medical imageing equipment energy use- ccghc 2017 · the high energy consuming medical imaging...

Post on 12-Feb-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

2

TheAuthorsThisreportwaswrittenbytheCanadianCoalitionforGreenHealthCareteam:

• J.J.Knott,CET,CCHFM,CEM,CDSM;andLead-HealthcareEnergyLeadersOntario(HELO)

• LindaVarangu,B.Sc.,M.Eng.• KentWaddington,B.A.,M.A.• Dr.TonyEasty,Medicalimagingtechnicalexpert,providedinvaluable

contributionsguidingthecourseofthisproject.• ShawnShi,EnergyAnalyst,providedassistancewithdataanalysis.

AcknowledgementsTheauthorswouldliketothankNaturalResourcesCanada(NRCan)andBCHydrofortheirfinancialsupportofthisproject.StaffattheUSEPAinterestedinexaminingopportunitiestodevelopENERGYSTAR(R)certificationformedicalimagingequipmentprovidedhelpfulguidance.Weareveryappreciativefortheparticipationofthreehospitalsthatpartneredwithusonthisproject.Energymeasurementsweretakenbyauthorizedtechnicalstaffineachofourpartneringhospitals,supportedbyaninternalteamofexperts.Keyhospitalpartnersandtheirstaffwhocontributedtothisprojectwere:

• NanaimoRegionalGeneralHospital(NRGH),IslandHealth(VIHA),inBritishColumbia

o DeannaFourt(Director,EnergyEfficiencyandConservation)o RobertFulcher(LeaderofMedicalImaging,NRGH)o TedMacLaggen(Manager,BiomedicalEngineering)o LeeMcIntyre(Technician)o BjornRicht(EnergySpecialist,EnergyEfficiencyandConservation)

• TheHospitalforSickChildren(SickKids)inOntario

o AlbertAziza(SeniorManager,IGTandMRI,DiagnosticImaging)o MikeFagan(EnergyManager)o MannyMercado(Electrician)o ElisabethPerlikowski(EnergyandEnvironmentProgramManager)

• UniversityHealthNetwork(UHN)inOntario

o ChadBerndt(EnergyManager)o MichaelKurz(EnergyManager)o MurrayRice(Manager,ClinicalEngineering)o EdRubinstein(Director,EnvironmentalCompliance,Energyand

Sustainability)

3

ThanksalsotoTorontoHydrowholoanedustheirpowerloggertohelpundertakeenergyconsumptionmeasurementsofthemedicalimagingequipmentinToronto.

4

ExecutiveSummaryThepurposeofthisprojectwastoobtainenergyconsumptiondatafromhospitalmedicalimagingequipment(MIE)whichwouldassistgovernmentsponsorsoftheENERGYSTAR®programdetermineifanewcategoryofENERGYSTARproductsshouldbedevelopedforMIE.Partneringhospitals,aswellasBCHydro,whichwasoneofourfunders,alsowantedtogainabetterunderstandingofMIEenergyconsumptionathospitalssothatstrategiescouldbedevelopedtohelpreduceenergyconsumptionandcosts.Threehospitalpartnerstookpartinthisproject:

• NanaimoRegionalGeneralHospital(NRGH),IslandHealth(VIHA),inBritishColumbia;

• TheHospitalforSickChildren(SickKids)inOntario;and• UniversityHealthNetwork(UHN)inOntario.

EnergyconsumptiondatawereobtainedfromthreetypesofMIE:

1. ComputedTomography(CT)2. GeneralRadiography(X-ray)3. MagneticResonanceImaging(MRI)

Eight(8)testingeventswereundertakenwith100sofdatapointsprovidingenergyconsumptiondataforlowpowerenergymodes,standby/idlepowermodeandactive/scanningenergymodes.TheMIEweremeasuredmostlyoverperiodsrangingfromthree(3)daysto11days.Longermeasurementperiodsallowedricherinformationaboutwhenandhowfrequentlytheequipmentwasusedandenabledthecalculationofestimatedannualenergyconsumptionandenergycosts.Extendedmeasurementperiodsalsoprovidedinsightsintoenergyreductionstrategiesthatwouldnotbeavailablethroughtheoriginaltestingprotocol.Theoriginaltestingprotocolreliedon12testingeventseachprovidingthreedatapointswhichwouldhaveresultedinatotalofonly36datapoints.Recommendationsincludethefollowing:

1) DevelopmentofENERGYSTARspecificationforMIEs.a. Thisreportidentifiedthattherearesignificantdifferencesinthelow

powerandscanningpowermodeswithintheequipmentmeasuredandintheenergyconsumptionvaluesreportedliterature.

b. AlongwiththedirectenergyuseofMIE,ancillaryenergyconsumptionofallrelatedancillaryequipmentaccompanyingtheMIEshouldalsobeassessedforreductionofenergyuse.

c. ENERGYSTARspecificationdevelopmentisnotaquickprocess,requiringgovernmentleadership,andmaytakeseveralyearstocomplete.TherearehoweverotheroptionstohelpencouragereductionofMIEenergyconsumptionthatcouldbeactedonmorequicklyandincludethefollowing:

5

2) ProvisionofpurchasingguidelinesforMIEwhichincludeenergyaspectsa. Includingenergyaspectsinpurchasingdecisionsisnotcurrentlypart

ofthepurchasingpracticesinCanadianhospitals.Convincingpurchaserstoincludeenergycriteriawouldrequireeducation,guidanceandprovisionofsolidbusinesscaseinformationforthedecisionmakers.

b. TheGreenPublicProcurement(GPP)initiativepromotedinEuropeestimatespossibleenergysavingsof50%forMRIandCT,and80%forX-rays.

3) DevelopenergybehaviourguidancedirectedatMIEusersa. TurningMIEoffortolowpowermodeisanotherconsiderationthat

couldapplytoCT’sandX-rays(whichcanbeturnedoff)andMRIs(wheretheequipmentcouldbeturnedtolowestpowermode).GuidingtheMIEusersonhowtodothisalongwithexpertsinMIEwouldbeessentialforenergyrelatedbehaviourchange.

4) OptimizingenergyconsumptionofcoolingrequirementsforMIEequipmenta. Coolingsystemequipmentarerequiredtoensurecritical

environmentalrequirementsaremetforMIEbutthesecanconsumesignificantenergythrough,forexample,theairhandlingunits.OptimizingthesesystemsalongwiththeMIEenergyuseandpowermodecanresultinenergysavings.

5) DevelopmentofaBusinessCaseforMIEpurchasingpersonnela. CostinformationonMIEandancillaryequipmentcouldbedeveloped

intoaBusinessCaseforequipmentpurchasersandhospitalpurchasingagentssothatenergyoperatingcostscanbeconsideredaspartofthenewequipmentevaluation.

i. MRIs:Averagecoststooperaterangedfrom$20,000to$30,000peryearjustfortheMRI.Addingintheancillaryenergyfromtheequipmentandcoolingcanbringthisamountupconsiderably.

ii. CTs:Averagecoststooperaterangedfrom$3,000to$6,000peryear,justfortheCTequipment.Addingintheancillaryenergyfromtheequipmentandcoolingcanbringthisamountupconsiderably.ManyhospitalshavemorethanoneCT.

iii. X-rays:Averagecoststooperaterangedfrom$100peryearwhennoscanninghastakenplace,andapproximately$400whentheyarebeingused.ThesecostsarejustfortheX-rayequipment.Addingintheancillaryenergyfromtheequipmentandcoolingcanbringthisamountupconsiderably.ManyhospitalshavemorethanoneX-raywhichwouldincreasethecontributionofthetotaloperatingexpensemultifold.

6

Table of Contents

1.INTRODUCTION 7

1.1OBJECTIVESOFTHISPROJECT 7

2.BACKGROUND 9

2.1MIEINITIATIVESINTHEUS 92.2MIEINITIATIVESINEUROPE 112.3MEIINITIATIVESINCANADA 132.4MEDICALIMAGINGANDANCILLARYEQUIPMENT 14

3.METHODOLOGY 19

4.RESULTS 22

NUMBEROFTESTSANDDATAPOINTS 22POWERCONSUMPTIONATLOWPOWERANDSTANDBYMODE 24

5.DISCUSSION 34

OPPORTUNITIESFORENERGYSTAR 35

6.CONCLUSIONS 43

APPENDIX1:DETAILEDTESTINGGUIDANCEFORDIFFERENTSCANMODES 45

APPENDIX2:EUGREENPUBLICPROCUREMENT(GPP)FORHEALTHCAREELECTRICALANDELECTRONICEQUIPMENT 47

APPENDIX3:MIEENERGYMEASUREMENTDATA 54

APPENDIX3.1:MRIENERGYCONSUMPTIONDATA 56

APPENDIX3.1.1MRIENERGYCONSUMPTIONDATASITE#1 56APPENDIX3.1.2MRIENERGYCONSUMPTIONDATASITE#2 75

APPENDIX3.2:CTDATA 95

APPENDIX3.2.1CTENERGYCONSUMPTIONDATASITE#1 96APPENDIX3.2.2CT#2ENERGYCONSUMPTIONSITE#1 105APPENDIX3.2.3CTENERGYCONSUMPTIONDATASITE#2 111APPENDIX3.2.4CTENERGYCONSUMPTIONDATASITE#3 132

APPENDIX3.3:X-RAYDATA 133

APPENDIX3.3.1:X-RAYDATASITE#1CTENERGYCONSUMPTIONDATASITE#3 133APPENDIX3.3.2X-RAYSITE1 141

7

1. Introduction ENERGYSTARproductshavebeenavailableinmanyconsumerandbusinesscategoriestohelppurchasersselectthemostenergyefficiencyproductsinaspecificcategory.OneproductcategorythatcurrentlyhasnoENERGYSTARdesignationisthehighenergyconsumingmedicalimagingequipmentusedinhospitalsacrossNorthAmerica.TheUnitedStatesEnvironmentalProtectionAgency(USEPA)hastakentheleadinassessingtheopportunitytodesignateanewcategoryofmedicalimagingequipmentasENERGYSTARcertifiedbutwerelackinginformationabouttheenergyconsumptionoftheseproductsinuse.NaturalResourcesCanada(NRCan)hasbeenprovidingassistancetotheUSEPAtoaddresstheseopportunitiesNorthAmerican-wide.

1.1 Objectives of this Project TheCanadianCoalitionforGreenHealthCare(TheCoalition)undertookthisstudyprimarilytoacceleratethedevelopmentofthemedicalimagingequipment(MIE)ENERGYSTARspecification.Tothisend,theCoalitiongatheredandanalyzedenergydataforthreeMIEtypesworkingwithourpartnerhospitals.OurpartnerhospitalswhovolunteeredtotakepartinthisstudywereNanaimoGeneralHospital(NGH)ofIslandHealthcareinBritishColumbia(BC),theHospitalforSickChildren(SickKids)inOntarioandtheUniversityHealthNetwork(UHN)inOntario.Partneringhospitals,aswellasoneofouroriginalfunders,BCHydro,wereinterestedingainingabetterunderstandingoftheimpactMIEhaveonoverallhospitalbuildingenergyconsumption,andtolearnwhatkindsofactionshospitalstaffcouldtaketoreducetheenergyconsumptionoftheseequipmenttypesintheshort-andlong-term.ThesixMIEtypesthatwereintheoriginalscopeofthisstudywouldhaveincluded12testingeventsresultingin36datapoints.EachofthesixMIEtypeswouldbetestedtwice,andforeachtesttherewouldbethreedatapointsidentifyinglowpowermode/standby/idlepowermodeenergyconsumption.Eachtestingeventwouldlastlessthan30minuteseach.ThesixtypesofMIEofinterestwere:

1. ComputedTomography(CT)2. GeneralRadiography(X-ray)3. MagneticResonanceImaging(MRI)4. MammographyEquipment5. NuclearImaging6. UltrasoundImaging/Sonography

Duringthecourseofthisstudy,energyconsumptiondatawereobtainedfromthreetypesofMIEwith100sofdatapointscollectedoverseveralweeksoftestingduring

8

eight(8)testingevents,wherethetestingtimewasextendedfarbeyondwhatwasoriginallyexpected.Mostofthetestingperiodslastedfromthreeto11days,andenergyconsumptiondatawereobtainedforlowpowermode,standbybypowermodeandactivepowermode.Withthisenhanceddatacollection,theresultscouldalsorevealinformationonthelengthoftimetheequipmentspentinthedifferentpowermodesandbeusedtopredictannualenergyconsumptionandcosts.TestingwasundertakenwiththefollowingMIE:

1. ComputedTomography(CT)2. GeneralRadiography(X-ray)3. MagneticResonanceImaging(MRI)

9

2. Background

2.1 MIE Initiatives in the US TheUSinitiatedtheENERGYSTARprogramin1992asavoluntaryclimateprotectionprogramprovidingastrategicapproachtoenergymanagementbypromotingenergyefficientproductsandpractices.Theprogramprovidestoolsandresourcestohelpsavemoneyandprotecttheenvironment.ENERGYSTARlabeledproductsthatarecurrentlyavailableinclude:lighting,homeenvelopproducts,heatingandcooling,officeequipment,commercialfoodservicesequipment,homeapplicantsandhomeelectronics.TheUSDepartmentofEnergy(DOE)estimatedthatthemedicalequipmentinahospitalmakesup18%ofthefacility'senergyuse1.In2009,theUSDOEidentifiedmedicalequipmentasamajorareaofpotentialenergysavings.TheDOEassistedindevelopingtheHealthcareEnergyAlliance(HEA),aforuminwhichhealthcareleadersworkedtogetherwithDOE,itsnationallaboratories,andnationalbuildingorganizationstoacceleratemarketadoptionofadvancedenergystrategiesandtechnologies.TheHEASteeringCommitteeidentifiedfiveareasoffocusinhospitalbuildingsystemsandoperationsthatrequiredresearchoninnovative,cost-effectivetechnologiesandbestpracticestoolkits.OneofthesewasMedicalEquipmentandPlugLoads,andasaresult,strategiestodecreaseenergyconsumedbydiagnosticandtherapeuticequipment,aswellasgeneralhospitalplugloadswasundertaken.A2014reportfromtheNationalRenewableEnergyLaboratory(NREL):HealthcareEnergyEnd-UseMonitoring2lookedatthepowerconsumptionofvariousMIEinhospitalsandmedicalclinicsoveraone-yearperiodandidentifiedvariabilityintheMIEloadprofiles.Theauthorssuggestthattherecouldbeanopportunityfordevicemanufacturerstoimprovetheenergyefficiencyof‘idle’or‘lowpowermodes’andmakeaccessingthesepowermodeseasierfortheuser,aswellasensuringthattheMIEwillpowerupquicklyasneeded.Inaddition,itwasfoundthatmostofthisequipmentisnotusedthroughoutthenightandthatopportunitiestopowerdownspecificequipmentshouldbeexaminedmoreclosely.InitialanalysisbytheUSEPAshowedthatmostmedicalimagingproductsusesignificantenergy,evenwheninready-to-scanorlow-powermode.TheEPAbelievedthatconsiderablesavingscouldbegainedfromavoidingunnecessary

