nucleotide metabolism metabolism of purine...

Post on 28-Dec-2018

217 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

30 1

NUCLEOTIDE METABOLISM

Metabolism of purine nucleotides

Dr. Mária Sasvári

30 2

p p p

Base(purine

or pirimidine)

Ribose or

deoxyR

Nucleotide (NMP, NDP, NTP)

Nucleoside

Nucleosides and nucleoties

e.g. adenosine

adenosine monophosphate (AMP) or: adenylate

30 3

Liver

Blood

nucleosides

bases

urate

URINE

IntestineFood

RNA, DNA

polynucleotides

nucleotides

nucleosides

bases

EXTRAHEPATIC tissues

brain, RBC, lymphocytes)

“salvage reactions”

“de novo”

synthesis

nucleotides

nucleosides

bases

urate

DNA

RNA

30 4

The origin of the ribose-P

PPP

ri-5-P

PRPP

Purine“de novo” and salvage reactions

Pyrimidine“de novo” synthesis

O-P P

1’

P-O-H2C

5’

O

glc-6-P

fru-6-PATP

AMP

PRPP synthetase

inhibitors: AMP, GMP

PRPP=phosphorybosyl pyrophosphate

30 5

Purine nucleotide synthesis

IMP

ATP

ADP

AMP

GTP

GDP

GMP

“de novo”

synthesis

salvage

reactions

purine

bases

30 6

IMP

The origin of the purine ring

Gln

N10formyl H4F N10formyl H4F

Glycine

CO2

Asp

N

NN

N9.

30 7

NH3+

9.

ri-5-P

Glu

Gln

PRA

(5’-phosphoribosyl-amine)

PRPP

1.

2.

GlycineATP

ADP + Pi

Gln

N10formyl H4F N10formyl H4F

Glycine

CO2

Asp

N

NN

N9.

“de novo” purine synthesis

Gln PRPP amidotransferase

GAR synthetase

30 8

GAR

(5’PR-Glycinamide)

3.

N10formyl H4F

H4F

“de novo” purine synthesis

NH

NH3+

9.O

ri-5-P

Gln

N10formyl H4F N10formyl H4F

Glycine

CO2

Asp

N

NN

N9.

GAR transformylase

30 9

NH

NH

O

ri-5-P

O

FGAR

(5’PR-formyl-glycinamide)

4.

Gln

Glu

ATP

ADP + Pi

Gln

N10formyl H4F N10formyl H4F

Glycine

CO2

Asp

N

NN

N9.

“de novo” purine synthesis

FGAM synthetase

30 10

HN

FGAM

(5’PR-formylglycinamidine)

5.

ATP

ADP + Pi

NH

NH

O

ri-5-P

H2NGln

N10formyl H4F N10formyl H4F

Glycine

CO2

Asp

N

NN

N9.

“de novo” purine synthesis

AIR synthetase

30 11

N

N

ri-5-P

H2N

“de novo” purine synthesis

AIR

(5’PR-5-amino-imidazole)

6.

CO2

Gln

N10formyl H4F N10formyl H4F

Glycine

CO2

Asp

N

NN

N9.

AIR carboxylase

30 12

“de novo” purine synthesis

CAIR

(5’PR-4-Carboxy- 5-amino-imidazole)

7.

Asp

N

N

H2N

ri-5-P

ATP

ADP + Pi

-OOC

Gln

N10formyl H4F N10formyl H4F

Glycine

CO2

Asp

N

NN

N9.

SAICAR synthetase

30 13

“de novo” purine synthesis

SACAIR

(5’PR-succinyl-5-aminoimidazole-4-carboxamide)

8.fumarate

N

N

H2N

ri-5-P

O

HNszukcinil-

Adenilosuccinase (ASA)

Gln

N10formyl H4F N10formyl H4F

Glycine

CO2

Asp

N

NN

N9.

30 14

N

N

H2N

ri-5-P

O

“de novo” purine synthesis

ACAIR

(5’PR-5-aminoimidazole-4-carboxamide

9.

N10formyl H4F

H4F

H2N

Gln

N10formyl H4F N10formyl H4F

Glycine

CO2

Asp

N

NN

N9.

AICAR transformylase

30 15

“de novo” purine synthesis

FACAIR

5’PR-5-formamidoimidazole-4carboxamide)

10

. H2O

N

N

N

Hri-5-P

O

H2N

O

IMP

Gln

N10formyl H4F N10formyl H4F

Glycine

CO2

Asp

N

NN

N9.

