plzeň, 5.1.101 tato prezentace je spolufinancována evropským sociálním fondem a státním...

Post on 01-Apr-2015

218 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Plzeň, 5.1.10 1

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

MagnetickMagnetický polovodič (Ga,Mn)As:ý polovodič (Ga,Mn)As:technologie, možnosti aplikacetechnologie, možnosti aplikace

• Fyzikální ústav AV ČR, v.v.i.

• theory (Jugwirth, Sinova, ...)• MBE (Novák, Cukr, Olejník, ...)• SQUID, transport (Olejník, Novák, ...)

• Hitachi Lab Cambridge, UK

• lithography (Irvine, ...)• transport (Wunderlich, Owen, ...)

• University,of Nottingham, UK

• MBE (Foxon, Campion)

Plzeň, 5.1.10 2

• magnetic semiconductors

• (Ga,Mn)As

• technology issues

• optimized xMn-series

• gating GaMnAs

Outline

Plzeň, 5.1.10 3

• semiconductors • magnetism

(ferro)magnetic semiconductors

Eu-chalcogenides (EuO, EuGdS, ...)

problems: technology, TC , ...

diluted magnetic semiconductors (GaMnAs, GaMnP, ...)

Modern electronicsModern electronics

electrically tunable magnetic properties

spin degree of freedomspintronics !spintronics !

Plzeň, 5.1.10

GaGa1-x1-xMnMnxxAs - semiconductorAs - semiconductor

Mn : [Ar] 4s2 3d5

xMn < 0.1 % : EA ~ 100 meV

xMn > 1 % :

Jungwirth et al., PRB 76, 125206 (2007)

x=0.05%

1%

2%

7%

~100 meV

EG/2

E

DOSEF

Plzeň, 5.1.10 5

GaGa1-x1-xMnMnxxAs - ferromagnetAs - ferromagnet

xMn > 1 % : ~

carrier mediated FM

1 hole per Mn

~ 4.5 B per Mn

TC ~ M.p1/3

Plzeň, 5.1.10 6

GaGa1-x1-xMnMnxxAs - technologyAs - technology

hex. MnAs in cub. GaAs

Problem: solubility limit of Mn in GaAs (~ 0.1%)

Solution: Molecular Beam Epitaxy

low-temperature MBE

GaAs at TS > 150°C, but: defects , ,

growth parameters critical

Plzeň, 5.1.10 7

Molecular Beam EpitaxyMolecular Beam Epitaxy

UHV growth chamber growth kinetics

substrate

beams

sources

• high crystallographic quality• low growth rate • atomically smooth interfaces• heterostructures, superlattices

Plzeň, 5.1.10 8

MBE in FZU AVMBE in FZU AV ČR ČR

• III-V semiconductors• Kryovak• Veeco Gen II

- 2” substrates

- 3 chambers (load-lock, preparation, growth)

- elements: group V – As

group III – Ga, Al, In

dopants – Si, C, Mn

- in situ diagnostics: RHEED

band-edge thermometry

Plzeň, 5.1.10 9

Plzeň, 5.1.10 10

GaGa1-x1-xMnMnxxAs - technologyAs - technology

hex. MnAs in cub. GaAs

Problem: solubility limit of Mn in GaAs (~ 0.1%)

Solution: Molecular Beam Epitaxy

low-temperature MBE

GaAs at TS > 150°C, but: defects , ,

growth parameters critical

Plzeň, 5.1.10 11

• crystal quality / surface morphology ?crystal quality / surface morphology ?

amorphous / poly / 2D / 3D ?

~ 240°C 3D

RHEED images (non-rotating)

LT-MBE of GaMnAsLT-MBE of GaMnAs

~ 220°C 2D

~ 7% Mn

~ 260°C polygrowth T: > <

Plzeň, 5.1.10 12

J. Appl. Phys. 102, 083536 (2007)

LT-MBE of GaMnAsLT-MBE of GaMnAs• crystal quality / surface morphologycrystal quality / surface morphology• temperature stability ?temperature stability ?

band-gap thermometry

doping-induced overheating

3 % Mn

5 % Mn

7 % Mn

Plzeň, 5.1.10 13

3D

2D

also: Campion et al., J. Mater. Sci. 15, 727 (2004)

LT-MBE of GaMnAsLT-MBE of GaMnAs• surface morphology: surface morphology: 2D/3D 2D/3D bestbest!!• temperature stabilitytemperature stability

Plzeň, 5.1.10 14

3D

2D

As:Ga=3:1As:Ga=1:1

LT-MBE of GaMnAsLT-MBE of GaMnAs• surface morphology : 2D/3Dsurface morphology : 2D/3D• temperature stabilitytemperature stability• As:(Ga+Mn) stoichiometryAs:(Ga+Mn) stoichiometry