1 U.S. Department of Energy. "Hospitals Pulling the Plug on Energy-Wasting Electric Equipment and Procedures." July 2011 2 Healthcare Energy End-Use Monitoring – NREL report 2014

10

energyuseinjustthesemodes.TheEPAwasnotintendingtopursuerequirementsofanyactivescanmodesandwasintheearlieststagesofanENERGYSTARspecificationdevelopmentforMIEs.3Since2009,productmanufacturershaverespondedwithequipmentthatconservesenergywhilealsoimprovingpatientcare.NewgenerationsofMRIandCTscannersaresmaller,lighter,andhavescantimesthatareupto75percentfasterthanlegacyequipment—whichreducesradiationdosesandenergydemands,resultinginlowerenergycostsperpatient,aswellasadecreasedradiationdoseforpatients.Fasterscansalsoincreasepatientsatisfactionandthroughput,andimprovestaffworkflow.TheMIEequipment'slifetimeenergyuseshouldbefactoredintopurchasingdecisions.4 Figure1providesasummaryforfourMIEtypesandthecorrespondingunitenergyconsumption(UEC),thenumbersofeachtypeofMIE,andtheannualprojectedenergyconsumption(AEC)5.IntheUS,MRIsconstitutethelargestunitenergyconsumptionandprojectedannualenergyconsumption,followedbyCTs,X-raysandUltrasounds.Figure1:MiscellaneousEnd-UseServicesandEquipmentEnergyConsumptionSummaryintheUS

3Greenhealthjournal,Fall20154 A prescription for energy efficiency. Health Care Design. March 2013. http://www.healthcaredesignmagazine.com/architecture/prescription-energy-efficiency/ 5Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances (2015 Update) W. Goetzler, M. Guernsey, K. Foley, J. Young, G. Chung June 2016. DOE Energy Efficiency and Renewable Energy pg 145 https://energy.gov/sites/prod/files/2016/06/f32/DOE-BTO%20Comml%20Appl%20Report%20-%20Full%20Report_0.pdf

11

2.2 MIE Initiatives in Europe TheEnergyRelatedProducts(Ecodesign)DirectivegivesauthoritytotheEuropeanCommission(EC)tosetecodesignrequirementsthroughnewregulationsforanygroupofproductswhichusesenergy.In2007,MedicalDeviceswereidentifiedasa“PriorityA”productgroupbytheECforfutureregulation.Toavoidadversebusinessimpacts(unnecessarycostsandlossofflexibilityinproductdesign),theMIEbusinesscommunitydevelopedanalternativeapproachallowedundertheEcodesignDirectiveAnnexVIII(Self-RegulatoryInitiativeforanindustrysector)6.OneestimatefromDenmarkindicatesthatmedicalequipmentcomprises18%ofhospitalenergyuse,butactualtestinginDenmarksawvaluesashighas50%oftheenergyrequirementsifthemeasurementsincludedtheadditionalenergy/HVACrequiredtomaintaintemperaturerelatedtouserrequirementsandmedicalequipment.7TheEuropeanCoordinationCommitteeoftheRadiological,ElectromedicalandHealthcareITIndustry(COCIR)developedtheSelfRegulatoryInitiative(SRI)forMedicalImagingEquipment.ThisInitiative,launchedin2009andofficiallyacknowledgedbytheEuropeanCommissionin2012,aimsatreducingtheenvironmentalimpactsofmedicalimagingdevices,andrepresentstheproactiveapproachofCOCIRtowardssustainablehealthcareandthecirculareconomy.COCIRhaveproducedsixstatusreportstodate,thelatestonereleasedinSeptember20168.Themajorinternationalequipmentmanufacturersparticipateinthisinitiative.Forexample,fromtheMRImanufacturingsectorparticipantsincludeGE,Phillips,Siemens,ToshibaandHitachi.COCIRdevelopedstandardizedtestingprotocolsforMIEwhichwereusedasthebasisforthetestmethodsdevelopedfortheENERGYSTARMIEtestingprocess–‘FinalDraftTestMethodForDeterminingMedicalImagingEquipmentEnergyUse–Rev.Aug2014’thatwasusedasthebasisforproducttestingfortheCanadianstudy.TheCOCIRSRIreportssignificantreductioninannualenergyconsumptionforMIEsuchasMRIsfrom2011–2015.ManufacturershavecollectivelydecreasedtheenergyconsumptionoftheMRIs.AsshowninFigure2,in2015thedailyaverageenergyconsumptionperunitforMRIequipmentdecreasedto176.91kWh/unit

6http://www.eceee.org/ecodesign/products/medical-imaging-equipment/7Energy efficiency in hospitals and laboratories (6-337-11), 2011. Anders Hjorth Jensen, Danish Energy Saving Trust, Denmark, Peter Maagøe Petersen, Viegand & Maagøe ApS, Denmark http://proceedings.eceee.org/visabstrakt.php?event=1&doc=6-337-11 8 COCIR Self-Regulatory Initiative For The Ecodesign of Medical Imaging Equipment Status Report 2015 www.cocir.org/fileadmin/6_Initiatives_SRI/SRI_Status_Report/SRI_Status_Report_2015_-_21_September_2016.pdf

12

showinga21%reductioncomparedto2011(225.92kWh/unit)anda5%comparedto2014.Figure2:MRIachievements:Calculatedvaluesforyear2011-2015andforecastuntil20179

However,comparingenergyconsumptionvalues,forexample,inMRIsin2015fromfivecompaniesshowsthereisagreaterthan25%spreadintheaveragedailyenergyconsumptionasprovidedinFigure3below.Figure3:COCIRmemberreportsofaverageMRIdailyenergyconsumptiontrendsperyear 10

PastworkalsoincludedinformingMIEuserstouselowpowerandpower-downmodesduringthenightwhentheMIEsarenotinuse.BrochureswerecreatedforMRIandCTin2014:

• COCIRbrochure:“COCIRMRIGuidelinesforUsersonSavingEnergy-GoodEnvironmentalPractice

9COCIR 2015 report pg 18 http://www.cocir.org/fileadmin/6_Initiatives_SRI/SRI_Status_Report/SRI_Status_Report_2015_-_21_September_2016.pdf 10 COCIR page 18 http://www.cocir.org/fileadmin/6_Initiatives_SRI/SRI_Status_Report/SRI_Status_Report_2015_-_21_September_2016.pdf

13

• COCIRGuidelinesonenergysavingonComputedTomography–Contributiontohealthcareenvironmentalsustainability

TheCOCIRobjectivesalsoincludeeco-designsthatcontributetothe‘circulareconomy’-anobjectiveoftheEU.TheCOCIRhasconcludedthattheirgreatestimpactslieinreuseandrefurbishment.

2.3 MEI Initiatives in Canada NaturalResourcesCanada(NRCan)hasworkedcloselywiththeUSEPAontheENERGYSTARprogramsinceitsinceptioninCanada,whichnowincludesPortfolioManager,usedasanenergybenchmarkingtoolfortheindustrial,commercialandinstitutionalsector.TheSurveyofCommercialandInstitutionalEnergyUse(SCIEU)isintendedtoproducestatisticalestimatesofenergyuseandestablishbaselineenergyconsumptionfigurestosupportenergyefficiencypolicyandprogramdevelopment.Thedataalsoformsthebasisofthe1-100performancescoresusedinNRCan’sCanadianadaptationoftheU.S.EPA’sENERGYSTARPortfolioManagerenergybenchmarkingsystem.11AquestiononMRIshasbeenincludedinthehospitalenergyusesurveyin2015. In2014,NRCancommissionedastudythatincludedmedicalimagingequipmentquantitiesandenergyconsumptioninCanada.12Thepurposeofthisstudywasto:§ CharacterizetheCanadianmedicalequipmentmarket,§ Estimatemedicalequipmentenergyuse,§ Assess technology characteristics and the capacity for energy performance

improvements,§ Evaluateenergysavingsopportunities,§ Exploremarkettransformationopportunities,and§ Makerecommendationsforfuturework.

Thereportfoundthatfourmedicalimagingmodalitieswereinthetopfivemostenergyconsumingmedicaldevicetypesinhospitals:MRIs,x-rayscanners,ultrasound,andCTscanners.

TheCanadianAgencyforDrugsandTechnologiesinHealth(CADTH)releasedtheCanadianMedicalImagingInventory,2016.13Thisreportsummarizedinformation

11 www.nrcan.gc.ca/energy/efficiency/buildings/energy-benchmarking/update/getready/1673112Energy Savings Opportunities for Medical Equipment, Report to NRCan by ICF International, February 2015.

14

fromasurveyofMIEusers,whichweremostlypublichealthcaresites.ThesixMIEtypestheygatheredinformationonarelistedbelow,withthefollowingresultsofinteresttothisreport:

• Computedtomography(CT)o 538unitsinCanada(61tobepurchasedinthenext2years)o CTunitsoperateforamedianof63hoursperweek,and10hoursper

day.Mostoperateatweekends• Magneticresonanceimaging(MRI)

o 340unitsinCanada(35tobepurchasedinnext2years)o MRIunitsoperateforamedianof72.2hoursperweek,and13.5

hoursperday.Mostoperateatweekends• Single-photonemissioncomputedtomography(SPECT)

o 264UnitsinCanada• Positronemissiontomography–computedtomography(PET-CT)

o 47unitsinCanada• Positronemissiontomography–magneticresonanceimaging(PET-MRI)

o 2unitsinCanada• Single-photonemissioncomputedtomography–computedtomography

(SPECT-CT)o 214unitsinCanada

OfnotearetheincreasingnumbersofthenewerhybridCTsandMRIs.

2.4 Medical Imaging and Ancillary Equipment ThissectiondescribesthegeneralcharacteristicsoftheMIEresearchedinthisstudy,andtheancillaryenergyconsumingequipmentintheassociatedrooms.WhileonlytheMIEenergyconsumptionwasmonitoredinthisstudy,itshouldbenotedthatthereareotherenergyconsumingequipmentrelatedtotheMIEwhichaddstothetotalenergyconsumptionvaluesofMIE.OurteamundertookareviewofancillaryequipmentrelatedtothespecificMIE,whichisrecordedbelow.1. ComputedTomography(CT):Technologythatcreatesacomputer-generated

3Dimagefromatwo-dimensionalX-rayimagestakenaroundasingleaxisofrotation.CTscansuseX-raystoproduceprecisecross-sectionalimagesofanatomicalstructuresandspaceswithinobjects.Machinesusedinmedicalfacilitiestypicallyconsistofaplatform,wherethepatientlies,andaCATmachinewithanopeninginthecenterforthepatienttopassthrough.AnX-RaytubeandanarrayofX-RaydetectorsaremountedonarotatingringthatislocatedinsidetheCATmachineandsurroundstheopening.MostoftheenergyconsumedduringthisprocessisusedtooperatetheX-Raycomponents.Energyisalsorequiredtooperateacomputerfordigitalimageprocessingandcontrols,anddriveanelectricmotorrequiredtorotatetheringandtheattachedX-Ray

13Canadian Medical Imaging Inventory, March 2016. CADTH www.cadth.ca/canadian-medical-imaging-inventory-2015

15

equipmentwhilethemachineisoperating.13

2. MagneticResonanceImaging(MRI):Technologyusedtoobtainhighlyrefinedimagesofthebody’sinterior.Itemploysmagnetsthatpolarizeandexcitehydrogennucleiinwatermoleculeswithintissuesandcreates2Dimages.MRIscreateamagneticfieldbypassinganelectriccurrentthroughwirecoils.MostMRIsusesuperconductingmagnetstomaintainlowresistivelossesinthewire.Superconductingmagnetsystemsrequirecontinuouscryogenicrefrigeration,whichconsumeroughly40%ofaMRI’stotalenergyconsumption.13

AsummaryofancillaryenergyconsumingequipmentforboththeCTandMRIequipmentroomsareasfollows:

1) CT/MRIEquipmentRoom• CT/MRIGantry• CT/MRItable• ArticulatingArms• Monitors–VideoandVitalSigns• InjectionEquipment

2) AncillaryEquipment• Chillerforchilledwaterloopforequipmentcooling• DedicatedHVACsystemforroomcooling(In-lineLiebert)

3) Technician’sRoom• Multiplemonitors&Servers• Dedicatedcooling(ductlesssplitorLiebert)

4) MechanicalRoom(Water)• Water/Glycolclosedlooptochillerandtoequipment• By-passtocitywaterasback-upforcooling

5) ElectricalRoom• Dedicatedspaceforelectricalpanelsandtransformerequipment• Dedicatedcooling(ductlesssplitorLiebert)

6) PatientChangeRoomandWaitingArea

TheaverageenergyconsumptionofaCTinthedifferentpowermodesshowninFigure4,showsthecontributionsthedifferentancillaryequipmentmaketothepowerdrawatthedifferentmodes.

