lp. csernai, pasi'2002, brazil1 part i relativistic hydrodynamics for modeling...

Post on 01-Jan-2016

221 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

LP. Csernai, PASI'2002, Brazil 1

Part I

Relativistic HydrodynamicsFor Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, PASI'2002, Brazil 2

Collaboration

• U of Bergen: C. Anderlik, L.P. Csernai, Ø Heggø-Hansen, Z. Lázár (U Cluj), V. Magas (U Lisbon), D. Molnár (Columbia U), A. Nyiri, K. Tamousiunas

• U of Oulu: A. Keranen, J. Manninen• U of Sao Paulo: F. Grassi, Y. Hama• U of Rio de Janeiro: T. Kodama• U of Frankfurt: H. Stöcker, W. Greiner• Los Alamos Nat. Lab.: D.D. Strottman• 0.5 Tera-flop IBM e-series supercomputer, w/ 96 Power4

processors a’ 5.2 Giga-flop each (Bergen Computational Physics Lab. – EU Research Infrastructure)

• U of Rio de Janeiro: Proceedings - G. Grise, L. LimaSilviaPortugal, B. MattosTavares, D. dePaula

LP. Csernai, PASI'2002, Brazil 3

FLOW

Is fluid dynamics applicable in relativistic nuclear physics?

Collective Nuclear Flow: Greiner – Koonin [1973 Balaton]

Transverse Flow Exp. Proof : [1984 Plastic Ball LBL]

• By now: Mc increases – close to macro continuous matter

• Local equilibrium EoS / Phase Transition / QGP (during the middle part of the reaction, initial and final stages are out of equilibrium)

• Many flow-patterns are observed in nuclear collisions

LP. Csernai, PASI'2002, Brazil 4

QGP: A new state of matter

“The combined data coming from the seven experiments on CERN's Heavy Ion programme have given a clear picture of a new state of matter. . . . We now have evidence of a new state of matter where quarks and gluons are not confined. There is still an entirely new territory to be explored concerning the physical properties of quark-gluon matter.” [ L. Maiani]

LP. Csernai, PASI'2002, Brazil 5

Water –Vapor Phase Transition - Discovery

• HeronHeron of Alexandria: “Pneumatica” steam-engine fl. AD. 62– Roger Bacon: Heat, Kinetic theory 1220 – 1292

– Galileo Galilei: Temperature – Barothermoscope 1564 – 1642

– Anders Celsius: Temperature 1701 - 1744

– Joseph Black: Latent heat 1728 – 1799

– James Watt: Steam engine 1736 – 1819

– Sandi N.L. Carnot: Kinetic theory, Energy conservation 1796 – 1832

– Rudolf Clausius: 2nd law of thermodynamics, entropy 1822 – 1888

– Ludwig Boltzmann: Kinetic theory 1844 – 1906

– Josiah W. Gibbs: Phase equilibrium, kinetic theory 1839 –1903

– Johannes D. Van der Waals: molecular interactions/ph.t.1837 - 1923

– Max Planck: Black body radiation 1858 –1947

• Quantum Field Theory of phase transitions, mesoscopic dynamics Is there phase transition in a drop of water ?

LP. Csernai, PASI'2002, Brazil 6

What did we see so far ?

• Phenomenology:– Strong stopping

– Decreasing pressure• Soft point ?

– Flow, spherical, directed, elliptic, 3rd component

– Increased entropy

– Chemical freeze-out at fixed T, fixed

– Strong strange baryon enhancement

LP. Csernai, PASI'2002, Brazil 7

StoppingP+A: [Csernai, Kapusta, PRD31(1985)2795]:y=2.5

R. Stock [CERN (2000)]

[W.Busza PASI 2002]

LP. Csernai, PASI'2002, Brazil 8

Stopping at SPS / NA49

LP. Csernai, PASI'2002, Brazil 9

Stopping at RHIC

At RHIC y = 9.8 – 10.7 so

Y-gap = 4-5 !

At RHIC there is also more stopping than expected. No sign of gap.

LP. Csernai, PASI'2002, Brazil 10

45-55% 35-45% 25-35%

15-25% 6-15% 0-6%

dNch

/d

dNch

/d

dNch/d vs. Centrality

Octagon Rings [Peter Steinberg, QM 2001]

LP. Csernai, PASI'2002, Brazil 11

Peter Steinberg

Shapes of dNch/d for different Npart

dNch

/d

(dN

ch/d

)/(

½N

part)

dNch

/d

Data

HIJING

HIJING

(dN

ch/d

)/(

½N

part)

Systematic error ±(10%Systematic error ±(10%--20%)20%)

354

216

102

Mean Npart% 0-3

15-20

35-40

Data

[QM’2001]

Stopping - RHIC

LP. Csernai, PASI'2002, Brazil 12

Local equilibrium Jüttner distr. (MB)

Stationary solution of the BTE , and generalization of the MB distribution

Lorentz

Transformation

Properties:

LP. Csernai, PASI'2002, Brazil 13

Kinetic definition of density, energy, momentum

These definitions are applicable for any, equilibrium or non-eq. situation!

