non-enzymatic catalytic enantioselective desymmetrization ......non-enzymatic catalytic...

Post on 24-Feb-2021

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Non-Enzymatic Catalytic EnantioselectiveDesymmetrization Reactions

Long LiteratureBenoit Cardinal-David

October 2009

Introduction

Alcohol Protection

Cyclic Anhydride Alcoholysis and Alkylation

Oxidation Reactions

Ring Opening of Epoxides and Aziridines

Ring Opening of Bridged Systems

Deprotonation Reactions

Olefin Metathesis

Aldol Reactions

Cat*

Y R

Z

Y Y

Z

Key Reference:

Chapter 10Recent Advances in Catalytic

Asymmetric DesymmetrizationReactions

Some Definitions

Desymmetrization: The removal of an element of symmetry from a symmetric object

Asymmetric Desymmetrization or Enantioselective Desymmetrization

Redundancy?

Some Definitions

Desymmetrization: The removal of an element of symmetry from a symmetric object

Asymmetric Desymmetrization or Enantioselective Desymmetrization

Redundancy?

Y Y

Non Asymmetric Desymmetrization

R

Y R

Y Y

R

Y R

ZZ

Asymmetric Desymmetrization

Some Definitions

Cat*Y

X

Z Z

Y

enantiotopic groups

Enantioselective Desymmetrization

R

Y

X

Z Z

R

Enantiotopic group

selection

meso

Not Covered Here …

• Enzymatic Desymmetrization

• Stoechiometric Desymmetrizations

Ex.: Enantioselective Ketone Desymmetrization

Me

Me

O

Ph NLi

Ph

Me Me

TMSCl

THF, -78 oC

Me

Me

OTMS

1. O3, -78 oC

2. NaBH4

98% ee

81% yieldover 2 steps

HO2C OH

Me Me

Berkowitz, W. F.; Wu, Y. J. Org. Chem. 1997, 62, 1536.

Non-Enzymatic Catalytic EnantioselectiveDesymmetrization Reactions

Introduction

Alcohol Protection

Cyclic Anhydride Alcoholysis and Alkylation

Oxidation Reactions

Ring Opening of Epoxides and Aziridines

Ring Opening of Bridged Systems

Deprotonation Reactions

Olefin Metathesis

Aldol Reactions

Benzoylation of Meso Diols:Trost’s Dinuclear Asymmetric Zinc Catalyst

Trost, B. M.; Mino, T. J. Am. Chem. Soc. 2003, 125, 2410.

Trost, B. M. et al, Chem. Eur. J. 2008, 14, 7648.

OH

Me

NN

OHAr

ArHO

ArAr

Ar =

A

OH

R

OH 5 mol% A

10 mol% Et2Zn

Toluene, -15 oCO

O

Ph

OBz

R

OH

Best enzymatic desymmetrization result for R = Me: 70% yield, 60% ee

OBz OH

OBz OH

OMe

OBz OH

Cl

OBz OH

94% yield

91% ee

99% yield

93% ee

89% yield

90% ee

97% yield

93% ee

OBz OH

S

OBz

Me

OH

78% yield

70% ee

88% yield

90% ee

Desymmetrization of 2-Substituted 1,2,3-Propanetriols

Jung, B.; Kang, S. H. Proc. Natl. Acad. Sci. USA 2007, 104, 1471.

A

N

Br

N

N

O

t-Bu

Ph

HO

OH

RCu

ON

Ph

t-Bu

N

H

N

Br

OHCl O

Ph

OH OH

RHO

10 mol% A

10 mol% CuCl2BzCl (1.1 equiv.)

Et3N (1.2 equiv.)

THF, rt

OBz OH

HO R

OBz OH OBz OH OBz OH

OBz OH

99% yield

92% ee

99% yield

93% ee

99% yield

94% ee

99% yield

95% ee

OBz OH OBz OH

99% yield

92% ee

99% yield

95% ee

HO HO HO

HO HO HO

Ph CH2OBn Bn

n-Bu i-Pr Me

NHC Catalyzed Desymmetrization cis-1,2-Cyclohexane Diol

Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Org. Lett. 2007, 9, 371.

OH

OH

N

O

NN

Mes

BF4

Ph

O

H

30 mol% K2CO3

15 mol% 18-crown-6

MnO2 (15 equiv.)

Proton sponge (1 equiv.)

CH2Cl2, -30 oC

58% yield

80% ee

OH

O

O Ph

30 mol%

Miller’s Remote Desymmetrization of a Bis-PhenolCatalyzed by a Small Peptide

Miller, S. J. et al, J. Am. Chem. Soc. 2008, 130, 16358.

Miller, S. J. et al, J. Am. Chem. Soc. 2006, 128, 16454.

HO

MeMe

Me

OH

2.5 mol% Peptide

Me

O

O

O

Me

80% yield

95% ee

CHCl3, -30 oC

HO

MeMe

Me

OAc

BOCHN

HN

NH

HN

NH

HN

O

O MeMe

N

N

Me

O

NHTrt

O

O-t-Bu

O

O

O

OMe

Bn

Peptide

Miller’s Remote Desymmetrization of a Bis-PhenolCatalyzed by a Small Peptide

Miller, S. J. et al, J. Am. Chem. Soc. 2008, 130, 16358.

Miller, S. J. et al, J. Am. Chem. Soc. 2006, 128, 16454.

BOCHN

HN

NH

HN

NH

HN

O

O MeMe

N

N

Me

O

NHTrt

O

O-t-Bu

O

O

O

OMe

Bn

Peptide

R % Yield % ee

Ph

Me

Et

i-Pr

40

42

60

62

50

52

63

73

Drawback: Peptide is Substrate specific ...