16

Figure4:EnergyconsumptionoveratypicaldayinLowPower,IdleandScanmodeallocatedtothedifferentmodulesoftheCTscanner.14

3. Mammography:Thisequipmentuseslow-doseX-raystoexaminethehuman

breastfortumorsandcysts.Mammographyequipmentcanbeeitheranalog,projectinglow-doseX-raysonfilm,ordigital,convertingX-raysintoelectricalsignalsthatproducedigitalimages.Asummaryofancillaryenergyconsumptionequipmentinthemammographyroomsareasfollows:

1) MammographyEquipmentRoom• MammographyUnit• Monitors–VideoandVitalSigns

2) Technician’sRoom• Multiplemonitors&Servers• Dedicatedcooling(ductlesssplitorLiebert)

3) PatientChangeRoomandWaitingArea4) OfficeandConsultationSpace

4. NuclearImaging:Apatientconsumesshort-livedisotopeswhichemitradiation

thatismeasured,commonlywiththeuseofagammacamera.Scintigraphy,singleprotonemissioncomputedtomography(SPECT),andpositronemissiontomography(PET)aretypesofnuclearimagingtechnologies.Scintigraphyproduces2Dimages,whileSPECTandPETtechnologiesproduce3Dimages.

14 COCIR 2015 pg 53 http://www.cocir.org/fileadmin/6_Initiatives_SRI/SRI_Status_Report/SRI_Status_Report_2015_-_21_September_2016.pdf

17

Asummaryofancillaryenergyconsumingequipmentfornuclearimagingequipmentroomsareasfollows:

1) NuclearImagingRoom• NuclearImagingequipment• ArticulatingArms• Monitors–VideoandVitalSigns• InjectionEquipment

2) Technician’sRoom• Multiplemonitors&Servers• Dedicatedcooling(ductlesssplitorLiebert)

3) ElectricalRoom/Space• Dedicatedspaceforelectricalpanelsandtransformerequipment• Dedicatedcooling(ductlesssplitorLiebert)

4) PatientChangeRoomandWaitingArea

5. UltrasoundImaging/Sonography:Thistechnologyexposesabodyparttohigh-frequencysoundwavesthatarereflectedbytissuesinthebodytoproducereal-time2Dand3Dimages.Asummaryofancillaryenergyconsumingequipmentforultrasoundimagingequipmentroomsareasfollows:

1) UltrasoundRoom• Multiplemonitors&Ultrasoundunit• Dedicatedcooling(ductlesssplitorLiebert)

6. GeneralRadiography(X-ray):AnX-rayimageisproducedwhenasmallamountofionizingradiationpassesthroughthebody.TheabilityofX-raystopenetratetissuesandbonesvariesaccordingtothetissue’scompositionandmass.ThestepofexposingthepatienttotheX-Raytypicallylastafewhundredthsofasecond,butcandraw60-80kWinstantaneously.AseriesofuserandequipmenttaskstopositionthepatientanddevelopthefilmalsocontributetotheaverageoperatingenergyconsumptionofX-Raymachines.

Asummaryofancillaryenergyconsumingequipmentforgeneralradiographyequipmentroomsareasfollows:

1) X-ray/FluoroscopyEquipmentRoom

• X-rayunit• X-raytable&VerticalBackdrop• ArticulatingArms

18

• Monitors–VideoandVitalSigns• InjectionEquipment

2) Technician’sRoom/WorkSpace• Multiplemonitors&Servers• Dedicatedcooling(ductlesssplitorLiebert)

3) ElectricalCloset• Dedicatedspaceforelectricalpanelsandtransformerequipment• Dedicatedcooling(ductlesssplitorLiebert)

4) PatientChangeRoomandWaitingArea

19

3. Methodology TopreparefortheenergymeasurementstheteamundertookreviewsofthereferencesprovidedbytheUSEPA:1. Reviewofgeneraltestingproceduresformedicalelectricalequipment:

a. Generaltestingproceduresformedicalelectricalequipment–reportbyTheInternationalElectrotechnicalCommission(IEC)62354Edition3.02014-09

i. Thisincludedreferencestogeneraltestingconditions,inputpower,andpowermetershallbeasspecifiedinIEC62354

ii. Productsshallbetestedintheir“as-shipped”configuration,whichincludesbothhardwareconfigurationandsystemsettings,unlessotherwisespecified.

2. ReviewofUSEPAdevelopedsamplingtemplates:a. ENERGYSTAR®ProgramRequirementsProductSpecificationforMedical

ImagingEquipmentFinalDraftTestMethodForDeterminingMedicalImagingEquipmentEnergyUseRev.Aug–201415

Theteamthenconsolidatedthetestinginformationintoatestprocessthatourpartnerhospitalswerecomfortablewith.ThehospitalswerealsointerestedingatheringthetotalenergyuseoftheMIE,includingactivemodeenergyuse,andwereassistedbytheprojectexpertstoundertakethesemeasurements.

EachhospitalidentifiedMIEforpossibleinclusioninthestudy.OfnotewerethefollowingofinteresttotheUSEPA:

a. Abroadrangeofmanufacturerswaspreferred.b. MIEsuitableforthestudywerelessthanthreeyearsold(2013and

newer)wherepossible.c. Manufacturesname,modelandinstallationyearwereidentified.d. TheUSEPApriorityinterestswereMRIsandCTs

ThefollowinggeneralapproachwasundertakentomeasureenergyconsumptionoftheMIEinthisstudy:1. Energymeasurementswereundertakenateachsitebyauthorizedhospitalstaff

(i.e.electriciansauthorizedtomeasureenergyconsumptiononmedicalimagingequipment).

2. Recordingtestinginformation

15EnergyStarDraftTestMethodforMedicalImagingEquipmenthttps://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Medical%20Imaging%20Equipment%20Final%20Draft%20Test%20Method.pdf

20

a. USEPAprovidedadraftdatasheetforrecordingdata.OurteamhaseditedthisbasedonatrialatUHN,andtheneedbyhospitalstounderstandtotalenergyconsumption.

3. Powerloggersa. Powerloggersownedbyeachhospitalwereusedwhereavailable.Where

required,thepowerloggersweresentforrecalibrationifnotcalibratedwithinthelasttwoyears.AnadditionalpowerloggerwasborrowedfromTorontoHydro.Apowerloggerwasalsopurchasedforuseinthisstudy.

b. Allpowerloggerswerecapableofmeasuringpolyphasevoltageandcurrent

4. Testingenvironmenta. Ambienttemperatureshouldbewithin23C+/-5Cb. Relativehumiditywasbetween15%and80%

5. Timelengthoftestsa. Eachsitechosealengthoftimesuitablefortheirneeds.

6. PowermodemeasurementswereasperCOCIRandENERGYSTARguidance.AmoredetaileddescriptionofthemeasuringguidanceisprovidedinAppendix1.

a. Powermodemeasurementswererecordedforthefollowing,whenavailableontheMIE:

i. Offmode(sleepmode,service/evaluationmode)1. Thesystemisshutdownwithacmainsoff,accordingtothe

usermanual.Thesystemconsumesnoenergy.2. Note:forMRI,offmodecorrespondstothelowestpower

modebecausetheequipmentcannotbeshutdowncompletely.

ii. Lowpowermode1. Thismoderepresentstheminimumenergyconsumption

statethattheusercanselectaccordingtotheusermanual.ThepowerconsumptionislowerthanReady-to-scanandhigherthanOffmode.

iii. Ready-to-scan(idle)mode1. Thismoderepresentsthestateofthesystembetween

individualscans,wherenoscanhasbeenprescribed(e.g.,duringpatienthandling,dataarchiving,examinationplanning,orcontrastagentinjection).ThismodedoesnotincludepotentialmechanicalmovementssuchasX-raytuberotororgantryrotation.

iv. Scan(active)mode1. Thesystemisactivelyscanningthepatienttogenerate

images.Thecomputingsysteminterpretsthedataandgeneratestheimage.ThismodealsoincludesanypotentialmechanicalmovementssuchasX-raytuberotororgantryrotation.

21

2. Note:ThisdatawasnotrequiredfortheENERGYSTARevaluationbutwasofinteresttoparticipatinghospitals.

7. Numberoftestsa. TheCoalitionproposedtwotestsofeachoftheoriginalsixMIEproduct

typesifpossible,withaminimumof12testingevents.Eachofthesetestingeventswouldresultinthreedatapoints,withatotalof36datapoints.Undertakingthesetestswoulddependonthehospitalschedulesformanpowerandequipmentavailability.

8. ResourcesrequiredtoundertakeenergyconsumptiontestsofMIEa. Intermsoftheresourcesrequiredtoundertakeatest,COCIRhas

identifiedthefollowingtasksandtechnicians/specialistsrequiredtomeasureonetargetMRIequipment:16

Figure5:ResourcesrequiredtoundertakeoneenergyconsumptiontestofMRI

16 COCIR Status Report 2014 pg 32 www.cocir.org/fileadmin/6_Initiatives_SRI/SRI_Status_Report/COCIR_SRI_Status_Report_2014_-_10092015.pdf

22

4. Results MIEenergyconsumptionresultswereobtainedfromhospitalstaffwhoutilizedpowerloggersasperthetestingprocesstoundertaketheactualmeasurement.RawdatafromthesemeasurementsareprovidedintheMIEEnergyMeasurementDataAppendix3.

4.1 Number of tests and data points OriginallytheCoalitionproposedtwotestsofeachoftheoriginalsixMIEproducttypesifpossible,withaminimumof12testingevents.Eachofthesetestingeventswouldresultinthreedatapoints,withatotalof36datapoints.Undertakingthesetestswoulddependonthehospitalschedulesformanpowerandequipmentavailability.Inanenvironmentwherepatientoutcomestakepriority,notallthesetestswereabletobeundertaken.ActualMIEtestingoccurredwiththree(3)MIEtypesandeight(8)separatetestingevents:

a. MagneticResonanceImaging(MRI)b. ComputedTomography(CT)c. GeneralRadiography(X-ray)

PartnerhospitalswantedtouselongertestingperiodstogainabetterunderstandingoftotalenergyconsumptionfromMIEattheirfacilities.Usinglongertestingperiodsresultedin100sofdatapoints(insteadofthe36originallyagreedto)andmuchmorereliabledatafromoffmode,lowpowermodeandstand-bymodes.Mostofthedatameasurementstookplaceoveraperiodofdays–fromthree(3)daystoeleven(11)days.Onlyonetesteventwasforapointmeasurementoftwo(2)minutes.AsummaryofthetestlengthoftimewherethepowerloggerswereleftontheequipmentforvaryinglengthsoftimeisprovidedinFigure6below:Figure6:Powerconsumptiontestingevents,testlengthanddataacquisitionintervalsMEIType TestingEventand

SiteTestLength DataAcquisition

Intervals(minsorsecs)

MRI 1. Site1 11days 6minsMRI 2. Site2 7days 1minCT 3. Site1 7days 6minsCT 4. Site1 7days 6minsCT 5. Site2 8days 1minCT 6. Site3 2min 1secX-ray 7. Site1 6days 6minsX-ray 8. Site1 3days 6mins

23

Variationsindataacquisitionintervalsaroseoutofquestionsondataqualitypossiblyrelatedtotheenergycollectioninterval.Increasedresolutionofdataforenergyconsumptionusingone(1)secintervalsresultedinanexpandedviewoftheenergyconsumptionpatternasseeninFigure7below,whichshowsenergyconsumptionduringaCTscanatSite3.Identifiedonthegraphisthegantrytablemovement,thefirsttwoscans,whichare‘dualscans’andathirdscan,ahelicalscan,thatconsumesthehighestenergy.Incomparison,datafromsixminandoneminintervalsforCTscansatSites2andSite1areprovidedinFigures8and9.Figure7:Powerconsumption(kW)patternusingonesecintervalsforCTatSite3

Figure8:Samplefromtimeseriesofpowerconsumption(kW)foreachminuteovereachhour,overeightdays(Site2)

24

Figure9:SamplefromtimeseriesofpowerconsumptionusingsixminintervalsforCTatSite1

4.2 Power consumption at low power and standby mode Datafromthepowerloggertestingeventswerecompiledandassessedforlowpowerandstandbypowermodevalues.AsummaryofallmeasureddataisprovidedintheAppendix3.Figures10and11showsummarygraphsofpowerconsumptionforthetwoMRIsmeasured.Thelowestpowerconsumptionvaluesdifferslightly,butthetimespentatthelowerpowermodesvary,likelyduetoactualusageforscanning.

25

Figure10:MRIenergyconsumption(kW)percentageateachpowerrangeatSite1

Figure11:MRIenergyconsumption(kW)percentageateachpowerrangeatSite2Figures12,13and14showsummarygraphsofpowerconsumptionforthreeCTsmeasuredforseveraldays.ExamplesoftheCTrawdataareprovidedinFigures7,8and9.DatafromeachMIEweregraphedandpowerconsumptionwasrecorded.Itisevidentthatthelowestpowerconsumptionvaluesdifferslightly.Inaddition,itwasnotedfromthetimeseriesofpowerconsumptiondata,thatineachcasetheCTwenttoalowerpowerconsumption(oftenduringtimeswhenscanningwasnot

0%

5%

10%

15%

20%

25%

30%

35%

[0,10)

[10,12)

[12,14)

[14,16)

[16,18)

[18,20)

[20,22)

[22,24)

[24,26)

[26,28)

[28,30)

[30,32)

[32,34)

[34,36)

[36,38)

[38,40)

[40,42)

[42,44)

[44,46)

[46,48)

[48,50)

[50,9999)

Power(kW)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

12-14

14-16

16-18

18-20

20-22

22-24

24-26

26-28

28-30

30-32

32-34

34-36

36-38

38-40

40-42

42-44

44-46

46-48

50-52

52-54

54-56

56-58En

ergyconsumptionpercentage

Powerconsumptiongroupsbasedonvalue(kW)

26

common),andreturnedtothereadytoscanmode.InFigure13,thepowerconsumptionreducedfromapproximatelytwotoonekW,andapproximately3.7kWasthereadytoscanmode.Figure12:CTpowerconsumption(kW)percentageateachpowerrangeatSite1

Figure13:CTpowerconsumption(kW)showingdropinkWatSite1

InFigure14,and15,thepowerconsumptionreducedfromalowpowermode,(whichalsoappearedtobeareadytoscanmode)oftwotobelow0.5kW.ThepowerconsumptionalsodroppedasecondtimefromtwotoapproximatelyonekW.