IMP cyclohydrolase

30 16

“de novo” purine synthesis

and the purine nucleotide cycle

IMP

ATP

ADP

AMP

GTP

GDP

GMP

IMP(6-oxo)

XMP(2,6,-dioxo)

GMP(2-amino-6-oxo)

AMP(6-amino)

Adenylosuccinate

Asp

GTP

GDP+Pi

fumarate

ASA

IMPDH

ADP+Pi

Gln

ATP

AMP DA

NAD+

H2O

NADH + H+

ASA: Adenylosuccinase

DA: deaminase

DH: dehydrogenase

AMP=adenylate or adenosine monophosphate

IMP=inosine monophosphate

XMP = xanthosine monophosphate

Adenylosuccinate

synthase

GMP

synthase

GluH2O

NH4+

30 17

IMP

AMP

purin

nucleotide

cycle

urate

(urine)

AMPkinase

+ AMP

2 ADP

ATP AMP

low energy level

The purine nucleotide cycle

e.g. fructose intolerance

[AMP] hyperuricaemia

30 18

Muscle

ATP

AMP glycolysis

IMP

NH3

+

inozine

Liver

NH3Inozine

urate

Muscle: high AMP DA level

urate

Myoadenylate deaminase def.:

Heavy exercise: NH3 , urate

cramps, NH3, urate is NOT elevated

30 19

“de novo” purine synthesis

Summary

Multifunctional proteins

Carbon donors: „C1 units” (N10-formyl-TH4)

CO2

Glycine

N donors: Asp

Gln

Gly

No free purine base during synthesis

Energy: 6 ATP/IMP

30 20

base nucleotide

adenine AMP

PRPP PPi

APRT

Purine salvage reactions

PRT (phosphorybosyl transferase)

IMP

GMPhypoxantine

guaninePRPP PPi

HPRT

IMP

ATP

ADP

AMP

GTP

GDP

GMP

“de novo”

synthesis

salvage

reactions

purine

bases

APRT=adenine phosphorybosyl transferase

HPRT=hypoxantine guanine phosphorybosyl transferase

30 21

The Lesh-Nyen syndrome

Linked to X-chromosome

mental retardation

self-mutilation

aggression

hyperuricemia

HPRT deficiency:

GTP level of the basal ganglions are low

30 22

IMP

ATP

ADP

AMP

GTP

GDP

GMP

IMP

ATP

ADP

AMP

GTP

GDP

GMPRegulation

++“salvage” “salvage”

- -

PRPP

Gln PRPP amidotransferaseInhibitors: IMP, GMP, AMP

Activator: PRPP

Also see before: PRPP synthetase inhibitors (AMP, GMP)

30 23

PNP (purine nucleoside

phosphorylase)

Catabolism of the purine nucleotides

adenosine (6-amino)

inosine (6-oxo)

hypoxantine

Br -p

Br

H2O

NH3

AMP GMP

guanosine

Pi Pi

guanine

ri-1-P

Pi

ri-1-P

Pi

5’nucleotidease

ADA

adenosine deaminase

B

30 24

Mechanism:

Reason:

Symptoms:

ADA / PNP / (ADA + PNP)Severe combined immunodeficiency

Immunodeficiency “NON-HIV AIDS”

T cell deficiency

adenosine dATP (ATP)

dATP inhibition of ribonucleotide reductase

inhibition of DNA synthesis

inhibition of cell division

Treatment: PEG - ADA enzyme teraphy,

Enzyme deficiency:

Gene therapy

30 25

H2O + O2

H2O2

H2O + O2

H2O2

Xantine oxidase

xantine

(2,6-dioxopurine)

H2O

NH3

guanase

hypoxantine

(6-oxo-purine)

Purine salvage reactions

guanine

(2-oxo-6-amino-purine)

urate

(2,6,8-trioxopurine)

URINE

E

x

c

r

e

t

i

o

n

Catabolism of

the purine

nucleotides

30 26

Hyperuricemia (gout)

Symptoms: urate crystals on the napkin (Lesh-Nyan)

Na-urate crystals stones

urate in soft tissues and joints: “tophi”

inflammation reaction, pain

Acute gouty arthritis

chronic gouty arthritis

Reason: Urate has low solubility

(especially at acidic pH )

30 27

Medication of gout: allopurinol

allopurinol oxopurinol

hypoxantine xantineXantine oxidase

Competitive inhibitors

Hypoxantine and xantine in urine (better solubility )

30 28

Origins of Hyperuricemia

1. PRPP overproduction• as a consequence of mutation

at the allosteric site of PRPP synthase,

the enzyme cannot be inhibited

•overproduction of ribose-5-P PPP

ri-5-P

PRPP

gl-6-P

fr-6-P

e.g. gl-6-phosphatase deficiency

(Von Gierke disease)

Gl- 6-P fr- 6-P ri- 5-P

30 29

2. Absence of purine salvage reactions

e.g. HPRT deficiency

Decreased adenine, guanine reutilization

increased excretion

Origins of Hyperuricemia

IMP

ATP

ADP

AMP

GTP

GDP

GMP

“de novo”

synthesis

salvage

reactions

purine

bases

30 30

3. Low ATP level, disturbed ATP metabolism

• heavy exercise

• fructose intolerance (phosphate trap)

Origins of Hyperuricemia

4. Secondary reasons:

• tissue damage

• cancer, chemotherapy (Tumour lysis syndrome)

DNA breakdown

overproduction of purines

top related