HO

R

OH

2.5 mol% Peptide

Me

O

O

O

Me CHCl3, -30 oC

HO

R

OAc

Enantioselective Silyl Protection of AlcoholsCatalyzed by an Amino-Acid Based Small Molecule

Zhao, Y.; Rodrigo, J.; Hoveyda, A. H.;Snapper, M. L. Nature 2006, 443, 67.

N

N

HO OH

HO OH

Me

NH

O

HN Me

t-Bu

t-Bu20-30 mol%

TBSCl, Hunig's

TBSO OH

TBSO OH

Entry Product % Yield % ee

OTBS

OH

OTBS

OH

OH

OTBS

OTBS

OH

1

2

3

4

55 87

82 96

96 88

82 92

Entry Product % Yield % ee

OTBS

OH

OTBS

OH

Me

Me

OTBS

OH

5

6

7

93 93

96 95

84 90

Enantioselective Silyl Protection of AlcoholsCatalyzed by an Amino-Acid Based Small Molecule

Zhao, Y.; Rodrigo, J.; Hoveyda, A. H.; Snapper, M. L. Nature 2006, 443, 67.

N

N

HO OH

HO OH

Me

NH

O

HN Me

t-Bu

t-Bu20-30 mol%

TBSCl, Hunig's

TBSO OH

TBSO OH

Proposed Transition State Model

OO

O

NN

H

Me

Me

H

Me

Me

t-Bu

H

N

N

Me

H

H

H

Si

Me

MeCl

t-Bu

Non-Enzymatic Catalytic EnantioselectiveDesymmetrization Reactions

Introduction

Alcohol Protection

Cyclic Anhydride Alcoholysis and Alkylation

Oxidation Reactions

Ring Opening of Epoxides and Aziridines

Ring Opening of Bridged Systems

Deprotonation Reactions

Olefin Metathesis

Aldol Reactions

Desymmetrization of Cyclic Anhydrideswith Modified Cinchona Alkaloids

Entry Product % Yield % ee

1

2

3

90 95

95 97

85 96

O

H

H

O

O

CO2Me

CO2H

H

H

O

Anhydride

O

O

H

H

CO2Me

CO2H

H

H

O

O

O

O

OCO2H

CO2Me

O

O

O

Me

MeCO2Me

CO2HMe

Me

OMe

O

O

CO2H

CO2Me

Me

4

5

88 98

56 91

N

O

N

OMe

DNQ (dihydroquinyl)

N

O

N

OMe

HH

DHQD (dihydroquinidyl)

OO

DHQDDHQD

(DHQD)2AQN

OO

DHQDHQ

(DHQ)2AQN

or

5-30 mol% (DHQD)2AQN or (DHQ)2AQN

MeOH

-30 oC, Et2O

Conditions:

Deng, L. et al, J. Am. Chem. Soc. 2000, 122, 9542.

Cinchona Alkaloids-Derived Bifunctional Catalystsfor Desymmetrization of Meso Anhydrides

N

NH

S

O

O

CF3

F3C

N

MeO

H

H

A

Chin, J. et al, Angew. Chem. Int. Ed. 2008, 47,7872.

Entry Product % Yield % ee

1

2

92 96

90 96

O

Anhydride

O

O

H

H

CO2H

CO2Me

H

H

O

O

O

Me

MeCO2H

CO2MeMe

Me

OMe

O

O

CO2Me

CO2H

Me

3 88 95

95 91

O

O

O

CO2Me

CO2H

4

5 mol% AMeOH

Et2O, rt

Conditions:

Improvement:

- Lower Catalyst Loading

- Reactions performed at rt

Transtion State Model

Chin, J. et al, Angew. Chem. Int. Ed. 2008, 47,7872.

N

MeO

N

O

O

OO

H

Me

S

O

O

CF3

CF3

H

For another example using cinchona alkaloid-derived thioureas, see:

Connon, S. J. et al, J. Org. Chem. 2008, 73, 2454.

Alkylative Desymmetrization of Cyclic Anhydrides

Bercot, E. A.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 10248.

FePh2P

PCy2

Me

(R,S)-JOSIPHOS

Entry Product % Yield % ee

1

2

74 89

89 94

O

H

H

O

O

CO2H

H

H

O

Anhydride

O

O

H

H

CO2H

H

H

O

O

O

Me

MeCO2H

Me

Me

3 72 92

O

O

Ph

Ph

O

Ph

O

O

O

R

R

5 mol% Pd(OAc)2

6 mol% JOSIPHOS

Ph2Zn (1.1 equiv.)

R

O

Ph

R

O

OH

THF, rt

Alkylative Desymmetrization of Cyclic Anhydrides

Bercot, E. A.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 10248.

Bercot, E. A.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 174.

FePh2P

PCy2

Me

(R,S)-JOSIPHOS

80% yield91% ee4-fluoro-styrene

Prevents β-hydride eliminationof the presdumed acyl-ethyl Nickel intermediate

O

O

O

H

H

O

Et

H

HCO2H

10 mol% Ni(COD)2

12 mol% i-PrPHOX

Et2Zn (1.2 equiv.)

THF, rt

25 mol% 4-Fluoro-styrene

Entry Product % Yield % ee

1

2

74 89

89 94

O

H

H

O

O

CO2H

H

H

O

Anhydride

O

O

H

H

CO2H

H

H

O

O

O

Me

MeCO2H

Me

Me

3 72 92

O

O

Ph

Ph

O

Ph

O

O

O

R

R

5 mol% Pd(OAc)2

6 mol% JOSIPHOS

Ph2Zn (1.1 equiv.)

R

O

Ph

R

O

OH

THF, rt

Alkylative Desymmetrization of Cyclic Anhydrides

FePh2P

PCy2

Me

(R,S)-JOSIPHOS

80% yield91% ee4-fluoro-styrene

Prevents β-hydride eliminationof the presdumed acyl-ethyl Nickel intermediate

Drawbacks - Only with succinic anhydrides

- Only with commercially available R2Zn (R = Alkyl, Aryl)- In situ prepared nucleophiles failed

O

O

O

H

H

O

Et

H

HCO2H

10 mol% Ni(COD)2

12 mol% i-PrPHOX

Et2Zn (1.2 equiv.)

