performance and applications of a -tpc k. miuchi a†, h. kubo a, t. nagayoshi a, y. okada a, r....

Post on 17-Jan-2016

214 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Performance and applications of a -TPCK. Miuchia†, H. Kuboa, T. Nagayoshia, Y. Okadaa, R. Oritoa,

A. Takadaa, A. Takedaa, T. Tanimoria, M. Uenoa, O. Bouianovb, M. Bouianovc

a: Kyoto University b: Massachusetts Institute of Technology c:CSC-Scientific Computing Ltd.

† Contact Address: Kentaro Miuchi miuchi@cr.scphys.kyoto-u.ac.jp Cosmic-Ray Group, Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan TEL +81(0)75-753-3867 / FAX +81(0)75-753-3799

1.Introduction 2.-PIC

4. -TPC (gas-filled operation)

5. Applications

6.Conclusions

References [1] T.Nagayoshi, et al., Nucl. Instr. Meth. A 513(2003)277[2] H.Kubo, et al. Nucl. Instr. Meth. A 513(2003)94[3] K.Miuchi, et al., IEEE Trans. Nucl. Sci., 50(2003)825[4] R.Orito, et al., Instr. Meth. A 513(2003)408,[5] T. Tanimori, et al., New Astronomy Rev. 48 (2004) 263[6] K.Miuchi, et al., Nucl. Instr. Meth. A 517(2004)219[7] T.Tanimori, et al., Phys. Lett. B 578 (2004) 241

-TPC : an “electric cloud chamber”REQUIREMENTS - Tracking minimum ionizing particles (MIPs) - Fine (sub-millimeter) samplings - Low ion-feedback

MeV gamma-ray camera [4,5] - -TPC (recoil electron) + Scintillator (scattered gamma)

- “electron track” gives event-by-event ray-tracing

Time-resolved neutron imaging[6] - n + 3He → 3H + p

-TPC : an “electric cloud chamber”DEVELOPMENT - 10×10×10 cm3 detection volume - Fine tracking of proton, electron were shown. - First MIP tracks were detected. - Now we are entering the phase for “Applications”

Development [2,3] - -PIC+ 8cm drift length

- Digital-based electronics

PIC[1] “2-D imaging detector” - m pitch, 120 m 2-D spatial resolution

- Maximum gain 16000, operation gain 6000 (>1000hours) - PCB technology for large area

(10×10 cm2 in operation, 30×30cm2 in development )

Ion feedback - Less than 30% for 104cps/mm2 X-ray (max 20keV)

Improvements - DAQ Clock rate 20MHz to 50MHz sampling ×2 - Amplifier time constant 16ns to 80ns S/N ×2

20mV

10mV

Dark matter experiment[7] - TPC is thought to be a very reliable method. - Low pressure operation: to be examined

MIP tracking - Ar-C2H6 (80:20), 2atm - First “MIP tracks” were detected

3. -TPC (gas-flow operation)

hatched: Dark matterpainted: neutron BG

Operation gain : >10000

MIP’s energy deposition: ~4 ion-e pairs/400m

(in Ar gas, 1atm)

Schematics of -PIC

10m

-PIC on the board X-ray image by -PIC

1010××10cm10cm22

Edge projection

2cm

Feedback measurement Feedback fraction

Fee

dbac

k fr

actio

n =

ID

/ I A

30×30 cm2 -PIC in development

MIP tracksMeV gamma-ray images

-TPC system

Data acquisition

Amplifier modification Clock rate up Electron tracks

Conceptual design Prototype

Neutron (Simulation) Expected dark matter “wind”

Neutron signals

Gas vessel

128ch cable

System - Gas vessel: 60cm, diameter 20cm height

- 128ch feed-through cable     (5cm width, 0.3mm thickness) - 10cm drift length (1mm copper wires)

Feed-through

Anger camera

only “event circle” by conventional Compton cameras

DM WIND γ γ

FF

AMP

50 MHz

20 MHz

16ns amplifier

80ns amplifier

PEM

TPC

TPC

AMP

PEM

Whole system

~500 keV electronsAr-C2H6 (90:10) gain ~6000

~1MeV protonsAr-C2H6 (90:10) gain ~3000

Cosmic-ray muonsAr-C2H6 (80:20) 2atmgain >10000

Thermal neutronsAr-CF4 -3He(78:20:2)

1.1 atmgain ~3000

top related