0%

10%

20%

30%

40%

50%

60%

70%

[0,1)

[1,2)

[2,3)

[3,4)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9)

[9,10)

[10,11)

[11,12)

[12,13)

[13,14)

[14,15)

[15,9999)

Power(kW)

27

Figure14:CTenergyconsumption(kW)percentageateachpowerrangeatSite1(test#2)

Figure15:CTpowerconsumption(kW)showingdropinkWatSite1(test#2)

InFigures16and17thereadytoscanmodeinthisCTisapproximately4.8kWbutalsodropstoapproximately0.7kWasalowestpowerconsumptionstage.

0%

10%

20%

30%

40%

50%

60%

70%

80%

[0,0.5)

[0.5,1)

[1,2)

[2,3)

[3,4)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9)

[9,10)

[10,11)

[11,12)

[12,13)

[13,14)

[14,15)

[15,16)

[16,17)

[17,9999)

Power(kW)

28

Figure16:CTenergyconsumption(kW)percentageateachpowerrangeatSite2

Figure17:CTpowerconsumption(kW)showingdropinkWatSite2

X-raypowerconsumptiondataisprovidedinFigures18and19.LowpowerconsumptioninthefirstX-rayisseenas0.18kW(Figure19),whileinFigures20and21,thepowerconsumptionwasconstantlyatapproximately0.08.AfterreviewofthetimeseriespowerconsumptiongraphsidentifiedinFigure21,(asprovidedinAppendix3.3)theredidnotappeartobeanyactualscanningevents.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[0,1)

[1,2)

[2,3)

[3,4)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9)

[9,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,9999)

Energyconsumptionpercentage

Powerconsumptiongroupsbasedonvalue(kW)

29

Figure18:X-rayenergyconsumption(kW)percentageateachpowerrangeatSite1test#1

Figure19:X-raypowerconsumption(kW)showingdropinkWatSite1

0%

10%

20%

30%

40%

50%

60%

[0,0.1) [0.1,0.2)

[0.2,0.3)

[0.3,0.4)

[0.4,0.5)

[0.5,0.6)

[0.6,0.7)

[0.7,0.8)

[0.8,0.9)

[0.9,1) [1,1.1) [1.1,99)

Power(kW)

30

Figure20:Xrayenergyconsumption(kW)percentageateachpowerrangeatSite1test#2

Figure21:X-raypowerconsumption(kW)showingconsistentlylowkW(0.07-0.09)atSite1

Figure22providesasummaryoftheresultsofpowerconsumptionofthelowpowerandstandbypower(kW)forthethreeMIEtypesaswellasreference(REF)powerconsumptiondatafromotherpublishedsourcesofMIEenergydataforquickcomparisonpurposes.Alsocollectedwerereferencedata(REF)fromreportedvaluesfortheMIEinpublishedliterature.

0%

10%

20%

30%

40%

50%

60%

70%

[0,0.06) [0.06,0.07) [0.07,0.08) [0.08,0.09) [0.09,99)

Power(kW)

31

Figure22:Measuredenergyconsumption(kW)inlowpowerandstand-bypowermodesofthemedicalimagingequipment Site #

Medical Imaging Equipment Type Off Mode Low Power Mode (kW)

Standby Power Mode

(kW) Manufacturer Model Year

MRI 1 Siemens Magnetom Aera 2013 NA 14.5 2 Siemens Advento 2013 NA 13.9 18.4 REF NREL17 (pg

22) 11

13

REF COCIR18 2015 (pg 27)

9.3 14.6

REF Norway hospital19

9 17

CT 1 Siemens Flash 128

scan mode 2016 1.9 / 1 3.6

1 Siemens Edge 64 scan mode

2016 1.0 2.3

2 GE Lightspeed Discovery HD750

2012 0.7 4.5

3 Toshiba CAT Scan (b)

Aquilion One TSX-305A

2013 Option not available on this CT

6.25

REF NREL (pg 22) 3; 3; 11 X-RAY 1 Toshiba KX0-80S X-Ray

Generator 2015 0.18

1 Toshiba KXO-80XM X-Ray Generator with MDX-8000 Table aka Ultimax System

2015 0.08

REF Danish hospital study 2008/9 20

0.65

REF COCIR 2015 (pg 57)

0.15 0.6

17 Healthcare Energy End-Use. Monitoring. Michael Sheppy, Shanti Pless, and Feitau Kung. National Renewable Energy Laboratory www.nrel.gov/docs/fy14osti/61064.pdf 18 COCIR 2015 report pg 18 http://www.cocir.org/fileadmin/6_Initiatives_SRI/SRI_Status_Report/SRI_Status_Report_2015_-_21_September_2016.pdf 19 Equipment and Energy Usage in a Large Teaching Hospital in Norway Tarald Rohde1* and Robert Martinez2 1SINTEF, Technology and Society, Hospital Planning, Oslo, Norway 2Norconsult as, Sandvika, Norway Submitted October 2014. Accepted for publication April 2015. 20 http://proceedings.eceee.org/visabstrakt.php?event=1&doc=6-337-11

32

Notes: (a) MRI’s cannot be turned off. The manuals often call ‘low power mode’ as ‘off mode’. We record the lowest power mode of the MRI as ‘low power’ (b) This CT machine does not have a ‘low power mode’ and will stay on standby/ready-to-scan mode unless technicians shut off the computers. The Gantry is always powered and the technicians estimated 6 hrs to warm up the CT if it was de-energized. In 16 hrs active machines may scan ~50 patients, the minimum would be 4/hr. The machine tested was a research machine so it was not active. Test #1 duration: 2 hrs. Figure23providesthesummaryoftotalannualpowerconsumptionforenergyusedbytheMEIinallmodes:theready-to-scanandlowpowerenergyconsumptionandtheestimatedannualenergycoststooperatetheMIE.OfnotearethepercentagetimestheMIEspendsinthelowpower,readytoscanandoffmodes.Referencedata(REF)isalsoprovidedtoshowhowthisdatacompareswithotherpublisheddata. Figure24providesanexampleoftabulatedMRIrawdatafromhospitalSite2asanexampleofhowourrawdataweretabulated. Figure23:Estimatedtotal,ready-to-scanandlowpowerconsumptionandcosts Site # MIE Type Estimated Annual Energy

Consumption (kW/h)

Estimated Annual

Costs @ $0.15 kW/h

(CAD)

Total per Unit

(kWh)

Ready to Scan & Scan Mode

%

Low Power Mode

%

Off Mode

%

MRI 1 Siemens 190,687 33% NA $28,603 2 Siemens 130,897 17% 81% NA $19,634 REF21 DOE 111,000 REF COCIR 2015

(pg 18) 64,572

CT 1 Siemens 31,775 65% 11% $4,766 1 Siemens 21,652 73% 5% $3,248 2 GE 40,942 89% $6,141 3 Toshiba

CAT Scan (b) NA

REF22 DOE 41,000 REF COCIR 2015 (pg

11) 50% in use /50% in ready to scan mode

26,280 18,250 13,505

X-Ray 1 Toshiba 2,811 45% $422 1 Toshiba 689 99.8% $103 REF23 DOE 9,500

21Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances (2015 Update) W. Goetzler, M. Guernsey, K. Foley, J. Young, G. Chung June 2016. DOE Energy Efficiency and Renewable Energy pg 14522ibid

33

23ibid

Summary of power consumption (kW) at one minute interval over the entire monitoring period

kWminute Range (kW)

Count of kWminute

Average of

kWminute (kW)

Sum of kWminute

(kW)

Energy Consumption Percentage

of each range

Energy Consumption (kWh) over

sampling period

Estimated Energy

Consumption (kWh) over One Year

Estimated Annual cost @ $0.15 per kWh

[0,1 0.0 NA 0.0 0.0% 0.0 0.0 $ - [13,14) 8837.0 13.9 122480.8 80.9% 2041.3 105916.3 $ 15,887.4 [14,15) 103.0 14.1 1456.2 1.0% 24.3 1259.3 $ 188.9 [15,16) 6.0 15.6 93.3 0.1% 1.6 80.7 $ 12.1 [16,17) 16.0 16.5 263.8 0.2% 4.4 228.1 $ 34.2 [17,18) 63.0 17.8 1120.5 0.7% 18.7 969.0 $ 145.3 [18,19) 374.0 18.4 6882.6 4.5% 114.7 5951.7 $ 892.8 [19,9999) 731.0 26.1 19071.6 12.6% 317.9 16492.3 $ 2,473.8 Grand Total 10130.0 14.9 151368.9 100% 2522.8 130897.5 $ 19,634.6

Figure24:MRI(Site#2)powerconsumptionandestimatedcostsatdifferentpowerranges

34

5. Discussion SixMIEtypeswereinitiallyidentifiedaspossibleprioritieswiththeobjectiveofobtainingtwodatasetsfromeachtypeofequipmentwhichwouldconsistofthreedatapointspermeasurementperiodforatotaloftwelve(12)testingeventsand36datapoints:1. ComputedTomography(CT)2. GeneralRadiography(X-ray)3. MagneticResonanceImaging(MRI)4. MammographyEquipment5. NuclearImaging6. UltrasoundImaging/SonographyAccessingMIEforenergymeasurementsischallenginginahospitalenvironmentwherethepriorityisalwayspatientcare.Asaresult,energyconsumptiondatafromonlythreetypesofMIEwereabletobemeasuredandincludedatotalofeight(8)testingevents:1. ComputedTomography(CT)2. GeneralRadiography(X-ray)3. MagneticResonanceImaging(MRI)However,becausethetestingeventsrangedfromthree(3)to11days,thedatafromthesethreeequipmenttypesweremuchmorereliable,providing100sofdatapoints,ratherthanjustthreedatapointspertestingeventwhichwouldhaveresultedin36datapointintotalfor12testingevents.Longermeasurementperiodsalsoallowedricherinformationaboutwhenandhowfrequentlytheequipmentwasusedandenabledthecalculationofestimatedannualenergyconsumptionandenergycosts.Theextendedmeasurementperiodshavealsoprovidedinsightsintoenergyreductionstrategiesthatwouldnotbeavailablethroughtheoriginaltestingprotocol.ThethreetypesofMIEwhichwerestudiedarealsosomeofthemostenergyintensiveMIEequipmentwithinhospitals,asnotedintheBackgroundsection(Figure1:MiscellaneousEnd-UseServicesandEquipmentEnergyConsumptionSummaryintheUSandinsection2.3MEIInitiativesinCanada).Testingthehighestenergyconsumingequipmentisalsoofinteresttohospitals,whichcanbegintoassesshowtheycouldproceedwithenergyconservationinitiativesrelatedtoMIE.ThisstudyhasalsobroadenedtheunderstandingofhowmuchenergyMIEconsumeduringtheiruseandwhentheyarenotinuse.TheresultsalsoprovidedexamplesoftheannualenergycostsfordifferenttypesofMIE.

35

5.1 Opportunities for ENERGY STAR Theresultsshowedthatinsomecasesthereweresignificantvariationsinenergyconsumedatthedifferentpowermodesperequipmenttype,andincomparison,toreferencevaluesobtainedfromtheliterature.TheyearoftheMIEtestedwhencomparedtoCOCIRvaluesneedstobeconsidered.

• MRI:o InFigure22resultsrevealedthattherewasovera25%differencein

thelowpowermodepowerconsumptionandinthestandbymodeinthetwoMRI’stestedwhencomparedtotheCOCIRvalues.

o However,manyoftheMRImanufacturershavereducedtheirpowerconsumptionsignificantlybetween2013(ageofMRIstested)and2015(COCIRexamples–seeFigure3).SincethetestedMRIsandtheCOCIRagesaredifferent,theageofthetwoMRIstestedmaybethereasonwhytherewassignificantdifferentbetweenthetestedMRIsandtheCOCIRvalues.

o Opportunitiestopowerdownequipmentwhennotinuse:§ No‘off’modeisavailableonMRIs,howeverancillary

equipment(suchascomputers)shouldbefurtherexaminedtoensurepoweringdownthesetypesofequipmentcanbeeasilydonetosaveenergywhentheequipmentisnotinuse.

§ DatafromthisreportsuggeststhatopportunitiesforENERGYSTARcertificationcouldbefurtherexploredforMRIsrelatedtoancillaryequipment,andpossiblyforlowpowerandstandbypowermodes.

• CTo Lowpowerconsumptionmode:DataprovidedinFigure22lowpower

modesvariedmorethan25%,regardlessofyear,andinonecasethetechnicianindicatedthattherewasnolowpoweroptionavailable.Grapheddata(Figures13,15and17)indicatedthatCTscanreachmuchlowerpowerconsumptionvaluesthantheCTsgenerallyachievedlowpowermodes.Thedifferenceinthesevaluesaregenerally50%lowerormore.NoCOCIRvaluesforCTwerefoundforcomparison.

