neutrino from grbs and hypernova remnants

Post on 28-Jan-2016

49 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

MACROS 2013 , IAP, Nov. 27-29, 2013   . Neutrino from GRBs and hypernova remnants. Xiang-Yu Wang Nanjing University, China. Collaborators: H.N. He, R. Y. Liu, K. Murase, S. Inoue, S. Nagataki, Z. G. Dai, R. Crocker, F. Aharonian. Outline. - PowerPoint PPT Presentation

TRANSCRIPT

Neutrino from GRBs and hypernova remnants

Xiang-Yu Wang

Nanjing University, China

Collaborators: H.N. He, R. Y. Liu, K. Murase, S. Inoue, S. Nagataki, Z. G. Dai, R. Crocker, F. Aharonian

MACROS 2013 , IAP, Nov. 27-29, 2013   

Outline

GRB and HNe as a candidate source for ultra-high

energy cosmic rays

Neutrino messenger for constraining GRB properties

Could the TeV-PeV neutrinos recently detected by

IceCube originate from GRBs or HNe ?

Acceleration of UHECRs1. AGN (Berezinsky..)

2. GRB (Waxman, Vietri, …)

Hillas Plot

3 Galaxy clusters ( Inoue..) Pulsars (Fang…) Hypernova …

R_L<R B*R>E/Zqv

CR acceleration in GRBs

Internal shocks (Waxamn 95)

External shocks (Vietri 95)

Credit: P. Meszaros

1E12-1E13 cm

1E17-1E18 cm

Debating point: GRBs can provide enough CR flux?

[Waxman 95; Bahcall & Waxman 03]

yrerg/Mpc10~Const./ 35.432 ppp dnd

• require Galactic sources up to ~1018.5eV

• 1/E2 source spectrum

Uncertainties:

1 ) Local GRB rate R_0

2 ) ECR/Eγ =? (Eγ =Ee)

GRB: E_γ=1E52.5 erg , R_0=1/Gpc^3/yr

yrerg/Mpc10yr Gpc/1erg10/ 35.43-135.522 dnd

UHECR flux

GRB flux

Hypernova model for UHECRs

Relativistic analogy of normal SNRs for Galactic CRs

Semi-relativistic shock front can accelerate particles to UHE energies (expanding into the stellar wind of Wolf-Rayet stars )

Wang, Razzaque, Meszaros, Dai 2007, PRD

Nearby hypernova/GRBs

Radio afterglow modeling of SN1998bw: E>1e49 erg, Γ~1-2

X-ray afterglow: E~5e49 erg, \beta=0.8 (Waxman 2004)

Mildly relativistic ejecta component withenergy >1e50 erg

Name Distance comments

SN1998bw 38 Mpc GRB980425

SN2006aj 120 Mpc GRB060218

SN 2010bh 260 Mpc GRB100316D

SN2009bb 40 Mpc No GRB associated

SN 1998bw

Hypernova model for UHECRs

v=c , Z=26

v=0.1c

R_L<R B*R>E/Zqv

Chakraborti et al. 2010

Energy spectrum

WR stellar wind Hypernova ejecta (SN1998bw)

p=2 p=2

Liu & Wang 2012

GRB Neutrino prediction

He/CO starH envelope

Buried shocksNo -ray emission

Razzaque, Meszaros & Waxman ’03Murase & Ioka ‘13

Precursor ’s

Internal shocksPrompt -ray (GRB)

Waxman & Bahcall ’97Murase & Nagataki 07Wang & Dai 09, Murase 08

Burst ’s

External shocksAfterglow X,UV,O

Waxman & Bahcall ’00

Afterglow ’s

p

PeV EeVGeV/TeV

22GeV3.0 p

Neutrino production in GRBs Necessary conditions: Proton energy fraction:1. Proton-electron composition :Ep/Ee= ~10 (assumption)

2. Poynting-flux dominated jets: very low—detection impossible

Enough thick target Dense photon field—depend on dissipation radius

Dense medium—optically thick photosphere

Ep/Ee= ECR/Eγ =?

