new contributions to a+m databases for plasma modeling

Post on 22-Jan-2016

28 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

DESCRIPTION

New Contributions to A+M Databases for Plasma Modeling. R.K. Janev Macedonian Academy of Sciences and Arts, Skopje, Macedonia. IAEA RCM on A+M data for plasma modeling, Nov. 17-19, 2008. Outline:. Electron impact processes: - Excitation of A, B, C, electronic states of CH; - PowerPoint PPT Presentation

TRANSCRIPT

New Contributions to A+M Databases for Plasma Modeling

R.K. JanevMacedonian Academy of Sciences and

Arts, Skopje, Macedonia

IAEA RCM on A+M data for plasma modeling, Nov. 17-19, 2008

Outline:

• Electron impact processes: - Excitation of A, B, C, electronic states of CH; - Dissociative electron attachment on H2(v) in

the 14 eV energy region• State-selective electron capture in H(1s) –

fully stripped ion collisions• Electron loss cross sections of Liq+ , Beq+ , Bq+

and Cq+ ions colliding with H and H+

e-impact excitation of A2∆,B2Σ-,C2 Σ-

states of CH: 0-0 transitions(collaboration with R. Celiberto and D. Reiter)

Cross sections: ** E ≤ 10 eV: R-Matrix (Baluja, Msezane, J.Phys.B: 34, 3157 (2001)) ** E ≥ 20 eV: Bethe –Born ** 10 eV ≤ E ≤ 20 eV: interpolation

Basis for Bethe-Born calculations:

Potential energy curves, excitation energies, dipole transition moments:

X2Π → A2∆ : Larsson, JCP (1983)

X2Π → B2Σ-,C2 Σ- : Dishoeck, JCP (1986)

Potential energy curves

Dipole transition moments

v-v’ transitions: scaling

σX,Fv,v’ (x) ~ (1/x )(1/∆EX,F

v,v’) MX,Fv,v’ (Born)

x = E/∆EX,Fv,v’ , MX,F

v,v’ = |<v’|D(R )|v>|2

σX,Fv,v’ =(∆E0,0’/∆Ev,v’ )X,F (Mv,v’ / M0,0’)X,F σX,F

0,0’ (x)

F = A, B, C

Dissociative electron attachment on H2(v) near 14 eV

(collaboration with R. Celiberto, J. Wadehra and A. Laricchiuta)

e + H2(X;v) → H2−(2Σg

+) → H−(1s2) + H(2s)

** Feshbach resonance with a, c triplets and C, EF singlets as parent states;

** Er(R)and Γ(R) determined by Stibbe, Tennyson (J.Phys.B, 1998) for R ≤ 4a0

Method:

• Resonace theory with local complex potential;

• Exrapolation of S&T data for R ≥ 4a0;

• RVE calculations with this extrapolation gave good agreement with Gomer and Read exp. data

Potential energy curves

V=5

V=10

State-selective electron capture in H(1s) - AZ+ and He2+ -He+ collisions

(collaboration with J.G. Wang and L. Liu, Beijing)

• AZ+ = H+, He2+ , C6+ , O8+

• He+ = He+(1s), He+(2s)

• Method: AOCC with extremely large expansion basis (the largest to date)

Atomic-orbital close-coupling method

ˆ( ) ( ) ( )k rlklm l k lmr N r e Y r

( ) ( )nlm nk klmk

r c r

2

2

( 1/2 1/8 )

(1/2 1/8 )

( , ) ( ) ( )

( ) ( )

A i r ti i

i

B i r tj j

j

r t a t r e

b t r e

( ) ( , ) 0,H i r tt

21

( ) ( )2 r A A B BH V r V r

( )i A SB HA KB *( )i B S A KA HB

1( ) , ( ) 0i i ja b

2, 0

2 | ( ) |exc i ia bdb

2

, 02 | ( ) |cx j jb bdb

Cross sections for excitation, capture and ionization

Initial conditions

Close-coupling equations

Used AO basis sets• H+ + H: 10P/156H (excitation) (icludes 99ps) 156P/10 H (charge exchange)

• He2++ H: 20P/156H (exc); 156P/20 (CX)

• C6+ + H: 120P/4H (CX) (before: 35P/1H)

• O8+ + H: 84P/4H (CX) (before: 45P/1H)

Part : HⅠ ++H(1s) collision system

0 50 100 150 20010-4

10-3

10-2

10-1

100

101

1s(present) 2s 2p

1s(Kuang)

Energy (keV/u)

ex(1

0-1

6cm

2 )

2s 2p

Electron capture to 1s, 2s and 2p states of H

0 20 40 60 80 100 120 1400.00

0.04

0.08

0.12

0.16

0.20

present

Energy (keV/u)

2s(1

0-1

6cm

2 )

Kuang

Ford

Energy behavior of 2s excitation cross section.

0,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60 80 100 120 140

present

Kuang

Energy (keV/u)

2p(1

0-1

6cm

2 )

Detleffsen Ford

Energy behavior of 2p excitation cross section

0 50 100 150 200 250

10-3

10-2

present

Energy (keV/u)

3s(1

0-1

6cm

2 )

Ford

Kuang

Energy behavior of 3s excitation cross section

0.00

0.05

0.10

0.15

0.20

0 50 100 150 200 250

present

Ford

Energy (keV/u)

3p(1

0-1

6cm

2 )

Kuang

Detleffsen

Energy behavior of 3p excitation cross section

0.00

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200 250

present

Energy (keV/u)

3d(1

0-1

6cm

2 )

Ford

Kuang

Energy behavior of 3d excitation cross section

0 50 100 150 200 250 300

10-3

10-2

10-1

100

101

1s Kuang 2s Kuang 2p Kuang

1s(present) 2s(present) 2p(present) 3s(present) 3p(present) 3d(present)

Energy (keV/u)

(10

-16cm

2 )

Part : HeⅡ 2+ + H(1s) collision system:

Energy dependence of state-selective cross sections for electron capture to 1s, 2l, 3l and 4l states of He+.

