quantum criticality and the phase diagram of the …qpt.physics.harvard.edu/talks/paris09.pdfeun...

Post on 28-Aug-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Quantum criticalityand the phase diagram of

the cuprates

HARVARD

Talk online: sachdev.physics.harvard.edu

Victor Galitski, MarylandRibhu Kaul, Harvard Kentucky

Max Metlitski, HarvardEun Gook Moon, Harvard

Cenke Xu, Harvard Santa Barbara

HARVARD

N. E. Hussey, J. Phys: Condens. Matter 20, 123201 (2008)

Crossovers in transport properties of hole-doped cuprates

0 0.05 0.1 0.15 0.2 0.25 0.3

(K)

Hole doping

2

+ 2

or

FL?

coh?

( )S-shaped

*

-wave SC

(1 < < 2)AFM

upturnsin ( )

Classicalspin

waves

Dilutetriplon

gas

Quantumcritical

Neel order Pressure in TlCuCl3Christian Ruegg et al. , Phys. Rev. Lett. 100, 205701 (2008)

S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).

Canonical quantum critical phase diagram of coupled-dimer antiferromagnet

0 0.05 0.1 0.15 0.2 0.25 0.3

T(K)

Hole doping x

d-wave SC

AFM

Strange metal

xm

Crossovers in transport properties of hole-doped cuprates

Strange metal: quantum criticality ofoptimal doping critical point at x = xm ?

S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).

A. J. Millis, Phys. Rev. B 48, 7183 (1993).

C. M. Varma, Phys. Rev. Lett. 83, 3538 (1999).

0 0.05 0.1 0.15 0.2 0.25 0.3

T(K)

Hole doping x

d-wave SC

AFM

xs

Strange metal

Only candidate quantum critical point observed at low T

Spin density wave order presentbelow a quantum critical point at x = xs

with xs ! 0.12 in the La series of cuprates

! !

FluctuatingFermi

pocketsLargeFermi

surface

StrangeMetal

Spin density wave (SDW)

Theory of quantum criticality in the cuprates

Underlying SDW ordering quantum critical pointin metal at x = xm

“Large” Fermi surfaces in cuprates

!

Hole states

occupied

Electron states

occupied

!

H0 = !!

i<j

tijc†i!ci! "

!

k

!kc†k!ck!

The area of the occupied electron/hole states:

Ae ="

2"2(1! x) for hole-doping x2"2(1 + p) for electron-doping p

Ah = 4"2 !Ae

Spin density wave theory

The electron spin polarization obeys!

!S(r, ")"

= !#(r, ")eiK·r

where !# is the spin density wave (SDW) order parameter,and K is the ordering wavevector. For simplicity, we con-sider K = ($, $).

Spin density wave theory

Spin density wave Hamiltonian

Hsdw = !" ·!

k,!,"

c†k,!!#!"ck+K,"

Diagonalize H0 + Hsdw for !" = (0, 0, ")

Ek± =$k + $k+K

"#$k ! $k+K

2

$+ "2

Increasing SDW order

!!!

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

!

Hole pockets

Electron pockets

Spin density wave theory

Large Fermi surface breaks up intoelectron and hole pockets

Spin density wave theory in hole-doped cuprates

A. J. Millis and M. R. Norman, Physical Review B 76, 220503 (2007). N. Harrison, Physical Review Letters 102, 206405 (2009).

Incommensurate order in YBa2Cu3O6+x

!!

Evidence for connection between linear resistivity andstripe-ordering in a cuprate with a low Tc

Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductorR. Daou, Nicolas Doiron-Leyraud, David LeBoeuf, S. Y. Li, Francis Laliberté, Olivier Cyr-Choinière, Y. J. Jo, L. Balicas, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough & Louis Taillefer, Nature Physics 5, 31 - 34 (2009)

Magnetic field of upto 35 T

used to suppress superconductivity

FluctuatingFermi

pocketsLargeFermi

surface

StrangeMetal

Spin density wave (SDW)

Theory of quantum criticality in the cuprates

Underlying SDW ordering quantum critical pointin metal at x = xm

Increasing SDW orderIncreasing SDW order

LargeFermi

surface

StrangeMetal

Spin density wave (SDW)

d-wavesuperconductor

Small Fermipockets with

pairing fluctuations

Theory of quantum criticality in the cuprates

Onset of d-wave superconductivityhides the critical point x = xm

Fluctuating, paired Fermi

pockets

LargeFermi

surface

StrangeMetal

Spin density wave (SDW)

d-wavesuperconductor

Small Fermipockets with

pairing fluctuations

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Fluctuating, paired Fermi

pockets

LargeFermi

surface

StrangeMetal

Spin density wave (SDW)

d-wavesuperconductor

Small Fermipockets with

pairing fluctuations

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Fluctuating, paired Fermi

pockets

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin density wave (SDW)