§ DatafromthisreportsuggestedthatopportunitiesforEnergyStarcertificationcouldbefurtherexploredforCTsrelatedtolowerpowermode.

o Standbypowerconsumptionvariedover25%,regardlessofCTyear.§ DatafromthisreportsuggeststhatopportunitiesforENERGY

STARcertificationcouldbefurtherexploredforCTsrelatedtostandbypowermodes.

o Opportunitiestopowerdownequipmentwhennotinuse:§ CTequipmentisknowntotheindustryasoneoftheMIEwhich

couldbepowereddownwhennotinuse,iftheequipmentcanbebroughtbacktooperationallevelaccordingtotheneedsoftheuser.Manufacturesshouldbeencouragedtodevelop

36

protocolstoassistequipmentenduserstopowerdownequipmentasmuchaspossiblewhennotinuse.

§ Ancillaryequipment(suchascomputers)shouldbefurtherexaminedtoensurepoweringdownthesetypesofequipmentcanbeeasilydonetosaveenergywhentheequipmentisnotinuse.

§ DatafromthisreportsuggeststhatopportunitiesforENERGYSTARcouldbefurtherexploredforMRIsrelatedtoancillaryequipment.

• X-rayo Lowpowerconsumptionmode:DataprovidedinFigure22showslow

powermodesvariedmorethandouble(0.08vs0.18kW)forthesameyearofX-rayMIE.Grapheddata(Figures19and20)aswellasthegraphsinAppendix3supportthisobservationfurther.COCIRvaluesforX-rayweresimilartothehigherX-raykWvaluesforlowerpowermode(0.15kW).

§ DatafromthisreportsuggeststhatX-raysmaygenerallybeabletogotolowerlowpowermodes.OpportunitiesforEnergyStarcertificationcouldbefurtherexploredforX-raysrelatedtolowerpowermode.

o StandbypowerconsumptionwasonlyavailableforoneoftheX-rayswithproposedvaluesat0.08-0.09kW.ThisishigherthantheCOCIRvalueof0.6kW.

§ DatafromthisreportsuggeststhatopportunitiesforEnergyStarcertificationcouldbefurtherexploredforX-raysrelatedtostandbypowermodes.

o Opportunitiestopowerdownequipmentwhennotinuse:§ X-rayequipmentisknowntotheindustryasoneoftheMIE

whichcouldbepowereddownwhennotinuse,iftheequipmentcanbebroughtbacktooperationallevelaccordingtotheneedsoftheuser.Manufacturesshouldbeencouragedtodevelopprotocolstoassistequipmentenduserstopowerdownequipmentasmuchaspossiblewhennotinuse.

§ Ancillaryequipment(suchascomputers)shouldbefurtherexaminedtoensurepoweringdownthesetypesofequipmentcanbeeasilydonetosaveenergywhentheequipmentisnotinuse.

§ DatafromthisreportsuggeststhatopportunitiesforEnergyStarcertificationcouldbefurtherexploredforX-raysrelatedtoancillaryequipment.

InitiatingENERGYSTARspecificationforMIEisnotaquickprocess,requiresgovernmentleadership,andmaytakeseveralyearstocomplete.TherearehoweverotheroptionstohelpencouragereductionofMIEenergyconsumptionthatcouldbeactedonmorequickly.Thesearesummarizedbelow.

37

5.2 Other opportunities to reduce MIE energy consumption in hospitals

1) ProvisionofpurchasingguidelinesforMIEwhichincludeenergyaspectsa. Includingenergyaspectsinpurchasingdecisionsisnotcurrentlypartof

thepurchasingpracticesinCanadianhospitals.CADTHreportsonMIEpurchasingpracticesandhowdecisionsaremadeandrevealsthatthereisgenerallynodirectmentionofenergycostswithinpurchasingcriteria,althoughinsomecasesoperationsandmaintenanceissuesarepartofthenewequipmentselectiondecisions.Convincingpurchaserstoincludeenergycriteriawouldrequireeducationandprovisionofsolidbusinesscaseinformationforthedecisionmakers.

b. GreenPublicProcurement(GPP)isbeingpromotedinEuropeformanytypesofhealthcareelectronicandelectricalequipment.SeeAppendix2forpartoftheGPPreportfromEuropewithspecificexamplesofhowtheprocesscanapplytoMIE.Thedocumentproposesspecificquestionstoaddtotenders,andtoindicatetovendersthatresponsestoenergyandotherenvironmentalquestionswillcarryaweightof15%ontheselection.ThebenefitsoftakingthisapproacharesummarizedintheirdocumentandprovidedinFigure25below.Energysavingsof50%forMRIandCTarepredicted,and80%forX-rays.

Figure25:BenefitsofapplyingGreenPublicProcurement(GPP)forMIE24

24 EU GPP Criteria for Electrical and Electronic Equipment used in the Health Care Sector (Health Care EEE) http://ec.europa.eu/environment/gpp/pdf/criteria/health/EN.pdf

38

2) DevelopenergybehaviourguidancedirectedatMIEusers

a. TurningMIEoffortolowpowermodeisanotherconsiderationthatcouldapplytoCT’sandX-rays(wheretheequipmentcouldbeturnedoffaccordingtomanufacturerreports)andMRIs(wheretheequipmentcouldbeturnedtolowestpowermode).Usinglowpowerornopowermodeswoulddependonhowlongtheequipmentisleftidle.Inthisstudy,thepercentageoftimetheequipmentwasusedvariedbetweenthedifferentsites.Forultrasoundhowever,energyconsumptioninready-to-scanmodeandscanmodearevirtuallythesame.25GuidingtheMIEusersonhowtodothisalongwithexpertsinMIEwouldbeessentialforenergyrelatedbehaviourchange.

b. AstudyinaDanishhospital26providedexamplesoftheircampaigntopurchasex-rayswhichweredesignedtobeturnedoffandeasilyre-booted.Theyfoundthatmanycompaniestheysurveyeddidnotprovidex-rayswiththiscapability.

c. TheCADTH2016reportprovidestheresultsofasurveythataskedMIEusersfortheaveragenumberofhourstheequipmentisusedinaweekandperday.TheresponsestothesequestionsfortheCTsareprovidedinFigure26below.Thereareasignificantnumberofunitsthatareusedlessthan50%ofthetime.ThisrevealsanopportunitytoconsiderthequestionofturningofftheCTswhennotinuseforalongperiodoftime.InmostcasestheCTsarelikelykeptin‘readymode’toavoidasequenceofdiagnosticsthattheunithastorunthrough.Oneofthetechniciansduringthisstudyprovidedanotherreasonhospitalsmaykeeptheunitson:theMinistryofHealthandLongTermCareprovidesfundingaccordingtotheamountofruntime.Thisstatementshouldbefurtherexploredtodetermineifitisthecase,andifthepersonnelthatrunMIEneedtobebetterinformedonenergyusage.

d. TheCOCIRgroupdevelopedpromotionalmaterialsforEuropeanMIEuserstohelppromoteturningoffCTs,andtousethelowestpowermodeforMRIswhennotinuse(seeSection2.2).Inourstudyonetechnicianreportedthatittakes6hourstopowertheCTbackup.However,ifthemanufacturersarepromotingturningoffCTswhennotinuse,thentheremustbesomeunitsonthemarketwherethisisaviableoption.Newpurchasescouldaskthisquestionofpotentialvenders.Equipmentmanufacturersshouldbeencouragedtoprovidesettingsthathelpmakeiteasyfortheusertakeenergysavingsteps.

25 http://www.cocir.org/fileadmin/6_Initiatives_SRI/SRI_Status_Report/SRI_Status_Report_2015_-_21_September_2016.pdf 26Energy efficiency in hospitals and laboratories (6-337-11) Anders Hjorth Jensen, Danish Energy Saving Trust, Denmark Peter Maagøe Petersen, Viegand & Maagøe ApS, Denmark http://ec.europa.eu/environment/gpp/pdf/criteria/health/EN.pdf

39

Figure26:AveragehoursofoperationofCTunitsinatypicalweekandinatypicalday(CanadiansurveyresultsfromCADTH)27

3) OptimizingenergyconsumptionofcoolingrequirementsforMIEequipment

a. Coolingsystemequipmentrequiredtoensurethatcriticalenvironmentalrequirementsaremetcanconsumesignificantenergythrough,forexample,theairhandlingunits(AHUS).OptimizingthesesystemsalongwiththeMIEenergyuseandpowermodecanresultinenergysavings.

b. AncillaryequipmentwithineachoftheMIEroomsshouldalsobeconsideredforenergyefficiencyopportunities.AstudyataNorwegianhospital28revealedtheirresults:

i. DataofenergyconsumedbyMIEfromAHUSshoweddirectannualelectricalenergyconsumptionofabout1774.313kBTU/year(520.000kWh/year).Indirectcoolingutilityconsumptionmeansthatthetotalenergyisapproximately2132.588kBTU/year(625000kWh/year),assuming80%recyclingofwasteheat.Dividingby

27 CADTH ENVIRONMENTAL SCAN. Diagnostic Imaging Equipment Replacement and Upgrade in Canada January 2016. Project # ES0303 28 Equipment and Energy Usage in a Large Teaching Hospital in Norway Tarald Rohde1* and Robert Martinez2 1SINTEF, Technology and Society, Hospital Planning, Oslo, Norway 2Norconsult as, Sandvika, Norway Submitted October 2014. Journal of Healthcare Engineering · Vol. 6 · No. 3 · 2015 pg 428

40

totalhospitalareaprovidestotalspecificenergyintensityforlargeMIEatabout1.6kBTU/ft2peryear(5.2kWh/m2peryear).

ii. Hospitaladministratorscanconsiderenergymonitoringsystems(EMS),tiedtothecentralbuildingautomationsystem(BAS)formedicalequipment,andnetworkpowermanagementsystems(PMS)shouldbeimplementedforICTequipment.Hospitalclinicalstaffshouldclassifyequipmentwhichisnon-criticalandcanbepartofautomaticshut-offroutines.Automaticallytimedelectricalpowercircuitsforsuchnon-criticalequipmentshouldbeintroduced,startinginlaboratoryareas.Automationofelectricalsockets,markedwithseparatecolorandwithLEDstatusindicator,canprovidegreatsavingsinmanyareas.Hospitaltopadministratorsshouldestablishenergymanagementpractices,withclearaccountabilityandsupport...Inpractice,thissimplymeansroutinesforturningoffequipmentoutsideworkinghours,andenforcementofsuchpractice.Anothersuggestionistoestablishhierarchywhereequipmentsuchasprinterssubordinatetoothermainequipmentwillbepowereddownwhenthemaindeviceispowereddown.Thiswillreduce“phantomloads”fromstandbyofICTequipment,whichisabout5%oftheequipment’stotalenergyuse.

c. AnotherstudylookedatancillaryandtotalroomenergyconsumptionoftwodifferentMIEroomsinUShospitalsandfoundthatforCTs,ofthedirectenergyuse,idleenergywasthelargestdirectenergyconsumer,followedbytheheating,ventilationandairconditioning(HVAC)systemaspresentedinFigure27below.TwogeneralmedicalandsurgicalhospitalsinWitchita,Kansas,theWeselyHospitalMedicalCenterandVAMedicalCenter,lookedatthemonthlyenergyconsumptionoftheMIE‘rooms’andrelatedenergyaspectsfromtwodifferentmanufacturers.Ofnotearethefollowingobservations:

i. Fordirectenergyuse,idleenergywasthelargestdirectenergyconsumer,followedbytheheating,ventilationandairconditioning(HVAC)system

ii. Idleenergyconsumptionbetweenthetwovendersdifferedbyabout50%

iii. Inthehospitalwhichhadlowerenergyconsumptionduetoidleenergy,muchlowerHVACenergy(80%lower)wasused.

iv. Ancillaryenergyusevariedsignificantlybetweenthetwomanufacturers(90%).

v. Standbyenergyconsumptionwasamuchlowercostforthesetwohospitals,althoughthisdependsontheusefrequency,andiftheequipmentgenerallygoesmorereadilytolowpowermode.

vi. Lightingintheseareasisalsoaconsideration.LEDlightsintheseareascanreduceanaddedheatload.

vii. Fromamoreholisticapproach,energyusecalculatedaspartofconsumableandreusablematerialscanalsobesignificant.

41

Figure27:ComparisonofenergyconsumptioninCTequipmentrooms29

4) DevelopmentofaBusinessCaseforMIEpurchasingpersonnel

a. CostinformationonMIEandancillaryequipmentcouldbedevelopedintoaBusinessCaseforequipmentpurchasersandhospitalpurchasingagentssothatenergyoperatingcostscanbeconsideredaspartofthenewequipmentevaluation.Figure23providesasummaryofthecostdatarelatedtotheMIEtimespentinidleandreadytoscanmode.

i. MRIsevaluatedinthisstudycostmoretooperatewhentherewaslesstimespentinidlepowermode.Averagecoststooperaterangedfrom$20,000to$30,000peryearjustfortheMRI.Addingintheancillaryenergyfromtheequipmentandcoolingcanbringthisamountupconsiderably.

ii. CTsevaluatedinthisstudycostmoretooperatewhentherewaslesstimespentinidlepowermode.Averagecoststooperaterangedfrom$3,000to$6,000peryear,justfortheCTequipment.Addingintheancillaryenergyfromtheequipmentandcoolingcan

29 Life Cycle for Engineering the Healthcare Service Delivery of Imaging. Jan Twomey, Professor Industrial and Manufacturing Engineering, Wichita University http://emse.mst.edu/media/academic/emse/documents/EMSEGraduateSeminar-DrJanetTwomey.pdf

42

bringthisamountupconsiderably.Aswell,manyhospitalshavemorethanoneCT.

iii. X-raysevaluatedinthisstudycost$100peryearwhennoscanninghastakenplace,andapproximately$400whentheyareusedforscanningandspendmoretimeinstandbymode.ThesecostsarejustfortheX-rayequipment.Addingintheancillaryenergyfromtheequipmentandcoolingcanbringthisamountupconsiderably.Aswell,manyhospitalshavemorethanoneX-raywhichbringsthecontributionofthetotaloperatingexpensemultifold.

