modulated materials with electron diffraction

Post on 20-Jan-2015

529 Views

Category:

Education

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

This lecture was given at the International School of Crystallography in Erice 2011, on the topic of Electron Crystallography. It explains the very basics of how to index commensurately and incommensurately modulated materials. It was meant for a 40 minute lecture.

TRANSCRIPT

Electron diffraction of commensurately and incommensurately modulated

materials

Joke Hadermann

www.slideshare.net/johader/

Modulation

•commensurate

•incommensurate

Modulation

One atom type A

ab

One atom type A

010

100

ab

[001]

One atom type A

Alkhi

AI fefF )000(2

010

100

ab

[001]

Alternation A and B atoms

ab

Alternation A and B atoms

ab

010

100

[001]

Alternation A and B atoms

ab

010

100

*bm

Gg 2Reflections at

[001]

010

100

[001]

Extra reflections

SupercellModulation

vector*

2b

mGg

*2

1'* bb *

2

1bq

qmclbkahg ***

010

100

[001]

Extra reflections

SupercellModulation

vector*

2b

mGg

*2

1'* bb *

2

1bq

qmclbkahg ***

010

100

[001]

Extra reflections

SupercellModulation

vector*

2b

mGg

*2

1'* bb *

2

1bq

qmclbkahg ***

ab

010

100

[001]

a’

Extra reflections

SupercellModulation

vector*

2b

mGg

*2

1'* bb *

2

1bq

qmclbkahg ***

010

100

b’

ab

010

100

[001]

Extra reflections

SupercellModulation

vector*

2b

mGg

*2

1'* bb *

2

1bq

qmclbkahg ***

q

[001]

100

010b’a’

ikBAII effF

)02

10(2)000(2 lkhi

Blkhi

AII efefF

[001]

100

010b’a’

ikBAII effF

BAII ffF BAII ffF

If k=2n If k=2n+1

)02

10(2)000(2 lkhi

Blkhi

AII efefF

[001]

100

010b’a’

*bn

mGg

*1

'* bn

b nbb '

Extra ref.:

If the periodicity of the modulation in direct space is

nb:

Can use supercell:

010

*2

bm

Gg Extra reflections

*2

1'* bb

010

100

bb 2'

[001]

b’a’

010

100

a’b’

*3

bm

Gg

*3

1'* bb bb 3'

Extra ref.:

010

[001]

010

100

a’b’

*4

bm

Gg

*4

1'* bb bb 4'

010

[001]

Extra ref.:

Modulation nót along main axis of basic structure

ab a

b

ab a

b

(110)

Modulation nót along main axis of basic structure

a

b

(110)

Modulation nót along main axis of basic structure

a

b

(110)

010

100 110

],,[mGg 03131

[001]

Modulation nót along main axis of basic structure

010

100 110

1/3 1/3 0

2/3 2/3 0

[001]

010

100 110

030

300

1 1 0

2 2 0

330

[001]

010

100 110

120-

100

010

[001]

010

100 110

120-

100

010

[001]

200

300210-

110

b*b’*

[001]

a’*

a*

100

011

012

P

*

*

*

*'

*'

*'

c

b

a

c

b

a

P

b*b’*

[001]

a’*

a*

100

011

012

P

*

*

*

*'

*'

*'

c

b

a

c

b

a

P

Pcbacba '''

baa 2'

bab 'cc '

ab

a’

b’

100

011

012

P

Pcbacba '''

baa 2'

bab 'cc '

ab

a’

b’

100

011

012

P

Pcbacba '''

,,=p/n Càn take supercelle.g. n x basic cell parameter

],,[mGg

,,=p/n Càn take supercelle.g. n x basic cell parameter

0.458=229/500 !

Approximations: 5/9=0.444, 4/11=0.455, 6/13=0.462,…Different cells, space groups, inadequate for refinements,…

],,[mGg

*b.mGg 4580

The q-vector approach

qclbkahG 0***

qmclbkahg ***

*** cbaq

Basic structure reflections

Allreflections

hkl0

hklm

010

*2

bm

Gg

100

ab

[001]

010

*2

bm

Gg

100

ab

qmclbkahg ***

*** cbaq

*2

1bq

[001]

010

100

*2

1bq

0001

0100

1000

1001

[001]

q

010

100

q

*458.0. bmGg

*458.0 bq

010

100

q

0001

0101-

0100

1000

*458.0. bmGg

*458.0 bq

0100

1000

0100

1000

0100

1000

0100

1000

010

100

]0,3

1,

3

1[mGg

[001]

*0*3

1*

3

1cbaq

0001

0100

1000

0002

q

Advantages of the q-vector method:

- subcell remains the same

- also applicable to incommensurate modulations

Incommensurately modulated materials

Loss of translation symmetry

LaCaCuGa(O,F)5: amount F varies sinusoidally

Example of a compositional modulation

Hadermann et al., Int.J.In.Mat.2, 2000, 493

Example of a displacive modulation

Bi-2201

Picture from Hadermann et al., JSSC 156, 2001, 445

Projections from 3+d reciprocal space & “simple” supercell in 3+d space

(Example in 1+1 reciprocal space)

q

Projections from 3+d reciprocal space & “simple” supercell in 3+d space

(Example in 1+1 reciprocal space)

a1*

a2*

q

e2

a2*=e2+q

Projections from 3+d reciprocal space & “simple” supercell in 3+d space

(Example in 1+1 reciprocal space)

a1*

a2*

q

e2

a2*=e2+q

Basis vectors of the reciprocal lattice

*a*a1

*b*a2

*c*a3

qe*a 44

*c*b*aq

Example: q= γc*(Displacive modulation along c)c

0 1

u

x 4

z

c

t

c

1

e4=a4

Example: q= γc*(Displacive modulation along c)c

0 1

u

x 4

x 3x 3

= 0

z

c

a 3

t

γc

1

e4=a4

a3 = c - γe4

a3

Example: q= γc*(Displacive modulation along c)c

0 1

u

x 4

x 3x 3

= 0

z

c

a 3

t

γc

1

e4=a4

a3 = c - γe4

a3

Example: q= γc*(Displacive modulation along c)c

0 1

u

x 4

x 3x 3

= 0

z

c

a 3

t

γc

1

e4=a4

a3 = c - γe4

a3

Example: q= γc*(Displacive modulation along c)

0

c

1

c

0 1

u

x 4

x 3x 3

= 0

z

c

a 3

t

γc

1

e4=a4

a3 = c - γe4

a3

Example: q= γc*(Displacive modulation along c)

0

c

cModulation function u

z = z0 + u(x4)

0 1

u

x 4

x 3x 3

= 0

z

c

a 3

t

γc

1

e4=a4

a3 = c - γe4

a3

Example: q= γc*(Displacive modulation along c)

0

c

cModulation function u

z = z0 + u(x4)

In 3+1D: again unit cell, translation symmetry

Basis vectors

*a*a1

*b*a2

*c*a3

qe*a 44

Basis vectors in reciprocal space

Basis vectors in direct space

41 eaa

42 eba

43 eca

*c*b*aq 44 ea

jiji *aa 44332211 axaxaxaxx

{R|v} is an element of the space group of the basic structure is a phase shift and is ±1

Space group of the basic structure

components of q

symmetry-operators for the phase

Superspace groups: position and phase

(r,t) ( Rr + v, t + )

Example

Pnma(01/2)s00

Separate the basic reflections (m=0) from the satellites (m≠0)

Separate the basic reflections (m=0) from the satellites (m≠0)

-should form a regular 3D lattice

-highest symmetry with lower volume

Hint from changes vs. composition, temperature,…

Separate the basic reflections (m=0) from the satellites (m≠0)

Select the modulation vector

Possibly multiple solutions

ri qqq

** baq hklm: h+k=2n, k+l=2n, h+l=2n

Fmmm(10)

*aq HKLm: H+K+m=2n, K+L+m=2n,

L+H=2nXmmm(00)

0200

20002200

0200

20002200

q q0001

0002 0002

0101

2002-0003

2403-

2400

x

0103

Conditions for the basic cell and modulation vector

)0(')0(: mGmGR

)m('g)m(g:R 00

(qr,qi) in correspondence with chosen crystal system & centering basic cell

** baq

0200

20002200

q0001

0002

0003

2403-

2400

Possible irrational components in the different crystal systems

Crystal

system

qi Crystal system qi

Triclinic () Tetragonal

Trigonal

Hexagonal

(00) Monoclinic

(-setting)

()

(0)

Orthorhombic (00)

(00)

(00)

Cubic none

Example of derivation: see lecture notes.

Compatibility of rational components with centering types

Crystal system q Crystal system q

Triclinic no rational

component

Orthorhombic-P

Orthorhombic-C

Orthorhombic-A

Orthorhombic-F

(1/2)

(1/2)

(10)

(1/2)

(10)

Monoclinic-P

Monoclinic-B

(-setting)

()

(1/20)

(0, 1/2, )

Tetragonal-P

Trigonal-P

(1/21/2)

(1/31/3)

Example of derivation: see lecture notes.

Bulk Powder Diffraction

• Difficulties in determining periodicity

• Difficulties in determining symmetry

• Difficulty in detecting weak satellites due to modulations in light atoms

• Relative intensities reliable for refinements

Electron Diffraction

• Clear determination periodicity

• Clear determination symmetry

• Picks up also weak satellites due to modulations in the light atoms

• Relative intensities not as reliable for refinements

Summary

Commensurate modulations:supercellq-vector

Incommensurate modulations(Commensurate approximation)q-vector

q-vector -> (3+1)D Superspace

top related