete forAccelerated Bridge Construction

ABC Center at Florida International University (FIU) Webinar

Thursday, July 14, 2011 – 1:00 to 2:00 pm EST

Reid W. Castrodale, PhD, PEDirector of Engineering

Carolina Stalite Company, Salisbury, NC

2

• Lightweight Aggregate (LWA)– Geotechnical use of LWA

• Lightweight Concrete (LWC)• Design of Structures with LWC• Benefits of Using LWC• Cost of LWC• Projects Using LWC

Outline

3

• LWA is lighter than NWA • But LWA still satisfies typical specifications required of NWA for use in most construction applications– Different gradations – AASHTO M 195

• A non‐concrete application for LWA– Geotechnical fill

LWA is just a lighter rock!

4

Geotechnical Use of LWA

• LWA can be used as structural fill– Compacted in‐place bulk density

• LWA: 40‐65 pcf; NW soils: 100‐130 pcf – Bulk Loose density (dry)

• LWA: 30‐50 pcf; NW soils: 89‐105 pcf– Angle of internal friction

• LWA: 35°‐45°+; NW sand & gravel: 30°‐38°– Abrasion resistance

• LWA: 20‐40% loss; NWA: 10‐45% loss– LWA is free draining

5

Pentagon Secured Entrance

LWA fill was used between MSE walls– Reduced anticipated settlement from 15” to 6”– Reduced settlement time from 180 days to 60 days– Allowed contractor to meet tight project schedule

6

• When LWA is used to make LWC– Same batch plants and mixing procedures– Same admixtures– Can use same mix design procedures– “Roll‐o‐meter” for measuring air content

• LWA has higher absorption than NWA– Needs to be prewetted, especially for pumping

• See ESCSI website or local LWA supplier for more info on properties of LWA and LWC

LWA is just a lighter rock!

7

Spectrum of Concrete Density

All LWC Sand LWC NWC

90 ‐ 105 pcf 110 ‐ 125 pcf 135 ‐ 155 pcf

LW Fine NW Fine NW Fine

LW Coarse LW Coarse NW Coarse

SDC SDC

Density ranges shown are approximateConsult local concrete suppliers for available densities

8

• “Equilibrium density” is defined in ASTM C 567– Density after moisture loss has occurred with time– Often used for dead load calculations

• “Fresh density” used for QC tests during casting– Designer or supplier must specify– Must use for precast member weight at early age– May use for final design loads for large elements

• Add reinforcement allowance to concrete density when computing dead loads (typ. 5 pcf) 

Specifying Density of LWC

9

• Carries tracks for automated                            people mover (APM)                                     between terminal and new                             rental car facility (CONRAC)

• Design used long span                             pretensioned tub girders– Very heavy girders with maximum spans of 143 ft– 5 ft deep precast pretensioned box girder– 12 ‐ 16 ft wide slab cast on tub before detensioning

• Girders were erected in 2007

CONRAC APM, Atlanta, GA

10

• Girder designs exceeded                                  255 kip capacity for pair of                            straddle lift cranes in plant– With actual concrete density                                      & quantity of steel, largest                                girder would weigh 291 kips                                     

• Fabricator computed concrete density (SDC)required to stay below 255 kip limit– Using 125 pcf and 139 pcf concrete for groups of girders, all would weigh less than 255 kips

CONRAC APM, Atlanta, GA

11

Design using LWC

• US bridge design specifications address LWC– Modifiers for tensile strength, shear, etc.– Special shear resistance factor, – Reduced modulus of elasticity

• Increases elastic shortening loss & cambers• Can be beneficial for substructures & decks

– Time dependent effects:  CR, SH & Losses• For HS LWC these quantities are very similar to NWC

• US design specifications do not address SDC

12

• Reduced weight of precast elements– Affects handling, shipping and erection– Can also improve structural efficiency

• Enhanced durability– Reduced cracking tendency– Reduced permeability– Tighter quality control with a specified density

• LWC can be used to achieve both accelerated construction and longer‐life structures

Benefits of LWC

Opposite of what many expect!