43

6. Conclusions ThisstudyinvestigatedtheenergyconsumptionofthreetypesofMIEwhichconstitutesomeofthelargerpowerconsumptionmedicalimagingequipmentinhospitals.Lowpowerandstand-byconsumptioninparticularwereassessedtodetermineifMIEs,particularlyMRIsandCTsandX-rays,couldbecandidatesforENERGYSTARstandarddevelopment.Resultsfromthisstudyshowedthattherewerevariancesinlowpowermodesgreaterthan25%insomecases,butwhencomparedtovaluesreportedintheliterature,thevariationswereevengreater.Theresultsshowthatnon-scanningenergyconsumption,eitherlowpowerorstand-bymodes,haveinsomecasesrepresentedupto80%ofthetotalenergyconsumptionbyMIEinsomehospitals,whileinotherhospitalstheequipmentisusedonamuchmoreregularbasis,sometimesaroundtheclock.Encouragingmanufacturerstomakeequipmentwheretheuserwillbecomfortableinmakingthedecisiontoturnthepowerdownshouldalsobeaconsideration.Helpingmakethecaseforaddressingenergyefficiencyinthelowpowerandstand-bymodesinMIEisalsothefactthatthereisacontinualgrowthinMIEproductsinNorthAmerica,andthatpurchasingdecisionsforMIEsshouldtakeintoaccountoperatingcostsrelatedtoenergyconsumption.

Recommendationsinclude:1) DevelopmentofENERGYSTARspecificationforMIEs.

a. Thisreportidentifiedthattherearesignificantdifferencesinthelowpowerandscanningpowermodeswithintheequipmentmeasuredandintheenergyconsumptionvaluesreportedliterature.

b. AlongwiththedirectenergyuseofMIE,ancillaryenergyconsumptionofallrelatedancillaryequipmentaccompanyingtheMIEshouldalsobeassessedforreductionofenergyuse.

c. ENERGYSTARspecificationdevelopmentisnotaquickprocess,requiringgovernmentleadership,andmaytakeseveralyearstocomplete.TherearehoweverotheroptionstohelpencouragereductionofMIEenergyconsumptionthatcouldbeactedonmorequicklyandincludethefollowing:

2) ProvisionofpurchasingguidelinesforMIEwhichincludeenergyaspectsa. Includingenergyaspectsinpurchasingdecisionsisnotcurrentlypartof

thepurchasingpracticesinCanadianhospitals.Convincingpurchaserstoincludeenergycriteriawouldrequireeducation,guidanceandprovisionofsolidbusinesscaseinformationforthedecisionmakers.

44

b. TheGreenPublicProcurement(GPP)initiativepromotedinEuropeestimatespossibleenergysavingsof50%forMRIandCT,and80%forX-rays.

3) DevelopenergybehaviourguidancedirectedatMIEusersa. TurningMIEoffortolowpowermodeisanotherconsiderationthat

couldapplytoCT’sandX-rays(whichcanbeturnedoff)andMRIs(wheretheequipmentcouldbeturnedtolowestpowermode).GuidingtheMIEusersonhowtodothisalongwithexpertsinMIEwouldbeessentialforenergyrelatedbehaviourchange.

4) OptimizingenergyconsumptionofcoolingrequirementsforMIEequipmenta. Coolingsystemequipmentarerequiredtoensurecriticalenvironmental

requirementsaremetforMIEbutthesecanconsumesignificantenergythrough,forexample,theairhandlingunits.OptimizingthesesystemsalongwiththeMIEenergyuseandpowermodecanresultinenergysavings.

5) DevelopmentofaBusinessCaseforMIEpurchasingpersonnela. CostinformationonMIEandancillaryequipmentcouldbedevelopedinto

aBusinessCaseforequipmentpurchasersandhospitalpurchasingagentssothatenergyoperatingcostscanbeconsideredaspartofthenewequipmentevaluation.

i. MRIs:Averagecoststooperaterangedfrom$20,000to$30,000peryearjustfortheMRI.Addingintheancillaryenergyfromtheequipmentandcoolingcanbringthisamountupconsiderably.

ii. CTs:Averagecoststooperaterangedfrom$3,000to$6,000peryear,justfortheCTequipment.Addingintheancillaryenergyfromtheequipmentandcoolingcanbringthisamountupconsiderably.Aswell,manyhospitalshavemorethanoneCT.

iii. X-rays:Averagecoststooperaterangedfrom$100peryearwhennoscanninghastakenplace,andapproximately$400whentheyarebeingused.ThesecostsarejustfortheX-rayequipment.Addingintheancillaryenergyfromtheequipmentandcoolingcanbringthisamountupconsiderably.Aswell,manyhospitalshavemorethanoneX-raywhichbringsthecontributionofthetotaloperatingexpensemultifold.

45

Appendix 1: Detailed testing guidance for different scan modes

ENERGY STAR® Program Requirements Product Specification for Medical Imaging Equipment Final Draft Test Method For Determining Medical Imaging Equipment Energy Use Rev. Aug - 2014

ENERGY STAR Program Requirements for Medical Imaging Equipment – Final Draft Test Method (Rev. Aug-2014) Page 1 of 5

1 OVERVIEW 1

The following test method shall be used for determining product compliance with requirements in the 2 ENERGY STAR Eligibility Criteria for Medical Imaging Equipment (MIE). 3

2 APPLICABILITY 4

The proposed test method shall be used to determine the energy efficiency of all products under the 5 ENERGY STAR Product Specification for Medical Imaging Equipment. Medical Imaging Equipment and 6 all products identified below are defined in this test method in Section 3.B). 7

Note: A proposed Scope is included in this document for completeness. Upon development of the 8 Version 1.0 Draft 1 specification and eligibility criteria, the U.S. Environmental Protection Agency (EPA) 9 will further refine and define the scope of included products for the program. 10

2.1 Products Included in Scope 11

A) Computed Tomography (CT) 12

B) General Radiography (X-ray) 13

C) Magnetic Resonance Imaging (MRI) 14

D) Mammography Equipment 15

E) Nuclear Imaging 16

F) Ultrasound Imaging/Sonography 17

2.2 Products excluded from scope 18

A) Endoscopy 19

B) Photoacoustic Imaging 20

C) Thermography 21

3 DEFINITIONS 22

Note: For completeness, the acronyms and definitions below have been included in the test method. The 23 entire definitions section will be moved to the eligibility criteria upon development of the Version 1.0 Draft 24 1 specification. 25

A) Acronyms and Units: 26

1) ac: Alternating Current 27

2) CT: Computed Tomography 28

46

6.2 Ready-to-scan Mode Testing

A) Ensure that the power meter is on and functioning.

B) Prescribe a patient and execute any scan to ensure that the UUT is functioning.

C) After the scan completes, wait 5 minutes, and then record the average power draw (rate of energy 152 consumption), for a period of 12 minutes. Record this value, in kW.

Note: The preliminary test method has been revised to include a waiting period of 5 minutes after completing a scan and before beginning the measurement of average power. This waiting period is included to allow any data processing that may occur after the scan to complete.

6.3 Low-power Mode Testing

A) Ensure that the power meter is on and functioning.

B) Select the Low-power mode as specified in the user manual.

C) Wait to ensure that all applicable system elements of the UUT have adapted to this mode.

D) Measure the average power draw (rate of energy consumption), for a period of at least 10 minutes. If the system has a variable power usage in this mode, the measurement duration shall be amended to one complete power usage cycle, which shall be taken to be the cycle from minimum to maximum usage.

E) Record this value, in kW.

Note: The test methods for Ready-to-scan and Low-power modes are primarily based on COCIR Computed Tomography Measurement of Energy Consumption (Revision 0), and COCIR Magnetic Resonance Equipment Measurement of Energy Consumption (Revision 1).

This test method only includes test methods for Ready-to-scan and Low-power modes. DOE and EPA realize that there are many complexities associated with testing in Scan (active) mode, such as setting proper scan protocols (for abdomen, chest, head, etc.) and specifying phantom materials to use. Furthermore, energy consumption in Low-power and Ready-to-scan modes can represent the majority of total annual energy consumption.

47

Appendix 2: EU Green Public Procurement (GPP) for healthcare electrical and electronic equipment The following information is from the EU GPP Criteria for Electrical and Electronic Equipment used in the Health Care Sector (Health Care EEE)http://ec.europa.eu/environment/gpp/pdf/criteria/health/EN.pdf Green Public Procurement (GPP) is a voluntary instrument. This document provides the EU GPP criteria developed for electrical and electronic equipment used in the health care sector. Detailed information about the health care EEE product group, the reasons for selecting these criteria, information about related legislation and other sources can be found in the Technical Background Report. EU GPP criteria are usually presented in two sets, core and comprehensive criteria: • The core criteria are those suitable for use by any contracting authority across the Member States and address the key environmental impacts. They are designed to be used with minimum additional verification effort or cost increases. • The comprehensive criteria are for those who wish to purchase the best products available on the market. These may require additional verification effort or a slight increase in cost compared to other products with the same functionality. Since this is a new product group, mainly core criteria have been set. The comprehensive criteria are at the end of the document (nr. 17 and 18). The criteria have been developed to encourage the purchase of Healthcare EEE with reduced environmental impacts while always giving priority to the safety and welfare of patients as well as that of medical staff, technicians and maintenance personnel. Contracting authorities will have to indicate in the contract notice and tender documents how many points will be awarded for each award criterion. Environmental award criteria should, altogether, account for at least 15% of the total points available TheEU’sGreenPurchasingGuideline30forenergyefficiencylistsbenefitstoincludingenergyandotherenvironmentalcriteriainpurchasingtenders.FortheMIEthesearesummarizedintheEUcontextasfollows(pg23):

MIE Environmental Benefit Economic Benefit (Euros)

CT • Energy savings of 50 % during thorax examinations • Energy savings of 80 % during cardiac examinations • (Energy savings of 50 % in daily energy consumption) • 33,000kWh per machine annually, 15 tons of CO2 emissions, equivalent to the annual CO2 emissions of 4 cars

• Annual savings of up to € 3700 per CT system

MRI •50% less energy usage (business as usual: operating an MRI can produce about 90 tons of CO2 annually) • Reduces annual electricity usage by about 60,000 kWh, equivalent to the annual electricity consumption of 5 households, 27 metric tons of CO2, equivalent to

• Annual savings of up to € 6700 per MRI

30EU GPP Criteria for Electrical and Electronic Equipment used in the Health Care Sector (Health Care EEE)http://ec.europa.eu/environment/gpp/pdf/criteria/health/EN.pdf

48

the annual emissions of 7 cars

Mammography • 50% reduction in energy use

Ultrasound • Energy savings of 90%

• 50% reduction in energy use

X-ray • 80 % more energy efficient

CT

49

50

MRI

51

X-RayandMamography

Ultrasound(pg12)

forbothUltrasoundandX-Ray/mammography

52

AutomaticLowPowerModes

53

54

Appendix 3: MIE Energy Measurement Data

55

Table of Contents

APPENDIX1:MRIENERGYCONSUMPTIONDATA 56

APPENDIX1.1MRIENERGYCONSUMPTIONDATASITE#1 56APPENDIX1.2MRIENERGYCONSUMPTIONDATASITE#2 75

APPENDIX2:CTDATA 95

APPENDIX2.1CTENERGYCONSUMPTIONDATASITE#1 96APPENDIX2.2CT#2ENERGYCONSUMPTIONSITE#1 105APPENDIX2.3CTENERGYCONSUMPTIONDATASITE#2 111APPENDIX2.4CTENERGYCONSUMPTIONDATASITE#3 132

APPENDIX3:X-RAYDATA 133

APPENDIX3.1.1:X-RAYDATASITE#1CTENERGYCONSUMPTIONDATASITE#3 133APPENDIX3.1.2X-RAYSITE1 141

56

Appendix 3.1: MRI Energy Consumption Data Appendix 3.1.1 MRI Energy Consumption Data Site #1

57

Table1–MRISite#1–Siemens(MagnetomAera2013).Overviewofthepowerconsumption(kW)overthe11-dayperiodofmonitoring.

Summary of power consumption* (kW) at six minute interval over the monitoring period for BC MRI* Average kW reading was used for this analysis.

kW Range (kW) Count of kW Average of kW (kW)

Energy consumption of each kW range over sampling

period (kWmin)

Energy consumption of each kW range over sampling period (kWh)

Energy consumption Percentage of each kW range

Estimated Energy Consumption

(kWh) over One Year

Estimated annual cost @$0.15 per

kWh

[0,10) 0.0 NA 0.0 0.0 0.0% 0.0 -$ [10,12) 1.0 10.8 64.5 1.1 0.0% 26.9 4.0$ [12,14) 3.0 13.1 235.7 3.9 0.1% 98.2 14.7$ [14,16) 1742.0 14.5 151772.5 2529.5 33.2% 63256.6 9,488.5$ [16,18) 127.0 17.0 12983.8 216.4 2.8% 5411.5 811.7$ [18,20) 81.0 18.9 9180.5 153.0 2.0% 3826.3 573.9$ [20,22) 112.0 21.2 14245.5 237.4 3.1% 5937.3 890.6$ [22,24) 137.0 23.0 18942.5 315.7 4.1% 7895.0 1,184.2$ [24,26) 145.0 25.1 21807.2 363.5 4.8% 9088.9 1,363.3$ [26,28) 156.0 27.0 25264.6 421.1 5.5% 10529.9 1,579.5$ [28,30) 164.0 29.0 28547.4 475.8 6.2% 11898.2 1,784.7$ [30,32) 205.0 31.0 38164.5 636.1 8.3% 15906.4 2,386.0$ [32,34) 199.0 33.1 39482.5 658.0 8.6% 16455.7 2,468.4$ [34,36) 184.0 34.9 38483.4 641.4 8.4% 16039.3 2,405.9$ [36,38) 95.0 37.1 21124.5 352.1 4.6% 8804.4 1,320.7$ [38,40) 70.0 39.0 16380.1 273.0 3.6% 6827.0 1,024.0$ [40,42) 42.0 40.8 10285.3 171.4 2.2% 4286.8 643.0$ [42,44) 27.0 43.0 6973.8 116.2 1.5% 2906.6 436.0$ [44,46) 9.0 44.8 2421.3 40.4 0.5% 1009.2 151.4$ [46,48) 2.0 47.1 565.5 9.4 0.1% 235.7 35.4$ [48,50) 2.0 49.4 593.2 9.9 0.1% 247.2 37.1$ [50,9999) 0.0 NA 0.0 0.0 0.0% 0.0 -$ Grand Total 3503.0 21.8 457518.3 7625.3 100% 190687.0 28,603.1$

58

Figure1–EnergyConsumptionPercentageofeachpowerrange

Forexample,theenergyconsumptionbypowerrangethatfallinto14-16kWcontributedto33.2%ofthetotalenergyconsumption over the monitoring period.

