l.p. csernai, bnl nov 17-19 '03 1 l..p. csernai multi module modelling of heavy ion collisions...

Post on 17-Jan-2016

213 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

L.P. Csernai, BNL Nov 17-19 '031L..P.

Csernai

Multi module modelling of heavy ion collisions

Collective flow and QGP properties

RIKEN-BNL workshop

November 17-19, 2003

L.P. Csernai, BNL Nov 17-19 '032

Multi module modelling of heavy ion collisions

• L.P. Csernai, A. Anderlik, Cs. Anderlik, Ø. Heggø-Hansen, E. Molnár, A. Nyiri, D. Röhrich, and K. Tamousiunas

• U of Valencia: V.K. Magas • U of Oulu: A. Keranen, J. Manninen• Los Alamos National Lab.: D.D. Strottman, B.

Schlei• U of Sao Paulo: F. Grassi, Y. Hama• U of Rio de Janeiro: T. Kodama• U of Frankfurt: H. Stöcker, W. Greiner• Bergen Computational Physics Lab. – EU Research

Infrastructure,BCCS, Unifob AS, University of Bergen, Norway

L.P. Csernai, BNL Nov 17-19 '033

Multi Module ModelingMulti Module Modeling

• Pre: Eq. of State (EoS) – Phases – Local eq.:BagM

• A: Initial state - Fitted to measured data (?)• B: Initial state - Pre-equilibrium: Parton

Cascade M.; Coherent Yang-Mills [Magas]• Local Equilibrium Hydro, EoS• Final Freeze-out: Kinetic models,

measurables. • If QGP Sudden and simultaneous

hadronization and freeze out (indicated by HBT, Strangeness, Entropy puzzle)

L.P. Csernai, BNL Nov 17-19 '034

Phase transition to QGP in small systems !

In macroscopic systems two phases of different densities (e) are in phase equilibrium. Negligible density fluctuations!

[Csernai, Kapusta, Osnes, PRD 67 (03) 045003 ]

STATIC

L.P. Csernai, BNL Nov 17-19 '035

Small, Mesoscopic Systems

If N=100, fluctuations are getting strong (red). Close to the critical point, the two phases cannot be identified (green).

=> Landau’s theory of fluctuations near the critical point.

Nuclear Liquid-Gas phase transition (first order)

[ Goodman, Kapusta, Mekjian, PRC 30 (1984) 851 ]

CRAY - 1

T/F eP

STATIC

L.P. Csernai, BNL Nov 17-19 '036

Lattice Field Theory

[Farakos, Kajantie, et al. (1995) hep-lat/ ]

First order (EW) phase transition: statistical ensemble.

Fluctuations of density decrease with increasing Lattice volume !!

For macroscopic EoS extrapolation is needed!

For small systems, ~100-200 fermi3, fluctuations are REAL !!!

Supercomputers are needed !

[Csernai, Neda PL B337 (94) 25]

STATIC

L.P. Csernai, BNL Nov 17-19 '037

Pressure – Soft Point?

LBL, AGS, SPS:Collective flow –P-x vs. y Pressure sensitive

Directed transverseflow decreases with increasing energy:

[Holme, et al., 89][D. Rischke, 95][E. Shuryak, 95]OBSERVED !

But, does it recoverat higher energies ?WHAT HAPPENS?

L.P. Csernai, BNL Nov 17-19 '038

Phase transition dynamics – Out of thermal eq.

Transition to QGP• 0.1 – 0.3 fm/c (PCM)• Structure functions

- valence quarks- see quarks (~stopped)

• Flux-tube models- immediate eq.- Bjorken ’83- Gyulassy & Cs. ‘86

Hadronization• Nucleation ~30-100fm/c

- local thermal equilibrium- Cs. & Kapusta ’92

• Out of eq. ph.tr. possible:- supercooled QGP- Csorgo & Cs. ’94- Cs. & Mishustin ’95- ~1-2 fm/c

Hadronization and Freeze-out MUST be simultaneous ! / No T,p,..- How can the Stat.Model work?

