me 437/537-particle g. ahmadi€¦ · me 437/537-particle g. ahmadi ¾equivalent area diameters...

Post on 29-Jul-2021

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

G. AhmadiME 437/537-Particle

G. AhmadiME 437/537-Particle

Aerosols are suspension of solid or liquid particles in a gas.Dust, smoke, mists, fog, haze, andsmog are common aerosols.Aerosol particles are foundin different shapes.

G. AhmadiME 437/537-Particle

Equivalent area diametersFeret’s diameter (maximum distance edge to edge) Stokes’ diameter (diameter of a sphere with the same density and the same velocity as the particle)Aerodynamic diameter (diameter ofa sphere with the density of water and the same velocity as the particle)

G. AhmadiME 437/537-Particle

Aerosols Air

Number Density (Number/cm)

100-105 1019

Mean Temperature(K)

240 – 310 240 – 310

Mean Free Path Greater than 1 m 0.06 µm

Particle Radius 0.01 – 10 µm 2¥ 10-4 µm

Particle Mass (g) 10-18 - 10 -9 4.6 ¥ 10-23

Particle Charge (Elementary Charge Units)

0 – 100 Weakly Ionized Single Charge

G. AhmadiME 437/537-Particle

d2Kn λ=

fc||M

fp vv −=

4dn

DSc

2f λ=ν=

|'v||'v|)

vv(Br

f

p2/1

2,f

2,p

==

nKM4d||Re =

ν−=

fp vv

Knudsen Number

Mach Number

Schmidt Number

Brown Number

Reynolds Number

G. AhmadiME 437/537-Particle

p

f

f

λ = Mean Free Path ν = Kinematic Viscosity

d = Particle Diameter D = Diffusivity

v = Particle Velocity v’ = Thermal Velocity

v = Fluid (Air) Velocity n = Number Density

c = Speed of Sound

G. AhmadiME 437/537-Particle

p

f

f

Pd2kT

nd21

2m

2m π

PT1.23)m( =µλ

K/J101.38k -23×=Molecular DiameterMolecular Diameter

AirAir

G. AhmadiME 437/537-Particle

410310210110010110−210−310−Particle Diameter,

410−

Electro.Wave X-Ray

µm

UV Vis Infrared Microwaves

FumeDefinition DustMist Spray

Solid

Liquid

Soil

Atmospheric

Typical Particles

Size Analysis methods

Clay Silt Sand Gravel

Smog Cloud/Fog Mist Rain

Viruses Bacteria HairSmoke Coal Dust Beach Sand

Microscopy

Electron Microscopy Sieving

Ultra Centrifuge Sedimentation

G. AhmadiME 437/537-Particle

410310210110010110−210−310−Particle Diameter,

410−

Gas CleaningMethod

µm

Ultrasonic Settling Chamber

Centrifuge

Air Filter

Diffusion Coeff. cm2/s

Impact Separator

Electrostatic Separator

HE Air Filter

Thermal Separator

Terminal Velocity cm/sS=2

AirWater

AirWater

2105 −× 510− 9102 −× 11102 −×12105 −×10105 −×8105 −×6105 −×

610− 4102 −×7106 −× 3106 −×1010−

6.0 600

12

G. AhmadiME 437/537-Particle

µUd3 = F πStokesStokes

Re24

AU21

FC2

DD =

ρ=Drag

CoefficientDrag Coefficient

µρ= UdRe

Reynolds NumberReynolds Number

G. AhmadiME 437/537-Particle

DC

Re

G. AhmadiME 437/537-Particle

OseenOseen Re]16Re/31[24CD

+=

Re]Re15.01[24

C687.0

D

+=

4.0CD =

1000 Re 1 <<

53 105.2Re10 ×<<

NewtonNewton

G. AhmadiME 437/537-Particle

Turbulent Boundary LayerTurbulent Boundary Layer

Laminar Boundary LayerLaminar Boundary Layer

G. AhmadiME 437/537-Particle

0

1

10

100

1000 C

D

0 1 10 100 1000 10000 Re

Stokes Eq. (5)

Oseen

Newton

Experiment

Predictions of various models for drag coefficient for a spherical particle.