0%

5%

10%

15%

20%

25%

30%

35%

[0,10)

[10,12)

[12,14)

[14,16)

[16,18)

[18,20)

[20,22)

[22,24)

[24,26)

[26,28)

[28,30)

[30,32)

[32,34)

[34,36)

[36,38)

[38,40)

[40,42)

[42,44)

[44,46)

[46,48)

[48,50)

[50,9999)

Power(kW)

EnergyconsumptionPercentageofeachkWrange

59

Figure2–Timeseriesofpowerconsumptionforeachday

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Appendix 3.1.2 MRI Energy Consumption Data Site #2 Table2:MRISite#2:Siemens(Advento2013).Powerconsumption(kW)overthe1-weekperiodofmonitoring

kWminute Range

(kW)Count of kWminute

Sum of kWminute

(kW)

Percentage of

each range

Energy

Consumption

(kWh) over

sampling period

Estimated Energy

Consumption

(kWh) over One

Year

Estimated

annual cost

@$0.15 per

kWh

[0,13) 0.0 0.0 0.0% 0.0 0.0 -$ [13,14) 8837.0 122480.8 80.9% 2041.3 105916.3 15,887.4$ [14,15) 103.0 1456.2 1.0% 24.3 1259.3 188.9$ [15,16) 6.0 93.3 0.1% 1.6 80.7 12.1$ [16,17) 16.0 263.8 0.2% 4.4 228.1 34.2$ [17,18) 63.0 1120.5 0.7% 18.7 969.0 145.3$ [18,19) 374.0 6882.6 4.5% 114.7 5951.7 892.8$ [19,20) 99.0 1930.7 1.3% 32.2 1669.6 250.4$ [20,21) 94.0 1925.2 1.3% 32.1 1664.8 249.7$ [21,22) 71.0 1518.9 1.0% 25.3 1313.4 197.0$ [22,23) 73.0 1646.6 1.1% 27.4 1423.9 213.6$ [23,24) 73.0 1712.8 1.1% 28.5 1481.2 222.2$ [24,25) 42.0 1027.3 0.7% 17.1 888.4 133.3$ [25,30) 123.0 3385.7 2.2% 56.4 2927.8 439.2$ [30,40) 102.0 3415.3 2.3% 56.9 2953.4 443.0$ [40,50) 39.0 1685.6 1.1% 28.1 1457.7 218.6$ [50,60) 15.0 823.6 0.5% 13.7 712.2 106.8$ [60,9999) 0.0 0.0 0.0% 0.0 0.0 -$ Grand Total 10130.0 151368.9 100% 2522.8 130897.5 19,634.6$

Summary of power consumption (kW) at one minute interval over the entire monitoring period

76

Figure1-Timeseriesofthepowerconsumption(kW)forthesamplingperiod

0

10

20

30

40

50

60

:05

:06

:07

:08

:09

:10

:11

:12

:13

:14

:15

:16

:17

:18

:19

:20

:21

:22

:23

:24

:25

:26

:27

:28

:29

:30

:31

:32

:33

:34

:35

:36

:37

:38

:39

:40

:41

:42

:43

:44

:45

:46

:47

:48

:49

:50

:51

:52

:53

:54

:55

:56

:57

:58

:59

:00

8AM

27-Feb 28-Feb 1-Mar 2-Mar 3-Mar 4-Mar 5-Mar 6-Mar

Feb Mar

PowerConsumption(kW)

77

Figure2-Timeseriesofthepowerconsumption(kW)foreachsingledayoverlapped

0

10

20

30

40

50

60:0

0:2

8:5

6:2

4:5

2:2

0:4

8:1

6:4

4:1

2:4

0:0

8:3

6:0

4:3

2:0

0:2

8:5

6:2

4:5

2:2

0:4

8:1

6:4

4:1

2:4

0:0

8:3

6:0

4:3

2:0

0:2

8:5

6:2

4:5

2:2

0:4

8:1

6:4

4:1

2:4

0:0

8:3

6:0

4:3

2:0

0:2

8:5

6:2

4:5

2:2

0:4

8

12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM11 AM12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM 8 PM 9 PM 10 PM11 PM

Pow

er C

onsu

mpt

ion

(kW

)

27-Feb 28-Feb 1-Mar 2-Mar 3-Mar 4-Mar 5-Mar 6-Mar

78

Figure3-Timeseriesofthepowerconsumption(kW)foreachminuteaveragedoverthesamplingperiod

10

12

14

16

18

20

22

24

26

28

30:0

0:2

8:5

6:2

4:5

2:2

0:4

8:1

6:4

4:1

2:4

0:0

8:3

6:0

4:3

2:0

0:2

8:5

6:2

4:5

2:2

0:4

8:1

6:4

4:1

2:4

0:0

8:3

6:0

4:3

2:0

0:2

8:5

6:2

4:5

2:2

0:4

8:1

6:4

4:1

2:4

0:0

8:3

6:0

4:3

2:0

0:2

8:5

6:2

4:5

2:2

0:4

8

12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM11 AM12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM 8 PM 9 PM 10 PM11 PM

Aver

age

pow

er co

nsum

ptio

n (k

W) o

ver s

ampl

ing

perio

d

79

Figure4-Frequencycountofthepowerconsumption(kW)atoneminuteintervaloversamplingperiod

Power Range

(kW)

Count of kWminute

12-14 8837 14-16 109 16-18 79 18-20 473 20-22 165 22-24 146 24-26 56 26-28 76 28-30 33 30-32 48 32-34 11 34-36 26 36-38 7 38-40 10 40-42 14 42-44 10 44-46 9 46-48 6 50-52 1 52-54 1 54-56 11 56-58 2

Grand Total 10130

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

12-1

4

14-1

6

16-1

8

18-2

0

20-2

2

22-2

4

24-2

6

26-2

8

28-3

0

30-3

2

32-3

4

34-3

6

36-3

8

38-4

0

40-4

2

42-4

4

44-4

6

46-4

8

50-5

2

52-5

4

54-5

6

56-5

8

Coun

t

kWminute groups based on value (kW)

80

Figure5–EnergyConsumption(kWminute)ofeachpowerrange

Forexample,theenergyconsumptionbypowervaluesthatfallinto12-14kWis122480.84 kWminute over the monitoring period.

Power Range (kW)

Energy Consumption (kWminute)

12-14 122480.84 14-16 1549.55 16-18 1384.36 18-20 8813.24 20-22 3444.05 22-24 3359.42 24-26 1383.99 26-28 2066.02 28-30 962.99 30-32 1490.33 32-34 366.21 34-36 909.47 36-38 259.06 38-40 390.18 40-42 574.05 42-44 426.66 44-46 404.53 46-48 280.39 50-52 51.24 52-54 52.96 54-56 606.33 56-58 113.02

Grand Total 151368.89

0

20000

40000

60000

80000

100000

120000

140000

12-1

4

14-1

6

16-1

8

18-2

0

20-2

2

22-2

4

24-2

6

26-2

8

28-3

0

30-3

2

32-3

4

34-3

6

36-3

8

38-4

0

40-4

2

42-4

4

44-4

6

46-4

8

50-5

2

52-5

4

54-5

6

56-5

8Tota

l ene

rgy

cons

umpt

ion

over

the

sam

plin

g pe

riod

(kW

min

ute)

Power consumption groups based on value (kW)

81

Figure6-EnergyConsumption(kWminute)percentageofeachpowerrange

Power Range (kW)

Percentage of energy consumption

12-14 80.92% 14-16 1.02% 16-18 0.91% 18-20 5.82% 20-22 2.28% 22-24 2.22% 24-26 0.91% 26-28 1.36% 28-30 0.64% 30-32 0.98% 32-34 0.24% 34-36 0.60% 36-38 0.17% 38-40 0.26% 40-42 0.38% 42-44 0.28% 44-46 0.27% 46-48 0.19% 50-52 0.03% 52-54 0.03% 54-56 0.40% 56-58 0.07% Grand Total 100.00%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

12-14

14-16

16-18

18-20

20-22

22-24

24-26

26-28

28-30

30-32

32-34

34-36

36-38

38-40

40-42

42-44

44-46

46-48

50-52

52-54

54-56

56-58

Energyconsum

ptionpercentage

Powerconsumptiongroupsbasedonvalue(kW)

82

Figure7–Energyconsumptionpercentageofdifferentpowergroups

0%10%20%30%40%50%60%70%80%90%

[0,13)[13,14)[14,15)[15,16)[16,17)[17,18)[18,19)[19,20)[20,21)[21,22)[22,23)[23,24)[24,25)[25,30)[30,40)[40,50)[50,60)

[60,9999)

Energyconsum

ptionp

ercentage

Powerconsumptiongroupsbasedonvalue(kW)

83

Figure8-Timeseriesoftheenergyconsumption(kWminute)foreachminuteovereachhour

84

85

86

87

88

89

90

91

92

93

94

95

Appendix 3.2: CT Data

96

Appendix 3.2.1 CT Energy Consumption Data Site #1

Table1–CTSite#1:Siemens(Flash128scanmode,2016).Powerconsumption(kW)forthe1-weekperiodofmonitoring.

Figure1–EnergyConsumptionPercentageofeachpowerrange

Summary of power consumption* (kW) at six minute interval over the monitoring period for BC CT

* Average kW reading was used for this analysis.

kW Range (kW)

Count of kW

Average of kW (kW)

Energy consumption of each kW range

over sampling period (kWmin)

Energy consumption of each kW range

over sampling period (kWh)

Energy consumption

Percentage of each kW range

Estimated Energy Consumption over One Year

(kWh)

Estimated annual cost

@$0.15 per kWh

[0,1) 0.0 NA 0.0 0.0 0.0% 0.0 -$ [1,2) 284.0 1.9 3315.4 55.3 10.8% 3418.4 512.8$ [2,3) 6.0 2.5 91.2 1.5 0.3% 94.1 14.1$ [3,4) 929.0 3.6 20206.8 336.8 65.6% 20834.7 3,125.2$ [4,5) 62.0 4.4 1639.8 27.3 5.3% 1690.7 253.6$ [5,6) 41.0 5.6 1368.6 22.8 4.4% 1411.2 211.7$ [6,7) 60.0 6.4 2306.2 38.4 7.5% 2377.9 356.7$ [7,8) 14.0 7.3 613.6 10.2 2.0% 632.6 94.9$ [8,9) 9.0 8.4 451.5 7.5 1.5% 465.5 69.8$ [9,10) 1.0 9.2 54.9 0.9 0.2% 56.6 8.5$ [10,11) 2.0 10.5 126.0 2.1 0.4% 129.9 19.5$ [11,12) 0.0 NA 0.0 0.0 0.0% 0.0 -$ [12,13) 3.0 12.4 223.6 3.7 0.7% 230.5 34.6$ [13,14) 2.0 13.6 162.7 2.7 0.5% 167.8 25.2$ [14,15) 3.0 14.3 256.7 4.3 0.8% 264.7 39.7$ [15,9999) 0.0 NA 0.0 0.0 0.0% 0.0 -$ Grand Total 1416.0 3.6 30817.0 513.6 100% 31774.6 4,766.2$

97

Forexample,theenergyconsumptionbypowerrangethatfallinto3-4kWcontributedto65.6%ofthetotalenergy

consumption over the monitoring period.

