product & quotient rules higher order derivatives lesson 2.3

Post on 28-Mar-2015

236 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Product & Quotient RulesHigher Order Derivatives

Lesson 2.3

After this lesson, you should be able to:

• Find the derivative of a function using the Product Rule

• Find the derivative of a function using the Quotient Rule

• Find the derivative of a trig function

• Find a higher-order derivative of a function

Basic Rules

• Product Rule

( ) ( ) ' ( ) '( ) '( ) ( )f x g x f x g x f x g x

2

( ) ( ) '( ) ( ) '( )'

( ) ( )

f x g x f x f x g x

g x g x

How would you put this rule into words?

How would you put this rule into words?

The derivative of a product of 2 functions is equal to the first

times the derivative of the second plus the second

function times the derivative of the first.

Theorem 2.7 The Product Rule

Try Some

• Use additional rules to determine the derivatives of the following function

3 2) ( ) 2 3 6 3b p x x x

) ( ) 3 cos 4sina h x x x x

Try Some More

• Use additional rules to determine the derivatives of the following function

• a)

'

( ) 3 cos 4sin

( ) 3cos 3 sin 4cos

h x x x x

h x x x x x

Try Some More

• Use additional rules to determine the derivatives of the following function

• b)

3 2

' 2 3

( ) 2 3 6 3

( ) 6 6 3 2 3 (6 )

p x x x

p x x x x x

Try Some More

• Use additional rules to determine the derivatives of the following function

• b)

3 2

' 2 3 2 3

( ) 2 3 6 3

( ) 6 6 3 2 3 (6 ) 6 (6 3 2 3)

p x x x

p x x x x x x x x

Try Some More

• Use additional rules to determine the derivatives of the following function

• b)

3 2

' 2 3 2 3

3 2

( ) 2 3 6 3

( ) 6 6 3 2 3 (6 ) 6 (6 3 2 3)

6 (2 3 3)

p x x x

p x x x x x x x x

x x x

NOTE!!! YOU MUST FACTOR COMPLETELY!!!!!!!!!!

GET IT DOWN TO THE POINT WHERE YOU COULD SOLVE FOR THE ZEROS OF THE EQUATION!!!!!

Basic Rule

• Quotient Rule

2

( ) ( ) '( ) ( ) '( )'

( ) ( )

f x g x f x f x g x

g x g x

How would you put this rule into words?

How would you put this rule into words?

The derivative of a quotient of 2 functions is equal to the

denominator times the derivative of the numerator

minus the numerator times the derivative of the denominator

all over the square of the denominator.

Theorem 2.8 The Quotient Rule

Just Checking . . .

• Find the derivatives of the given functions

sin xy

x

4 2( ) 1

1f x x

x

2

7 4( )

5

xq x

x

Just Checking . . .

• Find the derivatives of the given functions

2'

2 2 2

7 4 7(5 ) ( 2 )(7 4)( ) ( )

5 (5 )

x x x xq x q x

x x

Just Checking . . .

• Find the derivatives of the given functions

2'

2 2 2

2 2

2 2

7 4 7(5 ) ( 2 )(7 4)( ) ( )

5 (5 )

35 7 14 8

(5 )

x x x xq x q x

x x

x x x

x

Just Checking . . .

• Find the derivatives of the given functions

2'

2 2 2

2 2 2

2 2 2 2

7 4 7(5 ) ( 2 )(7 4)( ) ( )

5 (5 )

35 7 14 8 7 8 35

(5 ) (5 )

x x x xq x q x

x x

x x x x x

x x

4 2( ) 1

1f x x

x

4

' 3 42

2( ) 1

1

2 ( 0)( 1) ( 2)(1)( ) 4 1

1 ( 1)

f x xx

xf x x x

x x

4

' 3 42

3 42

2( ) 1

1

2 ( 0)( 1) ( 2)(1)( ) 4 1

1 ( 1)

2 1 2 (2)4

1 ( 1)

f x xx

xf x x x

x x

xx x

x x

4

' 3 42

3 42

3 42

2( ) 1

1

2 ( 0)( 1) ( 2)(1)( ) 4 1

1 ( 1)

2 1 2 (2)4

1 ( 1)

8 4 (2)

1 ( 1)

f x xx

xf x x x

x x

xx x

x x

xx x

x x

4

' 3 42

3 42

33 4

2

2( ) 1

1

2 ( 0)( 1) ( 2)(1)( ) 4 1

1 ( 1)

2 1 2 (2)4

1 ( 1)

8 4 (2) 8 4 2

1 ( 1) 1 1

f x xx

xf x x x

x x

xx x

x x

x x x xx x

x x x x

4

' 3 42

3 42

33 4

2

3 3

2( ) 1

1

2 ( 0)( 1) ( 2)(1)( ) 4 1

1 ( 1)

2 1 2 (2)4

1 ( 1)

8 4 (2) 8 4 2

1 ( 1) 1 1

10 4 2 (5 2)