G. AhmadiME 437/537-Particle

U

d

h

Normal to the Wall

(Bernner, 1961)Normal to the Wall

(Bernner, 1961)

)h2

d1(Re24CD +=

G. AhmadiME 437/537-Particle

Ud

h

1543D ])

h2d(

161)

h2d(

25645)

h2d(

81)

h2d(

1691[

Re24C −−−+−=

Normal to the Wall

(Faxon, 1923) Normal to the Wall

(Faxon, 1923)

G. AhmadiME 437/537-Particle

For 1000 > Kn > 0For 1000 > Kn > 0

cD C

Ud3F πµ=

]e4.0257.1[d

21C 2/d1.1c

λ−+λ+=

Stokes-Cunningham DragStokes-Cunningham Drag

Cunningham CorrectionCunningham Correction

G. AhmadiME 437/537-Particle

1

10

100

1000 C

c

0.001 0.01 0.1 1 10 100 Kn

Variation of Cunningham correction with Knudsen number.

G. AhmadiME 437/537-Particle

c

cDiameter, µm C

10 µm 1.018

1 µm 1.176

0.1 µm 3.015

0.01 µm 23.775

0.001 µm 232.54

Variations of Cc with d for λ = 0.07 µm

G. AhmadiME 437/537-Particle

( )

S6.0ReMexp1

M2.0M1.0Re48.0Re03.01

Re48.0Re03.038.05.4ReM5.0exp

SRe247.0exp567.133.4SRe24C

82

1

D

−−+

+

++

++++

−+

−×++=

Henderson (1976)Henderson (1976) M < 1M < 1

G. AhmadiME 437/537-Particle

Henderson (1976)Henderson (1976) M > 1M > 1

21

42

21

2

D

ReM

86.11

S1

S058.1

S22

ReM86.1

M34.09.0

C

+

−++

++

=

G. AhmadiME 437/537-Particle

Carlson and Hoglund (1964)Carlson and Hoglund (1964)

)MRe25.1exp(28.182.3

ReM1

Re

3M

427.0exp(1

Re24C

88.063.4

D

−++

−−+=

G. AhmadiME 437/537-Particle

pf

pff

D /13/21Ud3Fµµ+µµ+πµ=

Ud2F fD πµ=For BubblesFor Bubbles

G. AhmadiME 437/537-Particle

K=Correction FactorK=Correction Factor

KUd3F eD πµ=

3/1e )Volume6(d

π=

G. AhmadiME 437/537-Particle

Cluster Shape

Correction Cluster Shape

Correction Cluster Shape

Correction

oo K = 1.12 oooo K = 1.32 oooo

K = 1.17

ooo K = 1.27 ooooo K = 1.45 o oo

o o

K = 1.19

oo o

K = 1.16 oooooo K = 1.57 oooooo

K = 1.17

oooooooo

K = 1.64 ooooooo K = 1.73

G. AhmadiME 437/537-Particle

µUaK'6 = FD π

b

a

b

a

β−−β+β−β

−β

−β=

])1(ln[)1(

)12(

)1(34

K'2/12

2/12

2

2

β+−β+β−β

−β

−β=

])1(ln[)1(

)32(

)1(38

K'2/12

2/12

2

2

ab=β

G. AhmadiME 437/537-Particle

ab

ab

β+−β−β

−ββ

−β=

− ])1(tan)1(

)2(

)1(34

K'2/121

2/12

2

2

β−−β−β

−ββ

−β=

− ])1(tan)1(

)23(

)1(38

K'2/121

2/12

2

2

ba=β

G. AhmadiME 437/537-Particle

a

aaU16FD µ=

3/aU32FD µ=

G. AhmadiME 437/537-Particle

b

b

βπµ=

2lnUb4FD

βπµ=

2lnUb8FD

G. AhmadiME 437/537-Particle

)Rln002.2(U4F

eD −

πµ=ν

= aU2R e

G. AhmadiME 437/537-Particle

Drag

Gravity

guuu pfp

m)(C

d3dt

dmc

+−πµ=

Equation of Motion

G. AhmadiME 437/537-Particle

guuu pfp

τ+−=τ )(dt

d

ν=

µρ

=πµ

=τ18

CSd18

Cdd3

mC c2

cp2

c

Relaxation Time

f

p

Sρρ=

)m(d103)s( 26 µ×≈τ −

G. AhmadiME 437/537-Particle

)e1)(( /tfp τ−−τ+= guu

µρ=τ=

18gCdgu c

2pt

Terminal Velocity = Equilibrium Velocity after Large Time

)m(d30)s/m(u 2t µ≈µ

G. AhmadiME 437/537-Particle

Stopping Distance = Penetration distance for an initial velocity of uo

)e1( /t τ−−τ= po

p uxτ−= /teop uu

τ= po

p ux)m(d3)m(x 2p µ≈µ

G. AhmadiME 437/537-Particle

76.2 mm7.62 mm7.6×10-37.47 cm/s503.09 mm309 µm3.1×10-43.03 mm/s10

0.786 mm78.6 µm7.9×10-50.77 mm/s50.0357 mm3.6 µm3.6×10-635 µm/s10.0103 mm1.03 µm1×10-610.1 µm/s0.50.0009 mm0.092 µm9.1×10-80.93 µm/s0.10.0004 mm0.04 µm4×10-80.39 µm/s0.05