THF, rt

25 mol% 4-Fluoro-styrene

Entry Product % Yield % ee

1

2

74 89

89 94

O

H

H

O

O

CO2H

H

H

O

Anhydride

O

O

H

H

CO2H

H

H

O

O

O

Me

MeCO2H

Me

Me

3 72 92

O

O

Ph

Ph

O

Ph

O

O

O

R

R

5 mol% Pd(OAc)2

6 mol% JOSIPHOS

Ph2Zn (1.1 equiv.)

R

O

Ph

R

O

OH

THF, rt

Bercot, E. A.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 10248.

Bercot, E. A.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 174.

Hypotheses

• The presence of halides / triflates from the in situ formation of mixed organozinc nucleophiles

inhibit the reaction with Pd(II).

• Rh(I) / Rh(III) couple tolerates nucleophiles (and aqueous conditions) at high temperaturtes,

as demonstrated by Hayashi:

Hayashi, T. et al, Chem. Rev. 2003, 103, 2829.

Nuc Brt-Bu-Li

Nuc Li

LiBr

Zn(OTf)2Nuc ZnOTf

LiOTf

Rhodium Catalyzed Desymmetrization of Meso Anhydrideswith Mixed Organozinc Reagents

Johnson, J. B.; Bercot, E. A.;Williams, C. M.; Rovis, T. Angew.

Chem. Int. Ed. 2007, 46, 4514.

O

O

O

Me

Me

Nuc-Li / Zn(OTf)2(1:1)

4 mol% [Rh(cod)Cl]28 mol% Ligand

DMF, 50 oCNuc

O

CO2H

Me

Me

O

P

O

N

PhPh

PhPh

O

O

Me

Me

Ligand

O

CO2H

Me

Me O

CO2H

Me

Me

F

O

CO2H

Me

Me

O

Me

O

CO2H

Me

Me

N

Me

O

CO2H

Me

Me

O

O

MeO

75% yield

85% ee

78% yield

87% ee

82% yield

85% ee

84% yield

86% ee

88% yield

88% ee

Rhodium Catalyzed Desymmetrization of Meso Anhydrideswith Mixed Organozinc Reagents

Johnson, J. B.; Bercot, E. A.;Williams, C. M.; Rovis, T. Angew.

Chem. Int. Ed. 2007, 46, 4514.

O

O

O

Me

Me

Nuc-Li / Zn(OTf)2(1:1)

4 mol% [Rh(cod)Cl]28 mol% Ligand

DMF, 50 oCNuc

O

CO2H

Me

Me

O

P

O

N

PhPh

PhPh

O

O

Me

Me

Ligand

Drawback - Only with succinic anhydrides

O

CO2H

Me

Me O

CO2H

Me

Me

F

O

CO2H

Me

Me

O

Me

O

CO2H

Me

Me

N

Me

O

CO2H

Me

Me

O

O

MeO

75% yield

85% ee

78% yield

87% ee

82% yield

85% ee

84% yield

86% ee

88% yield

88% ee

Desymmetrization of meso-3,5-Dimethyl Glutaric Anhydrides:Synthesis of syn-Deoxypolypropionate Molecules

Cook, M. J.; Rovis, T.

J. Am. Chem. Soc. 2007, 129, 9302.

5 mol% [Rh(nbd)Cl]210 mol% t-Bu-PHOX

1.7 equiv. RZnX

THF, 50 oC

CO2Me

Me

O OO

Me Me

O

R

Me

then diazomethane

Me

O

Me

85% yield

95% ee

O

OMe

Me

O

Me

80% yield

94% ee

O

OMe

Me

Me

O

Me

66% yield

89% ee

O

OMe

Me

AcO

O

Me

76% yield

94% ee

O

OMe

Me

Cl

Me

O

Me

85% yield

95% ee

O

OMe

Me

O

Me

85% yield

95% ee

O

OMe

Me

Ph

t-Bu-PHOX

PPh2

O

N

Non-Enzymatic Catalytic EnantioselectiveDesymmetrization Reactions

Introduction

Alcohol Protection

Cyclic Anhydride Alcoholysis and Alkylation

Oxidation Reactions

Ring Opening of Epoxides and Aziridines

Ring Opening of Bridged Systems

Deprotonation Reactions

Olefin Metathesis

Aldol Reactions

Desymmetrization Ruthenium-Catalyzed Hydrogen Transfer

Noyori, R. et al, Angew. Chem. Int. Ed. 1997, 36, 208.

OH

OH

H

H

Acetone

0.2 mol% A

OH

O

H

H

70% yield

96% ee

N

Ru

N

Me

Me

Me

Ts

Ts

A

Only one example

Palladium-Catalyzed Oxidation with Molecular Oxygen

Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001, 123, 7725.

OH

OH

5 mol% Pd(nbd)Cl220 mol% sparteine

Toluene, 80 oC, O2

3A Mol. sieves

O

OH

72% yield

95% ee

Only one example

Desymmetrization of meso-Secondary Allylicand Homoallylic Alcohols

Li, Z.; Zhang, W.; Yamamoto, Y. Angew. Chem. Int. Ed. 2008, 47, 7520.

R1 R1

OHR2

R3 R3

R21 mol% VO(OiPr)32 mol% A, B or C

TBHP (1.2 equiv.)

CH2Cl2, 0 oC or -10 oC

R1 R1

OHR2

R3 R3

R2

O

N

N

O

Ph

Ph

OH

O

OH

Ph

Ph

A B, R = Ph

C, R = p-Mes-C6H4

N

N

OCR3

OH

O

OH

CR3

OH

51% yield

92:8 dr

97% ee

OH 2 mol% VO(OiPr)34 mol% C

CHP (1.2 equiv.)