L.P. Csernai, BNL Nov 17-19 '039

Multi Module ModelingMulti Module Modeling

Breakdown of a complex task into modules

Input 1

InitialTransportModule

1Fluid

DynamicalModule

2

Freeze OutModule

3Hadroni-

zationModule

Calculationof

ObservablesResult 1

4 5

Time

Standard interfaces

FO surface FO transfer

L.P. Csernai, BNL Nov 17-19 '0310

Multi Module Modeling on GRIDMulti Module Modeling on GRIDExecution of complex modular tasks on GRID

time

Machine A Machine B Machine C Machine D Machine E

Input 11

1

1

1

1

Input 2

Input 3

2

2

2

2

3

3

3

4

4

4

5

5

5

Result 3

Result 2

Result 1

L.P. Csernai, BNL Nov 17-19 '0311

L.P. Csernai, BNL Nov 17-19 '0312

Fire streak picture - Only in 3 dimensions!

Myers, Gosset, Kapusta, Westfall

L.P. Csernai, BNL Nov 17-19 '0313

String rope --- Flux tube --- Coherent YM field

L.P. Csernai, BNL Nov 17-19 '0314

Initial stage: Coherent Yang-Mills model

[Magas, Csernai, Strottman, Phys. Rev. C64 (01) 014901]

L.P. Csernai, BNL Nov 17-19 '0315

Expanding string ropes – Full energy conservation

L.P. Csernai, BNL Nov 17-19 '0316

Yo – Yo Dynamics wo/ dissipation

L.P. Csernai, BNL Nov 17-19 '0317

wo/ dissipation

L.P. Csernai, BNL Nov 17-19 '0318

Initial state

3rd flow component

L.P. Csernai, BNL Nov 17-19 '0319

Modified Initial StateIn the previous model the fwd-bwd surface was too sharp two propagating peaks

Thus, after the formation of uniform streak, the expansion at its end is included in the model

This led to smoother energy density and velocity profiles

Z [fm]Z [fm]

ye [GeV/ fm3 ]

[Magas, Csernai, Strottman, in pr.]

L.P. Csernai, BNL Nov 17-19 '0320

Modified Initial State

L.P. Csernai, BNL Nov 17-19 '0321

Matching Conditions Conservation lawsConservation laws

Nondecreasing entropyNondecreasing entropy

Can be solved easily. Yields, via the “Taub adiabat” and “Rayleigh line”, the final state behind the hyper-surface. (See at freeze out.)

L.P. Csernai, BNL Nov 17-19 '0322

3-Dim Hydro for RHIC (PIC)3-Dim Hydro for RHIC (PIC)

L.P. Csernai, BNL Nov 17-19 '0323

Multi Module ModelingMulti Module Modeling

• Initial state - pre-equilibrium: Parton Cascade; Coherent Yang-Mills [Magas]

• Local Equilibrium Hydro, EoS• Final Freeze-out: Kinetic models,

measurables - If QGP Sudden and simultaneous hadronization and freeze out (indicated by HBT, Strangeness, Entropy puzzle)

L.P. Csernai, BNL Nov 17-19 '0324

Relativistic Fluid DynamicsRelativistic Fluid DynamicsEg.: from kinetic theory. BTE for the evolution of phase-space distribution:

Then using microscopic conservation laws in the collision integral C:

These conservation laws are valid for any, eq. or non-eq. distribution, f(x,p). These cannot be solved, more info is needed!

Boltzmann H-theorem: (i) for arbitrary f, the entropy increases, (ii) for stationary, eq. solution the entropy is maximal, EoS

P = P (e,n)Solvable for local equilibrium!

L.P. Csernai, BNL Nov 17-19 '0325

Relativistic Fluid DynamicsRelativistic Fluid DynamicsFor any EoS, P=P(e,n), and any energy-momentum tensor in LE(!):

Not only for high v!