Stopping Distance

u= 10 m/s

Stopping Distance u= 1 m/s

τ sec Terminal Velocity

Diameter,µm

G. AhmadiME 437/537-Particle

)]e1(t)[(

)e1(/tf

/t

τ−

τ−

−τ−τ++

−τ+=

gu

uxx po

po

p

)]e1(/t[u/x /tfp τ−−−τ=τ

)]e1(/t[u/y /tfp τ−−−τα−=ττ

τ=α fug

Components

G. AhmadiME 437/537-Particle

-12

-10

-8

-6

-4

-2

0 y/

utau

0 1 2 3 4 5 6 t/tau

α =0.1

α =1

α =2

Variations of the particle vertical position with time.

G. AhmadiME 437/537-Particle

-12

-10

-8

-6

-4

-2

0

y/ut

au

0 1 2 3 4 5 6 x/utau

α =0.1

α =1

α =2

Sample particle trajectories.

G. AhmadiME 437/537-Particle

guuu pfp

)mm()(C

d3dt

d)mm( f

c

a −+−πµ=+

6dm

f3f ρπ=

.m21m fa =

Fluid Mass

Apparent Mass

G. AhmadiME 437/537-Particle

)S11()(

dtd)

S211( −τ+−=τ+ guuu pf

p

)1(18

gCd)S11(gu p

fc

2pt

ρρ−

µρ=−τ=

Terminal Velocity

G. AhmadiME 437/537-Particle

Lift

ufup

)dydusgn(|

dydu|)uu(d615.1F

f2/1

fpf22/1

)Saff(L −ρν=

Saffman (1965, 1968)

G. AhmadiME 437/537-Particle

1d|uu|Rpf

es <<ν

−=

1dR2

eG <<ν

γ=&

1dR2

e <<ν

Ω=Ω

1RRε

es

2/1eG >>=

McLaughlin (1991)

G. AhmadiME 437/537-Particle

>α≤α+−α−

=40 Rfor )R(0524.0

40 Rfor 3314.0)10/Rexp()3314.01(F

F

es2/1

es

es2/1

es2/1

)Saff(L

L

es

eG2

espf R2

R2

R|uu|2

d =ε=−

γ=α&

)]32.0(6tan[667.0)]191.0(log5.2tanh[13.0F

F10

)Saff(L

L −ε++ε+=

20 0.1 ≤ε≤

Mai (1992)

G. AhmadiME 437/537-Particle

<<εεε−>>εε−

=−

1 for )ln(1401 for 287.01

FF

25

2

)Saff(L

L

McLaughlin (1991)

G. AhmadiME 437/537-Particle

Cherukat and McLaughlin (1994)

4/IdVF L22

)LC(Lρ=

luuuV pfp γ−=−= &

V2d

Gγ=∧&

l2dK =

)K,(II GLL Λ=

Lift

d l

G. AhmadiME 437/537-Particle

Lift

24)AL(L d576.0F γρ=− &

2/332/1)Saff(L d807.0F γρν= &

Leighton andAcrivos (1985)

Saffman

G. AhmadiME 437/537-Particle

Velocity Field in the Inertial Sublayer

Byln1u +κ

= ++

ν=+ yuy

*

5B ≈ 300y30 ≤< +

Wall Units *uuu =+

G. AhmadiME 437/537-Particle

dydU

0 µ=τ

dydUu 2* ν=

1dydU =+

+ ++ = yu 5y0 ≤< +

Turbulent stress is negligible

G. AhmadiME 437/537-Particle

+y

+u

5.5yln5.2u += ++

++ = yu

3012 300

10

20

30

G. AhmadiME 437/537-Particle

ν=γ

2*u

4)AL(L d576.0F ++

− = 3)Saff(L d807.0F ++ =

2L

LFF

ρν=+

ν=+

*dud

31.2)Hall(L d21.4F ++ = 87.1

)MN(L d57.15F ++ =

Hall (1988) Mollinger and Nieuwstadt (1996)

G. AhmadiME 437/537-Particle

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03

Fl+

0.1 1 10 d+

Mollinger

Hall

Saffman

Leighton

Experiment

G. AhmadiME 437/537-Particle

! Introduction to Aerosols! Drag Forces ! Cunningham Corrections! Lift Forces! Brownian Motion! Particle Deposition Mechanisms! Gravitational Sedimentation! Aerosol Coagulation

top related