LP. Csernai, PASI'2002, Brazil 14

Normalization of Jüttner distribution

From:

Similar expressions occur when we evaluate the EoS,energy density, e, pressure, P, and entropy density, s. [see also Takeshi Kodama PASI 2002]

15LP. Csernai, PASI'2002, Brazil

LP. Csernai, PASI'2002, Brazil 16

Local equilibrium - Flow - LR frame

( Landau )

Def: Orthogonal proj. to flow

Then:These definitions are applicable for any, equilibrium or non-equilibrium situation!

LP. Csernai, PASI'2002, Brazil 17

Local equilibrium

• Large no. of degrees of freedom• Strong Stopping• Local equilibration • Equation of State (EoS) characterizes the

equilibrium properties of matter• Dynamics is well approximated by fluid

dynamics (perfect, viscous, …)• Model predictions become similar• Multi Module Modeling

LP. Csernai, PASI'2002, Brazil 18

EoS from the local eq. phase space distribution

Eg.: From Jüttner Ideal gas EoS & 2nd law of thermodyn. (!) [see T.Kodama PASI’2002]

LP. Csernai, PASI'2002, Brazil 19

Pressure – Soft Point?

LBL, AGS, SPS:Collective flow –P-x vs. y Pressure sensitive

Directed transverseflow decreases with increasing energy.

[D. Rischke, 95][E. Shuryak, 95][Holme, et al., 89]

But, does it recoverat higher energies ?

LP. Csernai, PASI'2002, Brazil 22

[F. Karsch, PASI 2002]

LP. Csernai, PASI'2002, Brazil 23

Relativistic Fluid DynamicsRelativistic Fluid DynamicsEg.: from kinetic theory. BTE for the evolution of phase-space distribution:

Then using microscopic conservation laws in the collision integral C:

These conservation laws are valid for any, eq. or non-eq. distribution, f(x,p). These cannot be solved, more info is needed!

Boltzmann H-theorem: (i) for arbitrary f, the entropy increases, (ii) for stationary, eq. solution the entropy is maximal, EoS

P = P (e,n)Solvable for local equilibrium!

LP. Csernai, PASI'2002, Brazil 24

Relativistic Fluid DynamicsRelativistic Fluid DynamicsFor any EoS, P=P(e,n), and any energy-momentum tensor in LE(!):

Not only for high v!

LP. Csernai, PASI'2002, Brazil 25

Multi Module ModelingMulti Module Modeling

• Initial state - pre-equilibrium: Parton Cascade; Coherent Yang-Mills [Magas]

• Local Equilibrium Hydro, EoS

• Final Freeze-out: Kinetic models, measurables

• If QGP Sudden and simultaneous hadronization and freeze out (indicated by HBT, Strangeness, Entropy puzzle)

Landau (1953), Milekhin (1958), Cooper & Frye (1974)

LP. Csernai, PASI'2002, Brazil 26

Initial State

• At low energies stopping in SHOCK or DETONATION waves (supersonic!) of width of 1-3fm (possible in Pb+Pb) [BEVALAC, GSI, AGS]

• Idealized: as discontinuity across a hyper-surface (or layer) in space time.

• Simple solutions of Rel. Fluid dynamics

• Generalized to other stationary processes: freeze-out, initial equilibration, phase trans.

LP. Csernai, PASI'2002, Brazil 27

Matching Conditions Conservation lawsConservation laws

Nondecreasing entropyNondecreasing entropy

Can be solved easily. Yields, via the “Taub adiabat” and “Rayleigh line”, the final state behind the hyper-surface. (See at freeze out.)

LP. Csernai, PASI'2002, Brazil 28

LP. Csernai, PASI'2002, Brazil 29

Fire streak picture - Only in 3 dimensions!