Plzeň, 5.1.10 15

LT-MBE of GaMnAsLT-MBE of GaMnAs• surface morphology : 2D/3Dsurface morphology : 2D/3D• temperature stabilitytemperature stability• As:(Ga+Mn) stoichiometryAs:(Ga+Mn) stoichiometry• annealingannealing

Mn in interstitial position

(double donor, AF coupling)

8 h / 160°C

Mni out-diffusion

increase in p, , M, TC

Plzeň, 5.1.10 16

optimum time

LT-MBE of GaMnAsLT-MBE of GaMnAs• surface morphology : 2D/3Dsurface morphology : 2D/3D• temperature stabilitytemperature stability• As-flux stoichiometricAs-flux stoichiometric• optimal annealingoptimal annealing

Plzeň, 5.1.10 17

optimum temperature

LT-MBE of GaMnAsLT-MBE of GaMnAs• surface morphology : 2D/3Dsurface morphology : 2D/3D• temperature stabilitytemperature stability• As-flux stoichiometricAs-flux stoichiometric• optimal annealingoptimal annealing

optimum time

... for given thickness

Plzeň, 5.1.10 18

176K

12.12.00% Mn, 2% Mn, 200 nm nm

188K

e.g. PRB 78, 054403 (2008); APL 93, 132103 (2008), ...

LT-MBE of GaMnAsLT-MBE of GaMnAs• surface morphology: 2D/3Dsurface morphology: 2D/3D• temperature stabilitytemperature stability• As-flux stoichiometricAs-flux stoichiometric• optimal annealingoptimal annealing• optimal sample thicknessoptimal sample thickness

room temperature in Antarctica ! (-89.2°C, Vostok, 21 July 1983)

Plzeň, 5.1.10 19

GaMnAs, xGaMnAs, xMn Mn seriesseries

optimally grown/annealed samples (Gaoptimally grown/annealed samples (Ga1-x1-xMnMnxxAs, xAs, xMnMn=0.05 – 14 %, 20nm)=0.05 – 14 %, 20nm)

Curie temperaturemagnetization

- transport - magnetometry - IR absorption - MO - ...

• characterization:

Plzeň, 5.1.10 20

• Conventional MOS FET structure

~10-100 Volts (Ohno et al. Nature ’00, APL ’06, ...)

high-dielectrics (Chiba et al., Nature ’08, Sawicky et al., Nature ’09, ...)

GaMnAs, gatingGaMnAs, gating

• alternatively ...

Plzeň, 5.1.10 21

GaMnAs, low voltage gatingGaMnAs, low voltage gating

• Built-in gate

AlGaAs barrier

LT-GaAs barrier

p-i-p, p-i-n, p-n structures

• Benefits

single technology

no surface states

high quality barrier ( ~ 10)

low gate voltage

• Problems !

Plzeň, 5.1.10 22

GaMnAs, low voltage gatingGaMnAs, low voltage gating

• Built-in gate problems

breakdown field ~ 1MV/cm @ 300 K

technology issues

p-type substrates in MBE

unintentional Mn-doping at high TS

backward Mn diffusion

AsGa at low TS

Plzeň, 5.1.10 23

GaMnAs, low voltage gatingGaMnAs, low voltage gating

Corbino geometryCorbino geometry(gate leak reduction)(gate leak reduction)

Olejník et al, PRB 78, 054403 (2008)

Owen et al, NJP 11, 023008 (2009)

gate I-Vgate I-V

n ~ 2x1019 cm-3

barrier 20 nm

xMn = 2.0 %

depletion possible

VG=+3 V -1 V

Plzeň, 5.1.10 24

GaMnAs, low voltage gatingGaMnAs, low voltage gatingR ~ 100%R ~ 100%

TTCC ~ 2 K ~ 2 K

Olejník et al, PRB 78, 054403 (2008)

Owen et al, NJP 11, 023008 (2009)

Corbino geometryCorbino geometry(gate leak reduction)(gate leak reduction)

Plzeň, 5.1.10 25

GaMnAs, low voltage gatingGaMnAs, low voltage gating

tunable coercivitytunable coercivity switching by gate pulsesswitching by gate pulses

bistability :

Plzeň, 5.1.10 26

GaMnAs, low voltage gatingGaMnAs, low voltage gating

0.96

0.98

1.00

1.02

0

45

90

135

180

225

270

315

0.96

0.98

1.00

1.02

AM

R(V

g) =

R(

)/R

av

-1V 3V

30% AMR tuneable30% AMR tuneableVVGG dependent competition of uniaxial dependent competition of uniaxial

and cubic anisotropiesand cubic anisotropies

Plzeň, 5.1.10 27

SummarySummary

• technology optimization, “high” TC

• TC keeps increasing (although hardly)

• GaMnAs close to metals (but still semiconducting)

• gating control of AMR

• Thank you !

Plzeň, 5.1.10 28

top related