0 50 100 150 200 250 300

10-3

10-2

10-1

100

101

n=1 n=2 n=3 n=4

Energy (keV/u)

(1

0-1

6cm

2 )

Partial electron capture cross sections to He+(n), n = 1, 2, 3, 4.

100 101 102

10-1

100

101

present

Kuang

Energy (keV/u)

tot(1

0-16 cm

2 )

Shah

Total charge transfer cross section for He2++H (1s) collision

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 60 120 180 240 300

present

Fritsch

Energy (keV/u)

2p(1

0-1

6cm

2 )

Hughes Kuang

Energy behavior of 2p excitation cross section

0 60 120 180 240 3000.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

present

Energy (keV/u)

3p(1

0-1

6cm

2 )

Kuang

Fritsch

Energy behavior of 3p excitation cross section

Part : CⅢ 6+ + H(1s) collision system

1

10

100 101 102

present

Energy (keV/u)

(10

-16 cm

2 )

Kimura Green

Partial electron capture cross section to C5+(n=5)

100 101 102

101

present

Fritsch

Energy (keV/u)

4l(1

0-1

6cm

2 )

Kimura

Green

Partial electron capture cross section to C5+(n=4)

100 101 102

10

20

30

40

50

present

Meyer

Energy (keV/u)

tot(1

0-16 cm

2 )

Kimura Green

Total electron capture cross sections for C6++H (1s) collisions

10-1

100

101

10-1 100 101

n=5

n=6

n=4

(b)

(10

-16 cm

2 )

Energy (keV/u)

n=5(Fritsch) n=6(Fritsch) n=4(Fritsch)

n=5(Kimura) n=6(Kimura)

n=5(Lee) n=6(Lee)

n=4(Shipsey) n=5(Shipsey) n=6(Shipsey)

Part : OⅣ 8++H(1s) collision system

Partial electron capture cross sections to O7+(n), n=4, 5, 6.

10-4

10-3

10-2

10-1

100

100 101 102

4s(present) 4p 4d 4f

4s(Fritsch) 4p 4d 4f

Energy(keV/u)

(1

0-16 cm

2 )

4s(Shipsey) 4p 4d 4f

Energy dependence of state-selective cross sections for electron capture to 4l states of O7+

10-1

100

101

100 101 102

5s(present) 5p 5d 5f 5g

5s(Fritsch) 5p 5d 5f 5g

Energy(keV/u)

(1

0-1

6cm

2 )

5s(Shipsey) 5p 5d 5f 5g

State-selective cross sections for electron capture to 5l states of O7+

10-1

100

101

100 101 102

6s(present) 6p 6d 6f 6g 6h

6p(Fritsch) 6d 6f 6g 6h

Energy(keV/u)

(1

0-16 cm

2 )

6s(Shipsey) 6p 6d 6f 6g 6h

State-selective cross sections for electron capture to 6l states of O7+.

20

40

60

80

100

10-1 100 101

present

tot(

10-1

6cm

2 )

Energy (keV/u)

Fritsch

Kimura T. G. Lee

Meyer

M. Bendahman Shipsey

Total charge transfer cross sections for O8++H (1s) collisions

Part : HeⅤ 2+ + He+(1s), He+(2s) collision systems

100 101 102

10-4

10-3

10-2

10-1

100

101

1s 2s 2p 3s 3p 3d

Energy (keV/u)

ex(1

0-1

6cm

2 )State-selective cross sections for He2++He+(1s)→ He+(nl) +He2+.

100 101 102

10-3

10-2

10-1

100

101

n=1 n=2 n=3

Energy (keV/u)

ex(1

0-1

6cm

2 )

Partial charge transfer cross sections for He2++He+(1s)→ He+(n) +He2+, n=1, 2, 3.

10-2 10-1 100 101 1020

1

2

3

4

5

6

7

8

Melchert

present

Bardsley

Dickinson

Bates

E (keV/u)

tot(1

0-16 cm

2 )

Total electron-capture cross section for He2++He+(1s) → He+ +He2+

101 102

10-2

10-1

100

101

1s 2s 2p 3s 3p 3d

Energy (keV/u)

ex(1

0-1

6 cm2 )

State-selective cross sections for He2++He+(2s)→ He+(nl) +He2+

101 10210-3

10-2

10-1

100

101

n=1 n=2 n=3 n=4

Energy (keV/u)

ex(1

0-16 cm

2 )

Partial charge transfer cross sections for He2++He+(2s)→ He+(n) +He2+, n = 1, 2, 3, 4.

101 1020

5

10

15

20

25 to

t (10

-16 cm

2 )

E (keV/u)

Total electron capture cross section for He2++He+(2s)→ He+ + He2+

101 102

10-2

10-1

100

1s 3s 3p 3d

2px0.001

Energy (keV/u)

exc(1

0-1

6cm

2 )

Cross sections for 2l and 3l excitation He2++He+(2s) collisions

top related