CH2Cl2, 0 oC or -10 oC

O

Ph Ph

OHO

52% yield

94:6 dr

95% ee

OHO

62% yield

99:1 dr

95% ee

Me Me

OHO

52% yield

98:2 dr

95% ee

Non-Enzymatic Catalytic EnantioselectiveDesymmetrization Reactions

Introduction

Alcohol Protection

Cyclic Anhydride Alcoholysis and Alkylation

Oxidation Reactions

Ring Opening of Epoxides and Aziridines

Ring Opening of Bridged Systems

Deprotonation Reactions

Olefin Metathesis

Aldol Reactions

Asymmetric Desymmetrizationby Opening of meso-Epoxides and Aziridines

Cat*X

X = O, NR

R RR R

HX Nu

Nu

Two Major players:E. N. Jacobsen, M. Shibasaki

Important area of Research:• Substrates easy to prepare

• Rapid access to useful building blocks(1,2-amino alcohols, 1,2-diamines, β-amino acids)

Desymmetrization by Opening of Epoxides with TMSN3Catalyzed by (salen)Cr(III) Complexes

Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N.J. Am. Chem. Soc. 1995, 117, 5897.

Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421.

O

RR

TMSN3

1. 2 mol% A, Et2O

2. CSA, MeOHR R

N3 OH

80% yield

88% ee

N3 OHN3 OH

NCOCF3

N3 OH

Me Me

N3 OH

97% yield

93% ee

87% yield

95% ee

65% yield

82% ee

N3 OH

O

77% yield

94% ee

N N

OO

t-Bu

t-Bu t-Bu

Cr

Cl

t-Bu

A

Ring Opening of meso-Epoxides with TMSCNCatalyzed by (pybox)Lanthanide Complexes

Schaus, S. E.; Jacobsen, E. N. Org. Lett. 2000, 2, 1001.

90% yield

91% ee

TMSO CNTMSO CN

NCOCF3

TMSO CN

Me Me

TMSO CN

83% yield

92% ee

72% yield

87% ee

80% yield

90% ee

NO

N N

O

RR

A, R = t-Bu

B, R = Ph

Reaction time: 4-7 days

O

RR

TMSCN

10 mol% YbCl3

12 mol% A or B

R R

TMSO CN

CHCl3

Ring Opening of meso-Epoxides with Phenolic OxygenNucleophiles Catalyzed by

Gallium Heterobimetallic Complexes

Shibasaki, M. et al, J. Am. Chem. Soc. 2000, 122, 2252.

O

RR

10 mol% A

R R

HO OAr

MeO OH

Toluene,

4A mol. sieves

O

O

O

Li

Ga

O

A

Drawbacks• Low reactivity: Reaction time = 4-7 days

• High catalyst loading

72% yield

91% ee

HO OArHO OAr

Me Me

HO OAr

88% yield

85% ee

72% yield

91% ee

Solution by Jacobsen: Oligomeric (salen)Co Complexes

Ready, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 2687.

Key: Monomeric salen complexes operate by a second-order mechanism.

Hypothesis: Oligomeric catalysts would improve the reactivity by minimizing the entropy cost.

Co(salen)

Linker

Co(salen)

Linker

n

n = 1-5

Solution by Jacobsen: Oligomeric (salen)Co Complexes

Ready, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 2687.

Key: Monomeric salen complexes operate by a second-order mechanism.

Hypothesis: Oligomeric catalysts would improve the reactivity by minimizing the entropy cost.

Co(salen)

Linker

Co(salen)

Linker

n

n = 1-5

O

1.5 mol% oligomer(with respect to Co)

CH3CN / CH2Cl2

4 oC, 11h

OH

OH

98% yield

94% ee

Ring Opening of meso-Aziridines with TMSN3

Other significant contributions in the field:First organocatalyzed example with chiral phosphoric acids: Antilla, J. C. et al, JACS 2007, 129,12084.

Ring opening with anilines: Schneider, C. Angew. Chem. Int. Ed. 2009, 48, 4849.

• First highly enantioselective example by Jacobsen with Cr(salen) complexes: Org. Lett. 1999, 1, 1611.

• Improved by Shibasaki: J. Am. Chem. Soc. 2006, 128, 6312.

N

RR

TMSN3

1-10 mol% Y(OiPr)3

2-20 mol% A

O

NO2O2N

RR

CH3CH2CNN3HN

O

O2N

NO2

A

O

O

HO

F

F

P

Ph

Ph

O

HO

97% yield

92% ee

ArOCHN N3 ArOCHN N3

NCbz

ArOCHN N3

Me Me

ArOCHN N3

99% yield

94% ee

87% yield

95% ee

94% yield

95% ee

94% yield

86% ee

N3ArOCHN

Ring Opening of meso-Aziridines with TMSN3

• First highly enantioselective example by Jacobsen with Cr(salen) complexes: Org. Lett. 1999, 1, 1611.

• Improved by Shibasaki: J. Am. Chem. Soc. 2006, 128, 6312.

N

RR

TMSN3

1-10 mol% Y(OiPr)3

2-20 mol% A

O

NO2O2N

RR

CH3CH2CNN3HN

O

O2N

NO2

A

O

O

HO

F

F

P

Ph

Ph

O

HO

Application to the synthesis of Tamiflu

EtO2C

NHAc

O

NH2.H3PO4

HN

N3

O

Ar

96% yield

91% eeTamiflu

Ring Opening of meso-Aziridines with TMSCN

Shibasaki, M. et al, J. Am. Chem. Soc. 2006, 128, 16438.

99% yield

98% ee

ArOCHN CNArOCHN CN

NCbz

ArOCHN CN

Me Me

ArOCHN CN

99% yield

94% ee

99% yield

96% ee

98% yield

98% ee

O

ArOCHN CN

84% yield

96% ee

N

RR

TMSCN

2 mol% Gd(OiPr)3

3 mol% A

2,6-dimethylphenol (1 equiv.)