Spin gap

Thermallyfluctuating

SDW

d-wavesuperconductor

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Fluctuating, paired Fermi

pockets

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin density wave (SDW)

Spin gap

Thermallyfluctuating

SDW

d-wavesuperconductor

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Classicalspin

waves

Dilutetriplongas

Quantumcritical

Neel order

Criticality of the coupled dimer antiferromagnet at x=xs

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin density wave (SDW)

Spin gap

Thermallyfluctuating

SDW

d-wavesuperconductor

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Criticality of the topological change in Fermi surface at x=xm

Increasing SDW orderIncreasing SDW order

1. Phenomenological quantum theory of competition between superconductivity and SDW order Survey of recent experiments

2. Overdoped vs. underdoped pairing Electronic theory of competing orders

3. Theory of SDW quantum critical pointDominance of planar graphs

Outline

1. Phenomenological quantum theory of competition between superconductivity and SDW order Survey of recent experiments

2. Overdoped vs. underdoped pairing Electronic theory of competing orders

3. Theory of SDW quantum critical pointDominance of planar graphs

Outline

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

Write down a Landau-Ginzburg action for the quantum fluctua-tions of the SDW order (!") and superconductivity (#):

S =!

d2rd$

"12(%! !")2 +

c2

2(!x!")2 +

r

2!"2 +

u

4#!"2

$2

+ & !"2 |#|2%

+!

d2r

"|(!x " i(2e/!c)A)#|2 " |#|2 +

|#|4

2

%

where & > 0 is the repulsion between the two order parameters,and !#A = H is the applied magnetic field.

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).See also E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76, 909 (2004);S. A. Kivelson, D.-H. Lee, E. Fradkin, and V. Oganesyan, Phys. Rev. B 66, 144516 (2002).

Write down a Landau-Ginzburg action for the quantum fluctua-tions of the SDW order (!") and superconductivity (#):

S =!

d2rd$

"12(%! !")2 +

c2

2(!x!")2 +

r

2!"2 +

u

4#!"2

$2

+ & !"2 |#|2%

+!

d2r

"|(!x " i(2e/!c)A)#|2 " |#|2 +

|#|4

2

%

where & > 0 is the repulsion between the two order parameters,and !#A = H is the applied magnetic field.

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).See also E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76, 909 (2004);S. A. Kivelson, D.-H. Lee, E. Fradkin, and V. Oganesyan, Phys. Rev. B 66, 144516 (2002).

Write down a Landau-Ginzburg action for the quantum fluctua-tions of the SDW order (!") and superconductivity (#):

S =!

d2rd$

"12(%! !")2 +

c2

2(!x!")2 +

r

2!"2 +

u

4#!"2

$2

+ & !"2 |#|2%

+!

d2r

"|(!x " i(2e/!c)A)#|2 " |#|2 +

|#|4

2

%

where & > 0 is the repulsion between the two order parameters,and !#A = H is the applied magnetic field.

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).See also E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76, 909 (2004);S. A. Kivelson, D.-H. Lee, E. Fradkin, and V. Oganesyan, Phys. Rev. B 66, 144516 (2002).

H

SC

M

SC+SDW

SDW(Small Fermi

pockets)

"Normal"(Large Fermi

surface)

Hc2

Hsdw

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

H

SC

M

SC+SDW

SDW(Small Fermi

pockets)

"Normal"(Large Fermi

surface)

Hc2

Hsdw

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

• SDW order is more stable in the metalthan in the superconductor: xm > xs.

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

H

SC

M

SC+SDW

SDW(Small Fermi

pockets)

"Normal"(Large Fermi

surface)

Hc2

Hsdw

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

• SDW order is more stable in the metalthan in the superconductor: xm > xs.

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

H

SC

M

SC+SDW

SDW(Small Fermi

pockets)

"Normal"(Large Fermi

surface)

Hc2

Hsdw

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

• For doping with xs < x < xm, SDW order appearsat a quantum phase transition at H = Hsdw > 0.

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

H

SC

M

SC+SDW

SDW(Small Fermi

pockets)

"Normal"(Large Fermi

surface)

Hc2

Hsdw

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

Neutron scattering on La1.855Sr0.145CuO4

J. Chang et al., Phys. Rev. Lett. 102, 177006 (2009).

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

J. Chang, N. B. Christensen, Ch. Niedermayer, K. Lefmann,

H. M. Roennow, D. F. McMorrow, A. Schneidewind, P. Link, A. Hiess,

M. Boehm, R. Mottl, S. Pailhes, N. Momono, M. Oda, M. Ido, and

J. Mesot, Phys. Rev. Lett. 102, 177006

(2009).

