man energy solutions 4 hycas man energy solutions 86224

Post on 16-Oct-2021

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Maritime HYCAS

Joint study to explore new cost-effective applications of hybrid power generation on larger ocean-going cargo ships

MAN Energy Solutions86224 Augsburg, GermanyP+ 49 821 322-0F+ 49821 322-3382info@man-es.comwww.man-es.com

Alldataprovidedinthisdocument isnon-binding.Thisdataservesinfor- ma tional purposes only and is not guaranteedinanyway.Dependingonthesubsequentspecificindividual projects,therelevantdatamaybesub- jecttochangesandwillbeassessedanddeterminedindividuallyforeachproject.Thiswilldependonthepartic- ularcharacteristicsofeachindividualproject,especiallyspecificsiteandoperationalconditions.

Copyright©MANEnergySolutions.D2366664EN-Printed in Germany GGKM-AUG-0421

MAN Energy SolutionsHYCAS4

Acknowledgement

Thisbrochureisbasedonajointstudy by MAN Energy Solutions, DNVGLandCORVUSEnergy.Thebrochurecompriseskeyresultsfrom apapersubmittedtothe2019CIMACCongress.TheprojectpartnersaregratefulforthesupportreceivedfromNeptunShipDesign,forlettingthemmakeuseoftheTOPAZ1,700shipdesignasbasisforthisstudy.

Length overall: Breadth: Design draft: Design speed: Main engine: Diesel-gensets (DG): 1,254 kWeCranes: Bow thruster: Reefer capacity:

169.99m28.1m8.5m

19knotsMAN6S60ME-C10.5@11,280kW

4xMAN6L21/31@1,254kWe2@530kW

950kW250

Reference ship

Reefer power kW/reefer 3.4

No reefer

050150250

Fuel saving %

2,21,21,20,7

Payback y2323

NPV k$341180338229

Runtime saving %

29,521,420,50,7

Reference ship

6S60ME-C10.5 / 4x6L21/31

MAN Energy SolutionsHYCAS

MAN Energy SolutionsHYCAS

MAN Energy SolutionsHYCAS3 4

Background

Increasedscrutinyisbeingputonshippingtoreduceitsenvironmentaldamagingemissions.Toaddressthis,theIMOhasadoptedaninitialstrategyaimedatreducingtotalGHGemissionsfrom international shipping by at least 50%within2050.Thequestiontoshipoperators however remains; is it possibletoreduceGHGemissionswhilststayingprofitable?Manystudiessuggest yes, and one of the more promising measures, are hybrid power solutions.

Operational profile

AISdataanalyticswasutilizedtogenerate a representative vessel operationalprofileforacontainerfeeder operating on a north European trade(figure3).Furthermodellingwascarriedouttoestimateboththepropulsionandelectricpowerdemandfor the given operation modes, and createanartificialtime-basedloadprofileasshowninfigure4.

Vssel type selection

Hybridpowersystemsoftenachievesignificantefficiencygainsandemissionreductionsinoperationmodesinwhichaship’spowerdemandfluctuates,forexamplewhenmajorenergyconsumers,suchascranesorthrusters,areutilized.Thistypicallyhappensinconnectionwithportvisits.AreviewofhistoricalAISdatashowedthatcontainerfeedersareashiptypemeeting this requirement, and thereby potentiallybeingagoodcaseforhybridization.

Searchingforasuitable,representativecontainervesseldesignforthestudy,theconsortiumfoundtheTOPAZ1,700TEUvesselbyNeptunShipDesignGmbHtobeagoodmatchintermsofsizeandtopology.

Loa m appr. 1,730 TEU Main engine (electronic) - Tier II:

Classification: GL 8888 100 A5 Container Ship, IW, NAV-O, BWM, DG, EP 7 MC AUT, CM-PS

Machinery

CV TOPAZ 1700 neptunVersion: 3.0

Stand: 2011-04-08

Zhejiang Ouhua Shipbuilding Co. Ltd. – Zhoushan / China

Main Particulars

appr. 169.99 Length, overall

Container capacity

Number of containers (slot places)Loa m appr. 1,730 TEU Main engine (electronic) - Tier II:Lpp m 668 TEUB m 1,062 TEU high load tunedD m FEU optional part load or low load tuned by EGBTdes m appr. 1,370 TEUTFB m Auxiliary Generator sets:DWTdes t 8L21/31 - 900 rpm 1642 kWel eachDWTFB t On hatch number 1 40 / 60 t 1254 kWel each

kn On hatch numbers 2 to 8 60 / 90 t Consumpt. (ISO-cond., excl.5% tol.) t/day In holds 120 / 185 t

sm On Main deck above engine room - / 150 tkWel

Pers. Hatch cover, (pontoon type) non sequential

Bow thruster: c. p. p. 950 kW Oil-fired part / exhaust part 2.5 / 1.5 t/h Stern thruster: c. p. p. 800 kW Rudder equipment:

m³m³m³m³

Stack loads for Containers: TEU / FEU

Heeling system: automatic

cargo jib cranes 1 : fore SWL 35t - 40m / SWL 45t - 37m cargo jib cranes 2 : aft SWL 35t - 29m / SWL 45t - 27m

Emergency diesel: 175

Ballast water handling: Treatment

Combined steam boiler:

Ventilation cargo holds Special ventilation for reefer container 4,500 m³/h

130 / 220

Fixed pitch propeller Speed (Tdes, 80% MCR, 15% SM)