O

RR

THF, 40 oCCNHN

O

NO2 O2N

A

O

O

HO

F

F

P

Ph

HO

O

Ph

Non-Enzymatic Catalytic EnantioselectiveDesymmetrization Reactions

Introduction

Alcohol Protection

Cyclic Anhydride Alcoholysis and Alkylation

Oxidation Reactions

Ring Opening of Epoxides and Aziridines

Ring Opening of Bridged Systems

Deprotonation Reactions

Olefin Metathesis

Aldol Reactions

Ring Opening of Bridged Systems: Rh-CatalyzedAsymmetric Alcoholysis of Oxabenzonorbornadiene

Lautens, M.; Fagnou, K.; Rovis, T. J. Am. Chem. Soc. 2000, 122, 5650.With phenols: Lautens, M.; Fagnou, K.; Taylor, M. Org. Lett. 2000, 2, 1677.

With thiols: Leong, P.; Lautens, M. J. Org.Chem. 2004, 69, 2194.

Fe

Pt-Bu2

Me

PPh2

PPF-Pt-Bu2

OH

OMe

OH

O

96% yield

97% ee

Me

Me

94% yield

93% ee

OH

O

OH

O

OH

O

MeO OH

OMe

Me

Me

Br

Br

OH

OMe

O

O

87% yield

97% ee

79% yield

97% ee

88% yield

96% ee

92% yield

99% ee

66% yield

98% ee

ROH

0.125 mol% [Rh(COD)Cl]2

0.25 mol% PPF-Pt-Bu2

THF, 80 oC

O

OH

RO

Expansion of Substrate Scope through Halide EffectEffect of Counterion over Reactivity

Lautens, M.; Fagnou, K. J. Am. Chem. Soc. 2001, 123, 7170.

Entry %yield

1

2

3

4

5

6

NR

NR

17

60

42

81

Additive

none

Bu4NF (5 equiv)

Bu4NCl (5 equiv)

Bu4NBr (5 equiv)

Bu4NI (5 equiv)

Bu4NI (5 equiv)

CSA (1 equiv)

time(h)

24

5

5

5

2

2

2.5 mol% [Rh(COD)Cl]2

5 mol% DPPF

Additive

THF, reflux

O

OH

NNH

Rationalization of the Halide Effect

Lautens, M.; Fagnou, K.; Yang, D. J. Am. Chem. Soc. 2003, 125, 14884.

• Dimer 63: Less prone to nucleophilic attack/more stable when X = I (vs X = Cl) as

demonstrated by Buchwald for Pd dimers.

• Regeneration of active catalyst 69 from 67 would be faster for X = I

Expansion of Substrate Scope through Halide EffectEffect of Counterion over Selectivity

Lautens, M.; Fagnou, K. J. Am. Chem. Soc. 2001, 123, 7170.

Fe

Pt-Bu2

Me

PPh2

PPF-Pt-Bu2

[Rh(COD)X]2 = [Rh(COD)Cl]2 + 2AgOTf, then 2R4NX

X %yield %ee

Cl

Br

I

F

OTf

92

90

97

91

93

74

78

92

96

96

PhNHMe

0.5 mol% [Rh(COD)X]2

1.5 mol% PPF-Pt-Bu2

THF, reflux

O

OH

N

Me

Ph

Expansion of Substrate Scope through Halide Effect

Fe

Pt-Bu2

Me

PPh2

PPF-Pt-Bu2

Lautens, M.; Fagnou, K. J. Am. Chem. Soc. 2001, 123, 7170.

Lautens, M.; Fagnou, K.; Yang, D. J. Am. Chem. Soc. 2003, 125, 14884.

OH

N

OH

95% yield

91% ee

93% yield

97% ee

OH

N

OH

90% yield

98% ee

93% yield

98% ee

N

O

O

MeO2C

MeO2C

OH

O

93% yield

92% ee

O

R

R = Me: 71% yield

91% ee

R = CH=CH2:

OH

Bn2N

86% yield

99% ee

Nu

0.5 mol% [Rh(COD)I]2

1.5 mol% PPF-Pt-Bu2

THF, reflux

O

OH

Nu

Ring Opening of Bridged Systems: Pd-Catalyzed AsymmetricAlkylative Ring Opening of Oxabicyclic Alkenes

Me2Zn

5 mol% (MeCN)2PdCl2

5 mol% DIPOF

ClCH2CH2Cl, reflux

O

OH

MeOPMB

OPMB

OPMB

OPMB

93% yield

90% ee

Me2Zn

5 mol% (MeCN)2PdCl2

5 mol% DIPOF

ClCH2CH2Cl, reflux

84% yield

95% ee

OH

MeMe

HO

Me

OH

MeMe

O

Lautens, M.; Hiebert, M.; Renaud, J.-L. Org. Lett. 2000, 2, 1971.See also: Carretero, J. C. et al. J. Am. Chem. Soc. 2005, 127, 17938.

Fe

DIPOF

Ph2P

N

O

Me

Me

Ring Opening of Bridged Systems:Application to the Total Synthesis of Ionomycin

Lautens, M. et al. Org. Lett. 2002, 4, 1879.

O O

Me

OHH

OH O

O

HO

Me

MeOH

OH

Me H Me

Me Me Me Me Me

Reductive Ring Opening:

Lautens, M.; Rovis, T.JACS 1997, 119, 11090.