L.P. Csernai, BNL Nov 17-19 '0326

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=0.0 fm/c, Tmax= 420 MeV, emax= 20.0 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

EoS: p= e/3 - 4B/3B = 397 MeV/fm3

~ 4 times elongated !!

L.P. Csernai, BNL Nov 17-19 '0327

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=2.3 fm/c, Tmax= 420 MeV, emax= 20.0 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

11.6 x 4.6 fm

L.P. Csernai, BNL Nov 17-19 '0328

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=4.6 fm/c, Tmax= 419 MeV, emax= 19.9 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

14.5 x 4.9 fm

L.P. Csernai, BNL Nov 17-19 '0329

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=6.9 fm/c, Tmax= 418 MeV, emax= 19.7 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

17.4 x 5.5 fm

L.P. Csernai, BNL Nov 17-19 '0330

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=9.1 fm/c, Tmax= 417 MeV, emax= 19.6 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

20.3 x 5.8 fm

L.P. Csernai, BNL Nov 17-19 '0331

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=11.4 fm/c, Tmax= 416 MeV, emax= 19.5 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

23.2 x 6.7 fm

L.P. Csernai, BNL Nov 17-19 '0332

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=13.7 fm/c, Tmax= 417 MeV, emax= 19.4 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

26.1 x 7.3 fm

L.P. Csernai, BNL Nov 17-19 '0333

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=16.0 fm/c, Tmax= 417 MeV, emax= 19.4 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

31.9 x 8.1 fm

L.P. Csernai, BNL Nov 17-19 '0334

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=18.2 fm/c, Tmax= 417 MeV, emax= 19.4 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

34.8 x 8.7 fm

L.P. Csernai, BNL Nov 17-19 '0335

Heavy Ion Coll. at RHIC - Transverse velocities - b=0.5

120

100

80

60

40

20

0

5045403530252015

0.6

0

.5

0.5

0.4

0.4

0.3

0.3

0.3

0.3

0.2

0.2

0.1

0.1

50 cyclesb=0.5

120

100

80

60

40

20

0

5045403530252015

0.2

0.2

0.1

5

0.1

5

0.1

0.1

0.1

0.1

0.0

5

0.0

5

20 cyclesb=0.5

120

100

80

60

40

20

0

5045403530252015

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.3

0.3

0.2

0.2

0.1

0.1

0.1

150 cyclesb=0.5

120

100

80

60

40

20

0

5045403530252015

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3 0

.3

0.2

0.2

0.1

0.1

0.1

0

.1

0.1

250 cyclesb=0.5

[ Strottman, Magas, Csernai, BCPL User Mtg. Trento, 2003 ]

DYNAMICz

L.P. Csernai, BNL Nov 17-19 '0336

Multi Module ModelingMulti Module Modeling

• Initial state - pre-equilibrium: Parton Cascade; Coherent Yang-Mills [Magas]

• Local Equilibrium Hydro, EoS• Final Freeze-out: F.O. Surface • Final Freeze-out: Kinetic models

- If QGP Sudden and simultaneous hadronization and freeze out (indicated by HBT, Strangeness, Entropy puzzle)Landau (1953), Milekhin (1958), Cooper & Frye (1974)

L.P. Csernai, BNL Nov 17-19 '0337

[ Bernd R. Schlei (T-1) - LA-UR-03-3410 ]

Freeze-Out Hyper-Surface Extraction with Digital Image Processing Techniques

VESTA and Projections of FOHS (e.g., “Firestreaks” for Au + Au @ RHIC)

x

yz

xyz - Projection

t fixed

Impact Parameter b = 0.5

3+1 D Hydrodynamic Density Data are based on “Firestreak” Initial Conditions;V. K. Magas, L. P. Csernai, D. Strottman, Nucl. Phys. A712 (2002) 167.