Focus of this webinar

13

Enhanced Durability

– Bond between aggregate and paste– Elastic compatibility– Internal curing– Reduced cracking tendency– Resistance to chloride intrusion– Fire resistance– Resistance to freezing and thawing– Wear and skid resistance– Alkali‐silica reactivity (ASR) resistance

14

• Absorbed moisture within LWA is released over time into the concrete 

• Provides enhanced curing– Increased hydration of cement & SCMs– Especially helpful for HPC with low w/cm such as may be used for rapid construction or repairs• HPC impermeable to externally applied curing water• Shown to reduce shrinkage and permeability

– Improves tolerance of concrete to improper or inadequate curing, often an issue with ABC

Internal Curing

15

Internal Curing

• Unrestrained mortar shrinkage to 7 days• From research at Purdue University for ESCSI

No LWA

Increasing % of LWA sand

16

Internal Curing

No LWAIncreasing % of LWA sand

• Restrained mortar shrinkage ‐ time to cracking• From research at Purdue University for ESCSI

17

Concrete Cracking Tendency Tests

• Research at Auburn Univ. for ESCSI• Testing uses cracking tendency frames

– Restrained shrinkage tests– Concrete temperature is controlled– 3 types of LWA; 3 LWC mixes + NWC control

18

• Sand LWC & All LWC did not crack during test, but were forced to crack at  end of test

• Results for one type of LWA shown

• Complete results in report

NWC IC

SLWCALWC

ICNWC

Spring - 73 deg.

Summer - 95 deg.

SLWCALWC

Cracking Tendency Test Results

19

• Silver Creek Overpass, UT• Constructed in 1968• Chloride content after 23½ years in service

Resistance to Chloride Intrusion

Depth Sand LWC Deck NWC Appr. Slab

0" to ½" 36.7 lbs / CY 20.5 lbs / CY

½" to 1" 18.0 lbs / CY 18.0 lbs / CY

1" to 1½" 7.7 lbs / CY 15.7 lbs / CY

1½" to 2" 0.5 lbs / CY N/A

20

Permeability at 28 days (coulombs)

Specification requirement 2,500 

Average value 989 

Max./ min. range 1,467 / 593 

Standard deviation 245 

Resistance to Chloride Intrusion

• Test results for sand LWC used in VA Route 33 bridge deck completed in 2007– Results are for 17 samples over a 6 month period

21

Cost of LWC

• Increased cost of LWA– Additional processing

– Shipping from the manufacturing plant

22

• Effect of sand LWC on cost of bridge

– Cost / SF assumes 9 in. thick deck (average)– Premium depends on cost of LWA, cost of NWA being replaced, and aggregate shipping cost

Sand LWC Premium / CY Cost / SF

$20 / CY $0.56 / SF

$30 / CY $0.83 / SF

$40 / CY $1.11 / SF

Cost Premium for LWC Decks

23

• Cost premium for sand LWC in Mod BT‐74 girder– Assume $30 / CY premium = $6.83 / LF– Cost for sand LWC for 150 ft girder =  $1,024

• Cost reduction from using sand LWC– Shipping from plant to site (~290 mi) =  $811

• NWC girder = 69 t; LWC girder = 58 t, or 11 t less– Drop 4 strands / girder @ $0.65 / LF ea. =  $390– Total cost reduction =  $1,201

• Net savings from using sand LWC $177

Cost Premium for LWC Girders

24

• But using sand LWC for girder & all LWC for deck eliminates a girder line from each dual– Premium for all‐LWC deck =  $400,000– From bid tabs, assume girder cost of $180 / LF– Total cost for dropped girder line =  $1,080,000 – Total savings (girder + deck) =  $1,129,560– Net savings for bridge superstructure =  $729,560

• Girder wt reduction = 23.1 kips (17%)• Interior bent reaction reduction = 773 kips (25%)

Cost Premium for LWC Bridge

25

• Comparisons often neglect other sources of savings– Reduced handling and transportation costs– Reduced erection and rental costs– Reduced cost & time for substructure & foundations– Reduced structural modifications for rehab projects

• Check with local concrete suppliers to obtain an estimate of cost for LWC– Lack of familiarity in some areas may increase the cost of LWC for initial projects

Cost Comparisons for LWC

26

PBES Applications for LWC

All LWC Sand LWC SDC NWC

105 pcf 120 pcf 135 pcf 145 pcf

These are fresh densities for concrete up to about 6 ksi5 pcf allowance is added to account for reinforcement

• Sand LWC & Specified Density Concrete– Use for any precast or prestressed conc. elements

• All LWC– Can be used for any precast concrete element– Data not yet available for prestressed elements

27

• Consider sample projects – Precast foundation elements– Precast pile & pier caps– Precast columns– Precast full‐depth deck slabs– Cored slabs & Box beams– NEXT beams & Deck girders– Full‐span bridge replacement units with precast deck– Bridges installed with SPMTs

Impact of LWC on PBES

28

Mill Street Bridge, NH

% Chng.

Weight   as Des. Chng. Weight 

as Built Chng.