DIBAL-H

5 mol% Ni(COD)2

10 mol% (S)-BINAP

Toluene, 65 oC

95% yield

95% ee

OH

MeMe

OTIPS

MeMe

OOH

1. Swern Ox.

2. DIBAL-H, Toluene, -78 oC

3. PMBCl, KHMDS, THF

HO

Me Me

OH

TIPSO OPMB

OH

MeMe

OPMB

82% yield

over 3 steps

O3

MeOH/CH2Cl2, -78 oC

then NaBH4

85% yield

Reversal of Stereocontrol for Cu-Phosphoramidite-CatalyzedRing Opening of Oxabicyclic Alkenes

Feringa, B. L. et al. Org. Lett. 2002, 4, 2703.

Cu

OZnOTf

Et

L*

OH

Et

58% yield

83/17 (anti/syn)

80% ee

F

F

OH

Et

65% yield

90/10 (anti/syn)

88% ee

MeO

MeO

OH

Et

90% yield

99/1 (anti/syn)

>99% ee

Me

Me

OH

Et

82% yield

90/10 (anti/syn)

97% ee

OMe

OMe

Et

85% yield

92/8 (anti/syn)

92% ee

Me

Me OH

O

OP N

Ph

Ph

Me

Me

Ligand

(S,R,R)

O

3 mol% Cu(OTf)2

1.0 equiv. Zn(OTf)2

7 mol% Ligand

Toluene, rtR2Zn

OH

R

R R

anti syn

OH

R

R

Ring Opening of Oxabicyclic Alkenes: Expansion ofNucleophile Scope with Organoboronic Acids

Lautens, M. et al. Org. Lett. 2002, 4, 1311.

OH

OMe

OMe

Me

88% yield

95% ee

OH

OMe

OMe

0% yield

Me

OH

OMe

OMe

Cl

95% yield

95% ee

OH

OMe

OMe

MeO

87% yield

96% ee

Fe

Ligand

Ph2P

Me

(t-Bu)2P2.5 mol% [Rh(COD)Cl]2

5 mol% Ligand

Cs2CO3 (5M) in H2O (0.5 equiv.)

THF, rtArB(OH)2

O

OMe

OMeAr

OH

OMe

OMe

2.5 mol% [Rh(COD)Cl]2

5 mol% Ligand

Cs2CO3 (5M) in H2O (0.5 equiv.)

THF, rt

O

PMB

PMB

OH

PMB

PMB

Me B(OH)2

Me 95% yield

92% ee

Enantioselective Ring Opening of Azabicyclic Alkenes

Menard, F.; Lautens, M. Angew. Chem. Int. Ed. 2008, 47, 2085.Opening w/ amine nucleophiles: (a) Lautens, M. et al. J. Am. Chem. Soc. 2006, 128, 6837.

(b) Yang, D. et al. Org. Lett. 2008, 10, 4723.

2.5 mol% [Rh(COD)OH]2

5 mol% (S,R)-tBu-josiphos

THF, rtN

NBoc

Boc

Ar-B(OH)2

N

Ar

NHBoc

Boc

Fe

(S,R)-tBu-josiphos

P

PRh

Me

PhPh

t-Bu

t-Bu

OH

OH

53% yield

99% ee

N

NHBoc

Boc

F

N

NHBoc

Boc

Me

N

NHBoc

Boc

MeO

N

NHBoc

Boc

N

NHBoc

Boc

OMe

N

NHBoc

BocN

NHBoc

Boc

CF3

N

NHBoc

Boc

CO2Me

OMe

99% yield

97% ee

75% yield

99% ee

68% yield

99% ee

85% yield

68% ee

49% yield

84% ee

58% yield

86% ee

80% yield

50% ee

Non-Enzymatic Catalytic EnantioselectiveDesymmetrization Reactions

Introduction

Alcohol Protection

Cyclic Anhydride Alcoholysis and Alkylation

Oxidation Reactions

Ring Opening of Epoxides and Aziridines

Ring Opening of Bridged Systems

Deprotonation Reactions

Olefin Metathesis

Aldol Reactions

Catalytic Enantioselective Deprotonation/Fragmentation ofmeso-Epoxides Mediated by chiral amides

Liu, D.; Kozmin, S. A. Angew. Chem. Int. Ed. 2001, 40, 4757.

Si

O

Ph Ph

NH

N5 mol%

H

LDA (200 mol%)

THF-DBU, -78 oC to 0 oC

Si

Ph Ph

OH

72% yield

91% ee

Mg, Ph2SiCl2

THF

Si

Ph Ph

mCPBA

CH2Cl2

98% yield82% yield

Si

Ph Ph

OH

mCPBA

CH2Cl2

96% yield

Si

Ph Ph

OH

O

RMgBr orRLi

CuCN

Si

Ph Ph

OHHO

R

R = Alkyl, vinyl, aryl, allyl

t-BuOOH, KH

DMF

70-79% yield72-91% yield

R

OH

OHOH

OH

Application to the Preparation of Tetraols

First Organocatalytic Asymmetric Deprotonation/Fragmentation of Cyclic Ketones

NH

HN

N

S

HN CF3

CF3

A

NH

OTIPS

N

B

MeO

HN

S

HNF3C

CF3

Jorgensen, K. A. et al., Angew. Chem. Int. Ed. 2009, 48, 6650.

O

EtO2C CO2Et

O

CH(CO2Et)2

10 mol% A

CH2Cl2

84% yield

96% ee

O

O

O10 mol% B

CH2Cl2

93% yield

90% ee

OH

O O10 mol% B

CH2Cl2

90% yield

97% ee

OMe Me Me

OHMe

Prostaglandins

Mechanism and Tandem Reactions

Jorgensen, K. A. et al., Angew. Chem. Int. Ed. 2009, 48, 6650.