In 3+1 D Hydrodynamical Calculations,VESTA is useful for the Graphical Rendering of Projections of FOHS.A Construction of a 4D FOHS requires a Generalization of VESTA into 4D.

x

z

t

xtz - Projection

y fixed

Impact Parameter b = 0.5

L.P. Csernai, BNL Nov 17-19 '0338

Freeze-Out Hyper-Surface Extraction with Digital Image Processing Techniques

Time-Sequence of FOHS Projections

t1

t8

t2 t3 t4 t5 t6 t7

t14t13t12t11t10t9

3+1 D Hydrodynamic Density Data, courtesy D. Strottman, Theoretical Division, Los Alamos National Laboratory.

VESTA Rendering of FOHS in 3+1 D Hydrodynamics at fixed Times (t1 < … < t14).

x

y z Impact Parameter b = 0.0

[ Bernd R. Schlei (T-1) - LA-UR-03-3410 ]

10 times elongated !!

L.P. Csernai, BNL Nov 17-19 '0339

Bernd R. Schlei (T-1)

3+1 D Hydrodynamic Density Data, D. Strottman, Theoretical Division, Los Alamos National Laboratory.

Freeze-Out Hyper-Surface Extraction with Digital Image Processing Techniques

Movie: Time-Sequence of F.O. H-S Projections

[ Bernd R. Schlei (T-1)LA-UR-03-3410 ]

Y

X

Z10 times elongated in z-direction, to compensate for L. contraction !

b=0.

L.P. Csernai, BNL Nov 17-19 '0340

Y

X

Z

b=0.5 bmax

Modified Initial State

L.P. Csernai, BNL Nov 17-19 '0341

L.P. Csernai, BNL Nov 17-19 '0342

L.P. Csernai, BNL Nov 17-19 '0343

Quick Time Movie - External

[Due to MS’s competitive business practices]

Axonometric view

Heavy Ion reaction - Surface visualization T = 139 MeV

Hy-mov-004.mov

L.P. Csernai, BNL Nov 17-19 '0344

Reaction Plane - [ X , Z ]X

Z

L.P. Csernai, BNL Nov 17-19 '0345

L.P. Csernai, BNL Nov 17-19 '0346

L.P. Csernai, BNL Nov 17-19 '0347

L.P. Csernai, BNL Nov 17-19 '0348

L.P. Csernai, BNL Nov 17-19 '0349

L.P. Csernai, BNL Nov 17-19 '0350

L.P. Csernai, BNL Nov 17-19 '0351

Quick Time - Movie - External

[Due to MS’s competitive business practices]

Reaction Plane

Surface at T = 139 MeV

Hy-mov-00.mov

L.P. Csernai, BNL Nov 17-19 '0352

Multi Module ModelingMulti Module Modeling• Initial state - pre-equilibrium: Parton

Cascade; Coherent Yang-Mills [Magas]• Local Equilibrium Hydro, EoS• Final Freeze-out: F.O. Surface • Final Freeze-out: Kinetic models

QGP Sudden and simultaneous hadronization and freeze out – CF formula

Problem 1: Conservation laws to non-eq!Problem 2: Post FO, non-eq. distribution!

L.P. Csernai, BNL Nov 17-19 '0353

Matching Conditions Again Conservation lawsConservation laws

Nondecreasing entropyNondecreasing entropy

Can be solved easily. Yields, via the “Taub adiabat” and “Rayleigh line”, the final state behind the hyper-surface. (See at freeze out.)

L.P. Csernai, BNL Nov 17-19 '0354

Freeze outFreeze out

[L Bravina et al.]

L.P. Csernai, BNL Nov 17-19 '0355

Hypersurface

L.P. Csernai, BNL Nov 17-19 '0356

Space-like hypersurface - Problem II

L.P. Csernai, BNL Nov 17-19 '0357

Space-like hypersurface II

L.P. Csernai, BNL Nov 17-19 '0358

Post F.O. - Cut-Jüttner distribution

[Bugaev, Nucl.Phys.A606(96)559] No Eq., T, p, …, EoS !!![Anderlik et al., Phys.Rev.C59(99)3309]

Proposed by:

Solved:p

p

x

y

Post F.O. distribution:

pf(p)

V-parameter

V-flowMatching conditions determine 5 parameters only . Ansatz in needed for final f(x,p) !