0%

10%

20%

30%

40%

50%

60%

70%

[0,1)

[1,2)

[2,3)

[3,4)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9)

[9,10)

[10,11)

[11,12)

[12,13)

[13,14)

[14,15)

[15,9999)

Power(kW)

EnergyconsumptionpercentageofeachkWrange

98

Figure2–Timeseriesofpowerconsumptionforeachday

99

100

101

102

103

104

105

Appendix 3.2.2 CT #2 Energy Consumption Site #1

Table3:CT:Siemens(Edge64scanmode,2016).Powerconsumption(kW)over1-weekperiodofmonitoring

Summary of power consumption* (kW) at three minutes interval over the monitoring period for BC CT#2

* Average kW reading was used for this analysis.

kW Range (kW)

Count of kW

Frequency Percentage

Average of kW (kW)

Energy consumption of each kW range

over sampling period (kWmin)

Energy consumption of each kW range

over sampling period (kWh)

Energy consumption

Percentage of each kW range

Estimated Energy Consumption over One Year

(kWh)

Estimated annual cost

@$0.15 per kWh

[0,0.5) 5 0.3% 0.31 4.6 0.1 0.0% 7.6 1.1$ [0.5,1) 230 12.8% 0.96 664.2 11.1 5.0% 1083.5 162.5$ [1,2) 6 0.3% 1.24 22.3 0.4 0.2% 36.3 5.4$ [2,3) 1385 77.4% 2.34 9730.1 162.2 73.3% 15872.5 2,380.9$ [3,4) 47 2.6% 3.45 486.4 8.1 3.7% 793.4 119.0$ [4,5) 23 1.3% 4.46 307.4 5.1 2.3% 501.5 75.2$ [5,6) 24 1.3% 5.44 391.4 6.5 2.9% 638.4 95.8$ [6,7) 24 1.3% 6.37 458.5 7.6 3.5% 747.9 112.2$ [7,8) 30 1.7% 7.45 670.4 11.2 5.1% 1093.6 164.0$ [8,9) 4 0.2% 8.36 100.3 1.7 0.8% 163.6 24.5$ [9,10) 3 0.2% 9.16 82.5 1.4 0.6% 134.6 20.2$ [10,11) 4 0.2% 10.55 126.6 2.1 1.0% 206.5 31.0$ [11,12) 0 0.0% NA 0.0 0.0 0.0% 0.0 -$ [12,13) 0 0.0% NA 0.0 0.0 0.0% 0.0 -$ [13,14) 1 0.1% 13.24 39.7 0.7 0.3% 64.8 9.7$ [14,15) 0 0.0% NA 0.0 0.0 0.0% 0.0 -$ [15,16) 3 0.2% 15.46 139.1 2.3 1.0% 227.0 34.0$ [16,17) 1 0.1% 16.68 50.1 0.8 0.4% 81.7 12.2$ [17,9999) 0 0.0% NA 0.0 0.0 0.0% 0.0 -$ Grand Total 1790 1.0 2.5 13273.5 221.2 100% 21652.8 3,247.9$

106

Figure1–EnergyConsumptionPercentageofeachpowerrange

Forexample,theenergyconsumptionbypowerrangethatfallinto2-3kWcontributedto73.3%ofthetotalenergy

consumption over the monitoring period.

0%

10%

20%

30%

40%

50%

60%

70%

80%

[0,0.5)

[0.5,1)

[1,2)

[2,3)

[3,4)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9)

[9,10)

[10,11)

[11,12)

[12,13)

[13,14)

[14,15)

[15,16)

[16,17)

[17,9999)

Power(kW)

EnergyconsumptionPercentageofeachkWrange

107

Figure2–Timeseriesofpowerconsumptionforeachday

108

109

110

111

Appendix 3.2.3 CT Energy Consumption Data Site #2

Table1:CT:GE(LightspeedDiscoveryHD750,2012).Powerconsumption(kW)overthe8daysofmonitoring:

kWminute Range

(kW)Count of kWminute

Sum of kWminute

(kW)

Percentage of

each range

Energy

Consumption

(kWh) over

sampling period

Estimated Energy

Consumption

(kWh) over One

Year

Estimated

annual cost

@$0.15 per

kWh

[0,1) 0.0 0.0 0.0% 0.0 0.0 -$ [1,2) 30.0 58.2 0.1% 1.0 45.2 6.8$ [2,3) 1.0 2.9 0.0% 0.0 2.3 0.3$ [3,4) 158.0 617.7 1.2% 10.3 480.0 72.0$ [4,5) 10482.0 46782.8 88.8% 779.7 36350.7 5,452.6$ [5,6) 213.0 1138.3 2.2% 19.0 884.4 132.7$ [6,7) 140.0 919.0 1.7% 15.3 714.1 107.1$ [7,8) 110.0 814.6 1.5% 13.6 633.0 94.9$ [8,9) 32.0 269.6 0.5% 4.5 209.4 31.4$ [9,10) 20.0 189.7 0.4% 3.2 147.4 22.1$ [10,20) 43.0 582.6 1.1% 9.7 452.7 67.9$ [20,30) 26.0 636.7 1.2% 10.6 494.7 74.2$ [30,40) 17.0 598.7 1.1% 10.0 465.2 69.8$ [40,50) 2.0 81.1 0.2% 1.4 63.0 9.5$ [50,9999) 0.0 0.0 0.0% 0.0 0.0 -$ Grand Total 11274.0 52691.9 100% 878.2 40942.1 6,141.3$

Summary of power consumption (kW) at one minute interval over the entire monitoring period

112

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[0,1)

[1,2)

[2,3)

[3,4)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9)

[9,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,9999)

Energyconsumptionpercentage

Powerconsumptiongroupsbasedonvalue(kW)

113

Figure9-Timeseriesofthepowerconsumption(kW)foreachsingledayatoneminuteintervalover24-hoursperiod

0

5

10

15

20

25

30

35

40

45:00

:26

:52

:18

:44

:10

:36

:02

:28

:54

:20

:46

:12

:38

:04

:30

:56

:22

:48

:14

:40

:06

:32

:58

:24

:50

:16

:42

:08

:34

:00

:26

:52

:18

:44

:10

:36

:02

:28

:54

:20

:46

:12

:38

:04

:30

:56

:22

:48

:14

:40

:06

:32

:58

:24

:50

12

AM

1AM 2AM 3AM 4AM 5AM 6AM 7AM 8AM 9AM 10

AM

11

AM

12PM 1PM 2PM 3PM 4PM 5PM 6PM 7PM 8PM 9PM 10PM11PM

Powerconsumption(kW)

1/1/2010 1/2/2010 1/3/2010 1/4/2010 1/5/2010 1/6/2010 1/7/2010 1/8/2010 1/9/2010

114

Figure10-Timeseriesofthepowerconsumption(kW)foreachminuteaveragedovertheeightdays

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0:00

:27

:54

:21

:48

:15

:42

:09

:36

:03

:30

:57

:24

:51

:18

:45

:12

:39

:06

:33

:00

:27

:54

:21

:48

:15

:42

:09

:36

:03

:30

:57

:24

:51

:18

:45

:12

:39

:06

:33

:00

:27

:54

:21

:48

:15

:42

:09

:36

:03

:30

:57

:24

:51

12

AM

1AM 2AM 3AM 4AM 5AM 6AM 7AM 8AM 9AM 10

AM

11

AM

12

PM

1PM 2PM 3PM 4PM 5PM 6PM 7PM 8PM 9PM 10

PM

11

PM

Powerconsumption(kW)

115

Figure11-Frequencycountofthepowerconsumption(kW)atoneminuteintervalover8days

kW Range (kW) Counts 0-2 30 2-4 159 4-6 10695 6-8 250 8-10 52 10-12 22 12-14 6 14-16 2 16-18 4 18-20 9 20-22 5 22-24 6 24-26 8 26-28 5 28-30 2 30-32 2 32-34 3 34-36 3 36-38 9 40-42 2 Grand Total 11274

0

2000

4000

6000

8000

10000

12000

0-2

2-4

4-6

6-8

8-10

10-12

12-14

14-16

16-18

18-20

20-22

22-24

24-26

26-28

28-30

30-32

32-34

34-36

36-38

40-42

Count

Total

116

Figure12-Powerconsumptionamount(kW)ofeachrange

Forexample,thesumofminutelykWvaluesthatfallinto4-6is47921.1 over the 8 monitoring days.

kWT Range (kW) Sum of kWT_kw

0-2 58.2 2-4 620.6 4-6 47921.1 6-8 1733.6 8-10 459.2 10-12 238.1 12-14 77.4 14-16 30.4 16-18 66.9 18-20 169.8 20-22 107.0 22-24 136.9 24-26 201.4 26-28 132.9 28-30 58.5 30-32 61.2 32-34 97.4 34-36 104.8 36-38 335.3 40-42 81.1 Grand Total 52691.9

0.0

10000.0

20000.0

30000.0

40000.0

50000.0

60000.0

0-2

2-4

4-6

6-8

8-10

10-12

12-14

14-16

16-18

18-20

20-22

22-24

24-26

26-28

28-30

30-32

32-34

34-36

36-38

40-42

Amountofpowerconsumptionover8days

117

Figure13-Powerconsumptionpercentageofeachrange

Forexample,powerconsumptionbythekWrangethatfallsinto4-6kWrange,represents90.9%ofthetotalpower

consumptionbyallgroups.

kW Range (kW) Percentage 0-2 0.1% 2-4 1.2% 4-6 90.9% 6-8 3.3% 8-10 0.9% 10-12 0.5% 12-14 0.1% 14-16 0.1% 16-18 0.1% 18-20 0.3% 20-22 0.2% 22-24 0.3% 24-26 0.4% 26-28 0.3% 28-30 0.1% 30-32 0.1% 32-34 0.2% 34-36 0.2% 36-38 0.6% 40-42 0.2% Grand Total 100.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0-2

2-4

4-6

6-8

8-10

10-12

12-14

14-16

16-18

18-20

20-22

22-24

24-26

26-28

28-30

30-32

32-34

34-36

36-38

40-42

Percentageofthetotalenergyconsumptionover8

days

118

Figure14-Powerconsumptionpercentageofeachtheoreticalscanningmode

kWT Range (kW)

Sum of kWT_kw

Percentage of each range

0-2 58.2 0.11% 2-4 620.6 1.18% 4-6 47921.1 90.95% 6+ 4092.0 7.77% Grand Total 52691.9 100.00%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0-2 2-4 4-6 6+

Percentageofeachrange

119

Figure15-Timeseriesofthepowerconsumption(kW)foreachminuteovereachhour

120

121

122

123

124

125

126

127

128

129

130

131

132

Appendix 3.2.4 CT Energy Consumption Data Site #3 Figure1:CT:Toshiba(AquilionOneTSX-305A,2013).Test#1-Site#3

˜

133

Appendix 3.3: X-Ray Data

Appendix 3.3.1: X-Ray Data Site #1a TOSHIBA-KXO-80XMX-RayGeneratorwithMDX-8000TableakaUltimaxSystem(Room1166)Table1:X-raySite1:Powerconsumption(kW)over6-daysofmonitoring.

Summary of power consumption* (kW) at six minutes interval over the monitoring period for BC XRay in Room #1166

* Average kW reading was used for this analysis.

kW Range (kW)

Count of kW

Frequency Percentage

Average of kW (kW)

Energy consumption of each kW range

over sampling period (kWmin)

Energy consumption of each kW range

over sampling period (kWh)

Energy consumption

Percentage of each kW range

Estimated Energy Consumption over One Year

(kWh)

Estimated annual cost

@$0.15 per kWh

[0, 0.1) 0 0.0% NA 0.0 0.0 0.0% 0.0 -$ [0.1, 0.2) 959 80.7% 0.18 1022.3 17.0 44.7% 1255.3 188.3$ [0.2, 0.3) 0 0.0% NA 0.0 0.0 0.0% 0.0 -$ [0.3, 0.4) 2 0.2% 0.33 4.0 0.1 0.2% 4.9 0.7$ [0.4, 0.5) 1 0.1% 0.50 3.0 0.0 0.1% 3.7 0.6$ [0.5, 0.6) 1 0.1% 0.51 3.1 0.1 0.1% 3.8 0.6$ [0.6, 0.7) 1 0.1% 0.66 4.0 0.1 0.2% 4.9 0.7$ [0.7, 0.8) 6 0.5% 0.76 27.5 0.5 1.2% 33.8 5.1$ [0.8, 0.9) 13 1.1% 0.85 66.6 1.1 2.9% 81.8 12.3$ [0.9, 1) 199 16.7% 0.93 1116.4 18.6 48.8% 1370.8 205.6$ [1, 1.1) 7 0.6% 1.01 42.6 0.7 1.9% 52.3 7.8$ [1.1, 99) 0 0.0% NA 0.0 0.0 0.0% 0.0 -$ Grand Total 1189 1.0 0.32 2289.4 38.2 100% 2811.3 421.7$

134

Figure1–EnergyConsumptionPercentageofeachpowerrangeForexample,theenergyconsumptionbypowerrangethatfallinto2-3kWcontributedto73.3%ofthetotalenergyconsumption over the monitoring period.

0%

10%

20%

30%

40%

50%

60%

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1) [1,1.1) [1.1,99)

Power(kW)

EnergyconsumptionPercentageofeachkWrange

135

Figure2–Timeseriesofpowerconsumptionforeachday

136

137

138

139

140

141

Appendix 3.3.2 X-Ray Site 1b Room1168–ToshibaKX0-80SX-RayGeneratorTable1:X-RaySite1.-Powerconsumption(kW)over3-daysofmonitoring.

Summary of power consumption* (kW) at six minutes interval over the monitoring period for BC Xray #2 in Room #1168

* Average kW reading was used for this analysis.

kW Range (kW)

Count of kW

Frequency Percentage

Average of kW (kW)

Energy consumption of each kW range

over sampling period (kWmin)

Energy consumption of each kW range

over sampling period (kWh)

Energy consumption

Percentage of each kW range

Estimated Energy Consumption over One Year

(kWh)

Estimated annual cost

@$0.15 per kWh

[0, 0.06) 0 0.0% NA 0.0 0.0 0.0% 0.0 -$ [0.06, 0.07) 1 0.2% 0.07 0.4 0.0 0.2% 1.4 0.2$ [0.07, 0.08) 279 63.0% 0.08 129.0 2.2 61.7% 425.2 63.8$ [0.08, 0.09) 163 36.8% 0.08 79.6 1.3 38.1% 262.4 39.4$ [0.09, 99) 0 0.0% NA 0.0 0.0 0.0% 0.0 -$ Grand Total 443 1.0 0.08 209.1 3.5 100% 689.0 103.3$

142

Figure1–EnergyConsumptionPercentageofeachpowerrange

Forexample,theenergyconsumptionbypowerrangethatfallinto0.07-0.08kWcontributedto61.7%ofthetotalenergyconsumption over the monitoring period.

0%

10%

20%

30%

40%

50%

60%

70%

[0,0.06) [0.06,0.07) [0.07,0.08) [0.08,0.09) [0.09,99)

Power(kW)

EnergyconsumptionPercentageofeachkWrange

143

Figure2–Timeseriesofpowerconsumptionforeachday

144

145

146

147

top related