O

HO

PhPh HN

S

NH

F3C

CF3

N

H

N

MeO

Mechanistic Proposal

O

O

O

OH

10 mol% thiourea

BnSH

CH2Cl2

90% yield

94% ee

BnS

O

OH

1. 10 mol% thiourea

dioxane/H2O (4:1)

82-94% yield

90% ee

2. 3 mol% [Rh(cod)Cl]2 10 mol% Cs2CO3

R

R

B(OH)2

R = Me, Ph

Tandem Reactions

Non-Enzymatic Catalytic EnantioselectiveDesymmetrization Reactions

Introduction

Alcohol Protection

Cyclic Anhydride Alcoholysis and Alkylation

Oxidation Reactions

Ring Opening of Epoxides and Aziridines

Ring Opening of Bridged Systems

Deprotonation Reactions

Olefin Metathesis

Aldol Reactions

Asymmetric Ring Closing Metathesis:First Efficient Examples

Hoveyda, A. H.; Schrock, R. R. et al.,J. Am. Chem. Soc. 1998, 120, 9720.

See also: Grubbs, R. H. et al.,Org. Lett. 2001, 3, 3225.

(Chiral Ru complex; less efficient)

N

Mo

Ph

MeMe

Me Me

O

O

Catalyst

O

R1R1

O

R1

R1

R2R2 R2

3-5 mol% catalyst

toluene or benzene

-25 oC or rt

Substrate Product

O

MeMe

O

MeMe

O

Me

Me

% yield % ee

86 93

99 83

MeMe

O

Me

Me

MeMe Me

On-octyl

O

88 10

O

n-octyl

Me

84 73

O

Me

Asymmetric Ring Closing Metathesis:Formation of Six-Membered Rings

Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 1999, 121, 8251.

O

O

Mo

N

O

iPr

iPriPr

iPr

iPr

iPr

Me

Me

Catalyst

OX

MeMe

5 mol% catalyst OX

Me

Me

benzene

60 oC

Substrate Product % yield % ee

98 >99

86 >99

O

Me2Si

Me

Me

O

Me

Me

O

Me2Si

MeMe

O

MeMe

Asymmetric Ring Closing Metathesis:Synthesis of Cyclic Amides and Amines

Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2005, 127, 8526.

N

Mo

Ph

MeMe

i-Pr i-Pr

O

O

CHPh2

CHPh2 O

C

A

N

Mo

Ph

MeMe

O

O

N

Mo

Ph

MeMe

i-Pr i-Pr

O

O

CHPh2

CHPh2

B

Substrate Product Cat. % ee

84 93

94 90

91 >98

92 88

N

O

Me

Me

N

O

Me

MeA

N

O

Me

Me

N

O

Me

B

C

C

N

O

Me

Me

N

O

Me

Me

Me

N

O

N

O

% yield

Asymmetric Ring Closing Metathesis:Synthesis of Cyclic Amides and Amines

Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2005, 127, 8526.

N

Mo

Ph

MeMe

i-Pr i-Pr

O

O

CHPh2

CHPh2 O

C

A

N

Mo

Ph

MeMe

O

O

N

Mo

Ph

MeMe

i-Pr i-Pr

O

O

B

Substrate Product Cat. % ee

98 95

50 87

63 75

94 97

A

B

C

B

% yield

NCbz

Me

Me

NCbz

Me

HMe

NH

Me

Me

NH

Me

HMe

NCbz

Me

Me

NCbz

Me

MeMe

Me

NCbz

Me

Me

NCbz

Me

Me

Asymmetric Ring-Closing Metathesis:Development of a Stereogenic at Mo Complex

Hoveyda, A. H.; Schrock, R. R. et al., Nature 2008, 456, 933.

N

Mo

Ph

MeMe

i-Pr i-Pr

O

O

MeCF3

F3C

Me

F3C

F3C

A

N

Mo R

i-Pr i-Pr

L

L

N

Mo R

i-Pr i-Pr

L

L

Chiral Complex

(non-stereogenic at Mo)

Chiral Complex

(stereogenic at Mo)

L: chiral ligand (same enantiomer)

L: achiral ligand

TwoPossibilities:

NH

NChiral Alkene Metathesis

Catalyst

NH

N

All existing chiral bidentate Ru or Mo catalysts are ineffective: very low conversion.

Alkylidene A is the most active catalyst.Structural rigidity of the diolates would lead to higher energy transition states and intermediates.

KEY: CHIRAL Mo CATALYST BEARING MONODENTATE LIGANDS

(+)-quebrachamine

Broadening of Substrate Scope

Hoveyda, A. H.; Schrock, R. R. et al., Nature 2008, 456, 933.

Substrate Product % ee

88 91

>98 92

86 93

% yield

N

MeMe

O

N

MeMe

O

N

MeMe

N

MeMe

Me

PhN

Me

PhN

Me

Me

N

Mo

Ph

MeMe

i-Pr i-Pr

O

ClTBSO

Cl

N

Me

Me

Catalyst

Conditions:

1-3 mol% Catalyst

benzene, rt

(+)-quebrachamine Synthesis

Hoveyda, A. H.; Schrock, R. R. et al., Nature 2008, 456, 933.Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2009, 131, 943.

NH

N1 mol% catalyst

NH

N

benzene, rt

5 mol% PtO2

1 atm H2, EtOH

NH

N

(+) quebrachamine97% yield84% yield

96% ee

N

Mo

Ph

MeMe

i-Pr i-Pr

O

ClTBSO

Cl

N

Me

Me

Catalyst

Mechanism

Hoveyda, A. H.; Schrock, R. R. et al., Nature 2008, 456, 933.For mechanistic details, see: Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2009, ASAP.

R

N

Mo

i-Pr i-Pr

L

L

N

Mo

i-Pr i-Pr

L

L

R

N

i-Pri-Pr

L

L

R

Mo

N

Mo

i-Pr i-Pr

L

L

R

RDouble inversion

at metal

Asymmetric Ring Opening Metathesis/Cross Metathesis:First Example of Catalytic AROM

Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 1999, 121, 11603.Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2001, 123, 7767.