MAN

Complement 25 + Suez

Number of containers in holds (5 tiers)

Number of containers on deck Number of Reefer in hold/on deck(7.2 kW each)

6S60ME-B8.228.10

14,280 KW / 105 rpm.appr. 169.99appr. 161.58

Length, overall

Breadth, moulded

Length, between pp Number of containers (slot places)

Number of containers(homogenous 14 t on TFB)8.5014.20

Draught, design Depth, to main deck

Endurance appr. 15,60045.0

Deadweight, design Deadweight, freeboard appr. 23,800

appr. 19,800 Draught, freeboard

HFO storage MDO storage

semi-balanced rudder with bulb

appr. 1,900

18.50

9.50

BW FW

appr. 7,000 Dangerous goods in all holds / on deck appr. 250 in accordance with SOLAS

appr. 200

2 x MAN 6L21/31 - 900 rpm2 x MAN

2

The results of the study are presented in the form of two scenarios 1. Anewbuilthybridvesselin2020usingcurrentbatterytechnology, whereabatteryisappliedforpeakshavingandspinningreservefortheDieselGensets. 2. Anewbuilthybridvesselin2030wherebatteriesareappliedforzero-emissionmaneuvering inandoutofports.

Figure6,with150reefersactive,showsthatthebatteryisalsoabletocoverpeaksduringwaitingandportstay.Itisthen possible to run just one genset at a high optimum load point, instead of two.

Inthecasewherenoreefersareactive(figure7),atleastonegensetisrunningduringportstayintheconventionalaswellasinthehybridcase.Hence,mostof the savings are attributed to the on boardcranesduringcargooperationandthethrusterduringmaneuvering.

Scenario 2020Simulationsshowedthatabatterysizeof500kWhcouldreplaceonegenset.Theresultingenginetopologyisshowninfigure5.Foracontainership,thetotal number of reefers on board and the power they demand, will have a significantimpactontheelectricalloadandtherebyonthepotentialbenefitsofhybridization.The‘spinningreserve’capabilityachievedbyinstallingatteriescanprovidesubstantialsavingsincaseswherestartupofadditionalgensetscanbeavoidedordelayed.

Scenario 2030Forazero-emissionportentry/exitapp-lication,thesizeofthebatteryissolelydeterminedbythepowerde-mandanddurationofmaneuvering.Forthisreas-on,atotalinstalledapacityof11MWhwasneeded.Theresultingenginetopo-logyisshowninfigure8.

Thezero-emissionmodelookseco-nomicallyviableonlyifbatterysystemcostsarelowerthantoday,fuelprices

arehigher,andincentiveschemesorstricteremissionregulationsareinplace,allofwhichmaywellbethecaseby2030.However,assumingthatby2030,fuelcostswouldbe1000$/tandbatterycostsareat400$/kWh,theNPVwouldbecomepositive,asseeninfigure9.

Usingadiscountrateof10%andaninflationrateof2%,andfurtherapplyingabatterypriceof500$/kWhandanMGOfuelcostof750$/t,thenetpresentvalue(NPV)fordifferentreeferloadsarefoundintable2.Allcasespresented show saving potential and positiveNPV,andwithshortpaybacktime. Table 2: Results of a battery hybrid system with 500 kWh battery versus

a conventional machinery configuration. Reefer power at 3.4 kW.

53% transit

21% waiting + harbor lay

20% cargohandling

6% maneuvering

10% transit

33% waiting + harbor lay

43% cargohandling

14% maneuvering

1% transit

80% cargohandling

19% maneuvering

The goal of this study is to explore new cost-effective applications of hybrid power generation on larger ocean-going cargo ships.

≈≈ Load

4 x 6L21/316S60ME-C10.5

G G G G

Table 1: Main particulars of the Topaz 1,700Figure 2: Simplified machinery topology

≈≈ Load

≈=

+

+–

500 kWh

G G G

6S60ME-C10.5 / 3x6L21/316S60ME-C10.5 / 6L23/30

Figure 5: Possible simplified topology of a hybrid propulsion train

propulsion power electricalload

0 20 40 60 80 100 120 140

time / h

0

2000

4000

6000

8000

pow

er /

kW

propulsion power

electrical load

0 20 40 60 80 100 120 140

time / h

2000

3000

4000

5000

pow

er /

kW

+ crane load

+ thruster load

+alternating load

constant load

Transit Waiting Maneuvering Port

Figure 1: General arrangement of the selected 1,700 TEU Container feeder

Figure 3: Representative propulsion and electrical load profile for the case with 250 reefers

Figure 4: Time spent in different operating modes Figure 6: OPEX saving from Diesel Gensets in different operating modes (with 150 reefers active)

Figure 7: OPEX saving from Diesel Gensets in different operating modes (no reefers active)

Figure 8: Possible simplified topology of a hybrid propulsion train ready for zero-emission operation

Figure 9: Development of NPV in dependence of battery cost and fuel cost for zero emission mode

G ≈=

≈≈ Load≈

+

+–

PTO/PTI ≈

=

+

+–

5,5 MWh 5,5 MWh

6L23/306S60ME-C10.5

200 300 400 500 600

battery cost $/kWh

-4000

-2000

0

2000

4000

6000

NPV

afte

r 10

year

s k$

fuel cost = 750$/t

fuel cost = 1000$/t

fuel cost = 1250$/t

fuel cost = 1500$/t

Battery cost /kWh

NPV

aft

er 1

0 ye

ars

k$

Time / h

Pow

er /

kW

top related