IC40+59 results: Non-detection

Stacking analysis on 215 GRBs between April 2008 and May 2010

IceCube: Stacked point-source flux limit is below “benchmark” prediction by a factor 3-4.

However, inaccurate calculation by IceCube of the expected flux 1) Normalization (Li 12, Hummer et al. 12, He et al. 12)

2) particle physics, realistic photon spectrum,…

---numerical calculation (Hummer+ 12; He+12)

IceCube:

Correct:

Our result for IC40+59 flux (He, Liu, Wang, Murase, Nagataki, Dai 2012)

For the same 215 GRBs Using the same benchmark

parameters as IceCube team

Our results: stacked neutrino flux from 215 GRBs is still a factor of ~3 below the IceCube sensitvity

Benchmark parameters: t_v= 0.01 s Γ = 10^2.5, Baryon ratio Ep/Eγ = 10

Non-benchmark model parameters Neutrino flux very sensitive to Г

Using more realistic Г

Liang et al. 2010 Ghirlanda et al. (2012)

Constraints on the baryon ratioEp/Eγ

General dissipation scenario-constrain the radius

R >4 ×10^12 cm

Large dissipation radius scenario (e.g. Magnetic dissipation scenario)-- OK Small dissipation radius scenario (e.g. photosphere scenario): -- Challenged (Zhang & Kumar 2012)

• 28 events• significance > 4 sigma atm. Background

:up

down

0.56.36.10

II. Diffuse TeV-PeV neutrinos

Origin of the Tev/PeV neutrinos? Proposed models

Cosmogenic nu: No (Roulet+ 2013, Ahlers & Halzen 12)

Hadronuclear Origin: Murase, Ahlers & Lacki ’13, He et al. 13

Photonuclear origin: Winter 13

AGNs: Kalashev et al. 13

Diffuse GRB neutrino? Theory predictions: Depend on the luminosity function and redshift distribution ( Gupta+ 07;

He+ 12; Cholis & Hooper 13)

But did not consider the existing IceCube limit on triggered GRBs

Triggered/un-triggered GRBs

Simulated sample : comparison with Fermi/GBM GRBs

Liu & Wang, 2013

We use simulated GRB sample to include dim GRBs

Contribution by un-triggered GRBs

GRBs with10^51–10^53 erg/s contribute the largest

Do not trigger the detectors due to their occurring at relatively high redshifts

Diffuse neutrino emission from triggered and un-triggered GRB

Untriggered GRBs produce 2 times larger flux

Total flux

Normal GRB population insufficient to account for two PeV neutrinos !

Liu & Wang 2013

Contribution by other GRB populations Low-luminosity GRBs (Murase & Nagataki 06, Liu, Wang,

Dai 11, Murase & Ioka 2013)

Pop III GRBs (Gao & Meszaros 12)

Larger uncertainties.

Hypernova remnants: pp process General consideration--connect to UHECRs?

Required energy (ankle transition): Required energy (second knee):

1PeV neutrino:

Liu, Wang, Inoue, Crocker, Aharonian 2013, arXiv:1310.1263

HN acceleration ?

See also Katz et al. ‘13

Hypernova remnant scenario

pp efficiency

Two escape ways: 1) diffusion 2) advection

Hypernovae occur in star-forming galaxies & starburst galaxies

ISMProton

Neutrino spectrum from HN remnants

SBG: star-burst galaxies

NSF: normal star-forming galaxies

use

S=-2.2-2.3

Summary

Neutrino measurements have now put constraints

on GRB properties—dissipation radii, composition…

Diffuse GRB neutrinos alone seem insufficient to

account for TeV-PeV neutrinos

Hypernova remnants could be a possible source

Comparison – for one burst

Analytic: Delta resonance Numerical calculation:

consider the full cross section, direct pion, multi-pion production channels

Our calculated flux (red curve) is one order of magnitude lower than IceCube collaboration

Neutrino emission

For high-redshift star-forming galaxies

* The accompanying gamma ray flux remains below thediffuse isotropic gamma ray background

top related