5 mol% catalyst

benzene, rt

OP

R

OPR

Catalyst

N

Mo

Ph

MeMe

i-Pr i-Pr

O

O

OMOM

96% yield

>98% ee

OMOMMeO

88% yield

>98% ee

OMOMF3C

80% yield

>98% ee

OTMSH

85% yield

>98% ee

OTBSH

57% yield

96% ee

Asymmetric Ring Opening Metathesis/Ring Closing Metathesis

Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2000, 122, 1828.

N

Mo

Ph

MeMe

O

O

t-Bu

t-Bu

Catalyst

Substrate Product % yield % ee

10 98

69 92

76 98

O O

O O

Me Me

OO

O

Me

O

Me

OO O

H

HO

Conditions:

5 mol% catalyst

Asymmetric ROM/CM: Expanding the scope witnAdamantylimido Molybdenum Alkylidene Complex

Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2003, 125, 2591.

N

Mo

Ph

MeMe

O

O

Catalyst

OTBSOTBS

BO

O

Me

Me

MeMe

benzene, rt

BO

O

Me

Me

MeMe

88 % yield

98% ee

5 mol% catalyst

5 mol% catalyst

benzene, rt

O

O O

20 % yield80 % yield

96% ee

Asymmetric Ring-Opening/Cross Metathesis:Development of a Recyclable Chiral Ru Catalyst

Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2002, 124, 4954.Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2003, 125, 12502.

OO O

OO O

R10 mol% catalyst

THF, rt

R

OO O

Ph

OO O

n-C5H11

OO O

Cy

71 % yield

80% ee

57 % yield

>98% ee

60 % yield

>98% ee

O

N N

RuCl

Oi-Pr

Me

Me

Me

Catalyst

10 mol% catalyst

THF, rt

Ph

Ph

76 % yield

>95% ee

O

OMeO

OMe

Asymmetric Ring-Opening/Cross Metathesis:Application to the Synthesis of (+)-africanol

Hoveyda, A. H.; Schrock, R. R. et al., Proc. Natl. Acad. Sci. 2004, 101, 5805.

Catalyst

N

Mo

Ph

MeMe

i-Pr i-Pr

O

O

Ar

Ar O

Ar = 2,4,6-(i-Pr)3C6H3

OLi

Me Me

1. THF, -78 oC

2. TBSOTf, lutidine

CH2Cl2

TBSO

Me

Me

Me

MeOTBS

H

Me

MeOH

H

Me

Me

3 mol% catalyst

pentane

(+)-africanol

Asymmetric Ring-Opening/Cross Metathesis:Enantioselective Synthesis of Piperidines

Hoveyda, A. H.; Schrock, R. R. et al., Angew. Chem. Int. Ed. 2007, 46, 4534.Synthesis of THPs: Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2004, 126, 12288.

NMe

OTBS

95% yield

94% ee

NMe

OTBS

92% yield

89% ee

OMe

NMe

OTBS

88% yield

64% ee

CF3

NCbz

OTBS

93% yield

90% ee

NCO2Et

72% yield

90% ee

CF3

Catalyst

N

Mo

Ph

MeMe

O

O

PN

OTBS

5-10 mol% catalyst

Rbenzene, rt

NP

OTBS

R

Asymmetric Ring-Opening/Cross Metathesis:Overcoming the Challenge of Z-Selectivity

Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2009, 131, 3844.For a Review, see: Cordova, A.; Rios, R. Angew. Chem. Int. Ed. 2009, Early View.

N

Mo

Ph

MeMe

O

BrTBSO

Br

N

Me

Me

Catalyst

N

Mo

R

Pyr

OR

R2

N

Mo

R

Pyr

RO

R1

R1

R2

small

large

N

Mo

R

Pyr

OR

R2 R1

Asymmetric Ring-Opening/Cross Metathesis:Overcoming the Challenge of Z-Selectivity

Hoveyda, A. H.; Schrock, R. R. et al., J. Am. Chem. Soc. 2009, 131, 3844.For a Review, see: Cordova, A.; Rios, R. Angew. Chem. Int. Ed. 2009, Early View.

N

Mo

Ph

MeMe

O

BrTBSO

Br

N

Me

Me

Catalyst

O

OP

1-2 mol% catalyst

Ar

O

OP

Ar

neat, rt

O

OTBS

80% yield

94% ee

Z:E 95:5

OMe

O

OTBS

67% yield

96% ee

Z:E 98:2

CF3

O

OTBS

50% yield

98% ee

Z:E 89:11

Br

O

OTBS

80% yield

92% ee

Z:E 89:11

OMe

O

OBn

80% yield

84% ee

Z:E 91:9

O

OBn

45% yield

68% ee

Z:E 95:5

OTBS

Non-Enzymatic Catalytic EnantioselectiveDesymmetrization Reactions

Introduction

Alcohol Protection

Cyclic Anhydride Alcoholysis and Alkylation

Oxidation Reactions

Ring Opening of Epoxides and Aziridines

Ring Opening of Bridged Systems

Deprotonation Reactions

Olefin Metathesis

Aldol Reactions

Hajos-Parrish and Wieland-Miescher Ketones: Two EarlyEfficient Examples of Asymmetric Desymmetrization

Buchschacher, P.; Furst, A.; Gutzwiller, J. Org. Synth. 1990, Coll. Vol. 7, 368.Hagiwara, H.; Uda, H. J. Org. Chem. 1988, 53, 2308.

Hajos, Z. G.; Parrish, D. R. Org. Synth. 1990, Coll. Vol. 7, 363.Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615.

NH

COOH

DMF, 16 oC

3 mol%

Me

O

Me

O

O

O

O

Me

OH

92% ee

O

O

Me

76% yield

99% ee

H2SO4

DMF, 95 oC

Recristallyze

NH

COOH

DMSO, 16 oC

5 mol%

Me

O O

57% yield

''enantiomerically pure''

101 g

Recristallyze

O

OMe Me

O

Hajos-Parrish ketone:

Wieland-Miesher ketone:

top related