Myers, Gosset, Kapusta, Westfall

LP. Csernai, PASI'2002, Brazil 30

String rope --- Flux tube --- Coherent YM field

LP. Csernai, PASI'2002, Brazil 31

Initial stage: Coherent Yang-Mills model

[Magas, Csernai, Strottman, Pys. Rev. C ‘2001]

LP. Csernai, PASI'2002, Brazil 32

Expanding string ropes – Full energy conservation

LP. Csernai, PASI'2002, Brazil 33

Yo – Yo Dynamics

LP. Csernai, PASI'2002, Brazil 34

LP. Csernai, PASI'2002, Brazil 35

Initial state

3rd flow component

LP. Csernai, PASI'2002, Brazil 36

Multi Module ModelingMulti Module Modeling

• Initial state - pre-equilibrium: Parton Cascade; Coherent Yang-Mills [Magas]

• Local Equilibrium Hydro, EoS

• Final Freeze-out: Kinetic models, measurables

• If QGP Sudden and simultaneous hadronization and freeze out (indicated by HBT, Strangeness, Entropy puzzle)

Landau (1953), Milekhin (1958), Cooper & Frye (1974)

LP. Csernai, PASI'2002, Brazil 37

3-Dim Hydro for RHIC (PIC)3-Dim Hydro for RHIC (PIC)

LP. Csernai, PASI'2002, Brazil 38

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.1 bmax Aσ=0.08 => σ~10 GeV/fm

n / n0 [ 1 ] e [ GeV / fm3 ]

T= 0.0 fm/c nmax = 8.67 emax=32.46 GeV / fm3 Lx,y= 1.45 fm Lz=0.145 fm

. .

4.4 x 1.3 fm

EoS: P = e/3

LP. Csernai, PASI'2002, Brazil 39

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.1 bmax Aσ=0.08 => σ~10 GeV/fm

n / n0 [ 1 ] e [ GeV / fm3 ]

T=1.9 fm/c nmax = 8.66 emax= 31.82 GeV / fm3 Lx,y= 1.45 fm Lz=0.145 fm

. .

LP. Csernai, PASI'2002, Brazil 40

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.1 bmax Aσ=0.08 => σ~10 GeV/fm

n / n0 [ 1 ] e [ GeV / fm3 ]

T= 3.8 fm/c nmax = 7.77 emax= 27.22 GeV / fm3 Lx,y= 1.45 fm Lz=0.145 fm

.

.

.

4.4 x 1.3 fm

LP. Csernai, PASI'2002, Brazil 41

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.1 bmax Aσ=0.08 => σ~10 GeV/fm

n / n0 [ 1 ] e [ GeV / fm3 ]

T= 5.7 fm/c nmax = 6.36 emax= 26.31 GeV / fm3 Lx,y= 1.45 fm Lz=0.145 fm

. .

LP. Csernai, PASI'2002, Brazil 42

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.1 bmax Aσ=0.08 => σ~10 GeV/fm

n / n0 [ 1 ] e [ GeV / fm3 ]

T= 7.6 fm/c nmax = 5.22 emax= 37.16 GeV / fm3 Lx,y= 1.45 fm Lz=0.145 fm

. .

LP. Csernai, PASI'2002, Brazil 43

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.1 bmax Aσ=0.08 => σ~10 GeV/fm

n / n0 [ 1 ] e [ GeV / fm3 ]

T= 9.5 fm/c nmax = 4.45 emax= 32.86 GeV / fm3 Lx,y= 1.45 fm Lz=0.145 fm

. .

LP. Csernai, PASI'2002, Brazil 44

Global FlowDirected

Transverse

flow

Elliptic flow

3rd flow component(anti - flow)

3rd flow component(anti - flow)

Squeeze out

LP. Csernai, PASI'2002, Brazil 46

A=A=0.0650.065

11.4 fm/c

LP. Csernai, PASI'2002, Brazil 47

Aside: v1 is not measured yet at RHIC!? (neither STAR nor PHENIX)

As v2 is measured, the reaction plane [x,z] is known, just the target/projectile side should be selected. This is not done due to the prejudice that the distribution of emitted particles is mirror-symmetric in CM:

f CM ( px, py, pz ) = f CM ( px, py, -pz )

This is wrong (!) as the presented hydro calculations and SPS data show. At finite impact parameter (2-15%) there is a fwd / bwd asymmetry.

Calculate event by event the Q-vector (a la [Danielevicz, Odyniecz, PL (1985)] ):

Qk = i

k

yCM px

For all particles, i, of type k. Only the sign is relevant, as the plane is known already. This Q-vector will select the same side (e.g. projectile) in each event.

[Discussions with Art Poskanzer and Roy Lacey are gratefully acknowledged. ]

LP. Csernai, PASI'2002, Brazil 48

NEXT:

• Flow experiments

• Modified Rel. Hydro with supercooling

• Freeze-out

• Discontinuities in hydro – Eq. => Eq.

• Freeze-out to non-eq.

• Kinetic freeze-out

top related