150 pcf 0 39 t 0 25 t 0

125 pcf 17% 32 t 7 t 20 t 5 t

110 pcf 27% 28 t 11 t 18 t 7 t

• Precast foundation elements– Project did not use LWC

• Comparison for abutment footings– Abutment walls have similar weights

29

Okracoke Island, NC

• Precast pile caps– Project did not use LWC

• End bent pile cap – 2 pieces– Size:  21 ft long x 3.67 ft x 3 ft– 3 pile pockets per piece

Pile Cap Weight Change % Chng.

150 pcf 16 t 0 0

125 pcf 13 t 3 t 17%

110pcf 12 t 4 t 27%

30

Lake Ray Hubbard, TX

• Precast pier caps– Project did not use LWC

• Typical pier cap on 3 columns– Size:  37.5 ft long x 3.25 ft x 3.25 ft

Pier Cap Weight Change % Chng.

150 pcf 29 t 0 0

125 pcf 24 t 5 t 17%

110 pcf 21 t 8 t 27%

31

• Project did not use LWC• Precast columns

– Max wt = 45 tons @ 150 pcf– Max wt = 37 tons @ 125 pcf– Using 128 pcf SDC could have eliminated pedestal for tall columns• Precast caps

– Max wt = 78 tons @ 150 pcf– Max wt = 65 tons @ 125 pcf

Edison Bridges, FL

32

• Deck replacement with full‐depth                    precast deck panels in 1983 

• Sand LWC was used for panels– Allowed thicker deck– Allowed widened roadway with no                                super‐ or substructure strengthening

– Reduced shipping costs and erection loads

• Sand LWC deck performed well until bridge was recently replaced to improve traffic capacity

Woodrow Wilson Bridge, VA/DC/MD

33

Okracoke Island, NC

• Precast cored slabs– Project did not use LWC

• 21” deep by 3 ft wide– 30 and 50 ft spans

Ext. 50 ft span Weight Change % Chng.

150 pcf 16.0 t 0 0

125 pcf 13 t 3 t 17%

125 pcf ‐ Solid 16.4 t 0.4 t +3%

34

Okracoke Island, NC

• Precast barriers– Project was not designed with LWC

• Contractor proposed casting barriers                        on cored slabs in precast plant– Sand LWC was used for the barrier  

Barrier Weight Change % Chng.

150 pcf 13.7 t 0 0

125 pcf 11.4 t 2.3 t 17%

110 pcf 10.1 t 3.6 t 27%

35

Mill Street Bridge, NH

• Precast box beams– Project did not use LWC

• NWC box beam weight governed                               crane size with 2 crane pick

– Using LWC for box beam would make beam pick nearly equal to NWC substructure elements

Ext. Box Beam Weight Chng. % Chng.

150 pcf 69 t 0 0

125 pcf 57 t 12 t 17%

36

NEXT F Beams

• Compare section weights for NEXT 36 F– NWC @ 155 pcf;  Sand LWC @ 130 pcf– No max. span                                                              charts for                                                                      sand LWC

– 16% reduction in                                                      weight for same                                                         width sections

– 12 ft wide LWC                                                                is lighter than                                                                      8 ft wide NWC

1385

1162

1489

1249

1592

1335

1000

1100

1200

1300

1400

1500

1600

1700

NWC LWC

Wei

ght p

er F

oot (

lbs)

NEXT 36 F

8 ft 10 ft 12 ft 8 ft 10 ft 12 ft

16%

37

• Compare section weights for NEXT 36 D– To limit weight of NWC beam, 12 ft width not used– Max. span charts                                                           are provided                                                                 for sand LWC

– 16% reduction in                                                      weight for same                                                         width sections

– 12 ft LWC is                                                             lighter than                                                                   10 ft NWC

1793

1504

2000

1677

1851

1400

1500

1600

1700

1800

1900

2000

2100

2200

NWC LWC

Wei

ght p

er F

oot (

lbs)

NEXT 36 F

8 ft 10 ft 12 ft 8 ft 10 ft 12 ft

NEXT D Beams

16%

38

Deck Girders, NY

• Precast deck girder – Project did not use LWC

• 41” deep deck girders with 5 ft top flange– 87.4 ft long girders

Girder & Deck Weight Change % Chng.

158 pcf 45 t 0 0

130 pcf 37 t 8 t 18%

NWC density was obtained from girder fabricatorSpecified concrete compressive strength = 10,000 psi

39

I‐95 in Richmond, VA

• Prefabricated full‐span units – Steel girders and sand LWC deck

• Maximum precast unit weight for current project

Deck densities do not include reinforcement allowance

Deck Weight Chng. % Chng.