L.P. Csernai, BNL Nov 17-19 '0359

Phase-Space FO probability

L.P. Csernai, BNL Nov 17-19 '0360

Phase-Space FO probability

A B C

D E F

Uniform =1

Time-like

F.O.

Space-like

F.O.

d3 = u

[A. Anderlik, E. Molnar, et al.]

L.P. Csernai, BNL Nov 17-19 '0361

Freeze out distribution with rescattering from kinetic model across

a layer

V=0V=0

[V. Magas, et al.,] Heavy Ion Phys.9:193-216,1999

L.P. Csernai, BNL Nov 17-19 '0362

Analytic fit to Kinetic Model Solution:

.

.[Karolis Tamosiunas et al.]

L.P. Csernai, BNL Nov 17-19 '0363

Cancelling Juttner Distribution [Karolis Tamosiunas et al.]

L.P. Csernai, BNL Nov 17-19 '0364

Sudden Freeze-Out & Hadronization from Sc. QGP

Negative P

(Positive T)

[O. Heggo-Hansen, MSc. Thesis, ‘03 ]

L.P. Csernai, BNL Nov 17-19 '0365

Global FlowDirected

Transverse

flow

Elliptic flow

3rd flow component(anti - flow)

3rd flow component(anti - flow)

Squeeze out

L.P. Csernai, BNL Nov 17-19 '0367

3rd flow component and QGP

• Csernai & Röhrich [Phys.Lett.B458(99)454] observed a 3rd flow component at SPS energies, not discussed before.

• Also observed that in ALL earlier fluid dynamical calculations with QGP in the EoS there is 3rd flow comp.

• The effect was absent without QGP.

• In string and RQMD models only peripheral collision showed the effect (shadowing).

L.P. Csernai, BNL Nov 17-19 '0368

3rd flow component

Hydro

[Csernai, HIPAGS’93]

L.P. Csernai, BNL Nov 17-19 '0369

Third flow component

[SPS NA49]

L.P. Csernai, BNL Nov 17-19 '0370

Anti-flow from shadowing :

[ L. Bravina, et al., PL B470 (99) 27.]

Only for b > 8 fm !

N

L.P. Csernai, BNL Nov 17-19 '0371

A=A=0.0650.065

11.4 fm/c

L.P. Csernai, BNL Nov 17-19 '0372

“Wiggle”, Pb+Pb, Elab=40 and 158GeV [NA49]Talk by A. WetzlerPreliminary

158 GeV/A

Different scale for 40 and 158 GeV!The “wiggle” is there!

v1 0

L.P. Csernai, BNL Nov 17-19 '0373

V-1 flow at RHIC/STAR

L.P. Csernai, BNL Nov 17-19 '0374

Consequences

If v1 0 , earlier v2 results have to be modified (re-analyzed)

3-dim models and 3-dim initial conditions are needed to fit data

Impact parameter / multiplicity dependence is essential (more data)

Detailed models including equilibrium and non-equilibrium features will be required to describe the data

L.P. Csernai, BNL Nov 17-19 '0375

Flow & Azimuthal effects in HBT• HBT is biased by theor. Assumptions, eq. C(q,K) R=2fm /Gauss | R=8fm/u.Sphr.

• Flow changes C(q,K) essentially ! Use of analysis based on static sphr. Gauss. S is ?

[STAR ’01, Phenix ’02, Hydro: P Kolb et al ’03]

L.P. Csernai, BNL Nov 17-19 '0376

Conclusions

• Hydro works well! 3-dim. hydro, initial & final state models are important!

Local Equilibrium and EoS exists ( in part of the reaction )

• We have a good possibility to learn more and more about the EoS, with improved experimental and theoretical accuracy!

• The detailed determination of flow patterns is vital for HBT, and for ALL observables influenced by the collective collision dynamics.

top related