1 1 1 1

f x xx

xf x x x

x x

xx x

x x

x x x xx x

x x x x

x x x x

x x x x

4

' 3 42

3 42

33 4

2

3 3 3

2( ) 1

1

2 ( 0)( 1) ( 2)(1)( ) 4 1

1 ( 1)

2 1 2 (2)4

1 ( 1)

8 4 (2) 8 4 2

1 ( 1) 1 1

10 4 2 (5 2) 2 (5 2

1 1 1 1

f x xx

xf x x x

x x

xx x

x x

x x x xx x

x x x x

x x x x x x

x x x x

2

)

( 1)x

sin xy

x

'2

2

sin cos ( sin )

cos sin

x x x xy y

x xx x x

x

Other Trig Derivatives

• Now try it out

2 2tan sec cot csc

sec sec tan csc csc cot

d dx x x x

dx dxd d

x x x x x xdx dx

) 4 tan ' ?a f f

) sec tand

b x xdx

Theorem 2.9 Derivatives of Trigonometric Function

Other Trig Derivatives

2

4 tan

' 4(tan ) 4 (sec )

f

f

2

2

4 tan ' 4(tan ) 4 (sec )

4(tan sec )

f f

2

22

2

4 tan ' 4(tan ) 4 (sec )

sin4(tan sec ) 4

cos cos

cos sin4

cos

f f

2

22

2 2 2

4 tan ' 4(tan ) 4 (sec )

sin4(tan sec ) 4

cos cos

cos sin 1/ 2(sin 2 ) sin 2 24 4 4

cos cos 2cos

f f

2

22

2 2 2

2

4 tan ' 4(tan ) 4 (sec )

sin4(tan sec ) 4

cos cos

cos sin 1/ 2(sin 2 ) sin 2 24 4 4

cos cos 2cos

sin 2 22

cos

f f

JUST AN EXAMPLE OF HOW COMPLICATED THEY CAN GET!!!! CAN WE SIMPLIFY FURTHER???

Derivatives of the remaining trig functions can be determined the same way.

sin cosd

x xdx

cos sind

x xdx

2tan secd

x xdx

2cot cscd

x xdx

sec sec tand

x x xdx

csc csc cotd

x x xdx

Find Those High Orders

• Find the requested derivatives

2

2 32

) 4 1 ?d y

a y x xdx

4 3 2) ( ) 2 9 6 5 '''( ) ?b p x x x x p x

Find each derivative.

2 21. ( ) 3 2 5 4f x x x x

2. ( ) sinf x x x

'( )f x

'( )f x

2 23 2 8 5 4 3 4x x x x x 2 3 2 324 16 15 20 12 16x x x x x

3 232 36 20 15x x x

cos sin 1x x xcos sinx x x

Find the derivative.

33 4 4 13. ( )

2 3

x xg x

x

'( )g x

3 2 4 3

2

2 3 48 48 3 12 16 3 4 2

2 3

x x x x x x

x

4 312 16 3 4

2 3

x x x

x

4 3 3 2 4 3

2

96 96 6 144 144 9 24 32 6 8

2 3

x x x x x x x x

x

4 3 2

2

72 80 144 17

2 3

x x x

x

Find the derivative.

1 cos1. ( )

sin

xf x

x

'( )f x

2

sin sin 1 cos cos

sin

x x x x

x

2 2

2

sin cos cos

sin

x x x

x

2

1 cos

sin

x

x

2

1 cos

1 cos

x

x

1 cos

1 cos 1 cos

x

x x

1

1 cos x

2 2

2

sin cos cos

sin

x x x

x

( )( )

( )

g xf x

h x

'( )f x

2

' '

( )

h x g x g x h x

h x

'(2) 2, '(2) 4, (2) 4, (2) 3g h g h

2. Find '(2).f

'(2)f

2

2 ' 2 2 ' 2

(2)

h g g h

h

6 16

9

10

9

Equation of a Horizontal Tangent Line

Find the equations of the horizontal tangent lines for 2( )

1

xf x

x

Equation of a Horizontal Tangent Line

Find the equations of the horizontal tangent lines for 2( )

1

xf x

x

2 2'2 2 2 2

(1)( 1) (2 )( ) 1( )( 1) ( 1)

which is 0, when x = 1. And when x = 1, in the original equation, we have (1, 1/2) and (-1, -1/2). So, we have two tangent lines:

x x x xf xx x

1 1 and 2 2

y y

Example: ( ) tanf x x xWrite the equation of the tangent line at

4x

Equation of the Tangent Line

Example: ( ) tanf x x xWrite the equation of the tangent line at

4x

Equation of the Tangent Line

' 2 2 1 3( ) sec tan x = , sec ( ) tan( ) 1

4 4 4 2 2

, from the original equation, at , have ( , ), so the equation of the4 4 4

tangent line is:

3 3

4 2 4 2 8

f x x x x at

So we

b y x

top related