145 pcf 132 t 0 0

120 pcf 116 t 16 t 12%

105 pcf 106 t 26 t 20%

40

Coleman Bridge, Yorktown, VA

• Bridge replaced in 1996– 26 ft wide with 2 lanes to                                                74 ft wide with 4 lanes                                             and shoulders

– Spans floated into place– Total closure only 9 days

• Sand LWC deck was used based on cost savings and good experience in VA

• Sand LWC helped reduce structure weight– Piers were reused & caps only had to be widened– Reduced the steel required in new trusses

41

• Deck replacement on existing truss– Sand LWC precast deck units with steel floor beams– Sand LWC density = 119 pcf– Max. deck unit weight = 92 t– Sand LWC saved about 14 t

• Existing deck was LWC– In service for 73 years

17'-1"

3'-0"(TYP.)

5'-6"(TYP.)

2" 9"¢ STRINGER

0.02'/FT.7"0.02'/FT.

1¼" M

MC

OVE

RLA

Y ¢ STRINGER17'-1"

3'-0"(TYP.)

5'-6"(TYP.)

2" 9"¢ STRINGER

0.02'/FT.7"0.02'/FT.

1¼" M

MC

OVE

RLA

Y ¢ STRINGER

Lewis & Clark Bridge, OR/WA

42

• 3300 South over I‐215 – Built in 2008– Sand LWC used for deck– Less deck cracking than bridges with NWC decks

• 3 bridges to be moved in 2011– Steel girder bridges with sand LWC decks– 200 South over I‐15 – 2 spans @ 3.1 million lbs– Sam White Lane over I‐15 – 2 spans @ 3.8 million lbs– I‐15 Southbound over Provo Center Street 

–2 moves of 1.5 and 1.4 million lbs

Bridges set with SPMTs, UT

43

Graves Ave. over I‐4, FL

• Span replaced using SPMTs– Project did not use LWC

• Comparison of weight for NWC and sand LWC– Appendix C in FHWA “Manual on Use of SPMTs …”

Girder Deck Weight Change % Chng.

152 pcf 150 pcf 1,282 t 0 0

127 pcf 120 pcf 1,049 t 233 t 18%

127 pcf 105 pcf 996 t 286 t 22%

Comparison with all LWC deck is not in Manual

44

Questions?

For more information on LWA and LWC• Contact Reid Castrodale:  rcastrodale@stalite.com• Visit the Expanded Shale, Clay and Slate Institute website:  www.escsi.org

• Contact local LWA suppliers− listed on ESCSI website

45

Additional Slides

46

• In early 1900s, Stephen Hayde discovered method to manufacture lightweight aggregates (LWA) from shale, clay and slate– Some bricks bloated during burning– Development of rotary kiln process began in 1908 – Patent for expanding LWA using a rotary kiln process was granted in 1918

• The first use of lightweight                            concrete (LWC) was for                                       ships in World War I

Development of LWA & LWC

47

• Early use of LWC in a bridge project– San Francisco‐Oakland Bay Bridge– Upper deck of suspension spans                       was constructed using all LWC in 1936

– Lower deck was rebuilt with LWCfor highway traffic in 1958

– Both decks are still in service

Development of LWA & LWC

48

48

Structural LWA

• LWA is manufactured– Raw material is shale, clay or slate– Expands in kiln at 1900 – 2200 deg. F

– Gas bubbles formed in softened                           material are trapped when cooled

49

18 plants in the USSee www.escsi.org for locations

ESCS Manufacturing Plants in US

50

• Rotary kiln expanded LWA– Range from 1.3 to 1.6

• Normal weight aggregate– Range from 2.6 to 3.0

• Twice the volume for                                        same mass

• Half the mass for the                                           same volume 1 lb. of each aggregate

Relative Density

51

• AASHTO LRFD Specs (Section 5.2)– Lightweight concrete:  "Concrete containing lightweight aggregate and having an air‐dry unit weight not exceeding 0.120 kcf …"

– Normal weight concrete:  “Concrete having a weight between 0.135 and 0.155 kcf”

• Concrete that falls between these definitions is often called specified density concrete (SDC)

Definitions

52

• NCHRP Report 380 "Transverse Cracking in Newly Constructed Bridge Decks" (1996)– "Using low‐elasticity aggregates should therefore reduce thermal and shrinkage stresses, and the risk or severity of transverse cracking."

– Recommends using concretes with a low cracking tendency - Low early modulus of elasticity- Low early strength concrete

• LWC has lower modulus but retains strength

Reduced Modulus of Elasticity

top related