J. Chang, Ch. Niedermayer, R. Gilardi, N.B. Christensen, H.M. Ronnow,

D.F. McMorrow, M. Ay, J. Stahn, O. Sobolev, A. Hiess, S. Pailhes, C. Baines, N. Momono,

M. Oda, M. Ido, and J. Mesot, Physical Review B 78, 104525 (2008).

H

SC

M

SC+SDW

SDW(Small Fermi

pockets)

"Normal"(Large Fermi

surface)

Hc2

Hsdw

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

Neutron scattering on YBa2Cu3O6.45

D. Haug et al., Phys. Rev. Lett. 103, 017001 (2009).

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

0.3 0.4 0.5 0.6 0.7

0

500

1000

1500

0.3 0.4 0.5 0.6 0.7

0

500

1000

1500

0.4 0.5 0.6

1500

1600

1700

0.3 0.4 0.5 0.6 0.7

-500

0

500

0.4 0.5 0.6

0.4

0.5

0.6

0.7

QH (r.l.u.)

I(14.9T,2K) ! I(0T,2K)

(d)

(c)

H = 14.9T

(b)

(a)

ba

I (14.9T, 2K) ! I (0T, 2K)

H = 0T

Inte

nsity (

counts

/ ~

10 m

in)

QH (r.l.u.)

H = 14.9T

2K

50K

QH (r.l.u.)

QK (r.l.u.)

Inte

nsity (

counts

/ ~

1 m

in)

Inte

nsity (

counts

/ ~

10 m

in)

Inte

nsity (

counts

/ ~

10 m

in)

QK

QH

0.3 0.4 0.5 0.6 0.7

20

40

60

80

100

(b)

(b)(a)

Inte

nsity (

a.u

.)

H = 0T

H = 13.5T

Inte

nsity (

counts

/ ~

12 m

in)

QH (r.l.u.)

H = 0T

H = 14.9T

0 1 2 3 4

100

1000

T = 2K

T = 2K

Energy E (meV)

D. Haug, V. Hinkov, A. Suchaneck, D. S. Inosov, N. B. Christensen, Ch. Niedermayer, P. Bourges, Y. Sidis, J. T. Park, A. Ivanov, C. T. Lin, J. Mesot, and B. Keimer, Phys. Rev. Lett. 103, 017001 (2009)

H

SC

M

SC+SDW

SDW(Small Fermi

pockets)

"Normal"(Large Fermi

surface)

Hc2

Hsdw

N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature 447, 565 (2007).S. E. Sebastian, N. Harrison, C. H. Mielke, Ruixing Liang, D. A. Bonn, W.~N.~Hardy, and G. G. Lonzarich, arXiv:0907.2958

Quantum oscillations without Zeeman splitting

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

Increasing SDW order

Nature 450, 533 (2007)

Quantum oscillations

H

SC

M

SC+SDW

SDW(Small Fermi

pockets)

"Normal"(Large Fermi

surface)

Hc2

Hsdw

Change in frequency of quantum oscillations in electron-doped materials identifies xm = 0.165

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

Increasing SDW order Increasing SDW order

Nd2!xCexCuO4

T. Helm, M. V. Kartsovni, M. Bartkowiak, N. Bittner,

M. Lambacher, A. Erb, J. Wosnitza, R. Gross, arXiv:0906.1431

Increasing SDW orderIncreasing SDW order

H

SC

M

SC+SDW

SDW(Small Fermi

pockets)

"Normal"(Large Fermi

surface)

Hc2

Hsdw

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

Neutron scattering at H=0 in same material identifies xs = 0.14 < xm

Increasing SDW order Increasing SDW order

0 100 200 300 4005

10

20

50

100

200

500

Temperature (K)

Spin

cor

rela

tion

leng

th !

/a

x=0.154x=0.150x=0.145x=0.134x=0.129x=0.106x=0.075x=0.038

E. M. Motoyama, G. Yu, I. M. Vishik, O. P. Vajk, P. K. Mang, and M. Greven,Nature 445, 186 (2007).

Nd2!xCexCuO4

H

SC

M

SC+SDW

SDW(Small Fermi

pockets)

"Normal"(Large Fermi

surface)

Hc2

Hsdw

Phenomenological quantum theory of competition between superconductivity (SC) and spin-density wave (SDW) order

Experiments on Nd2!xCexCuO4 show that at lowfields xs = 0.14, while at high fields xm = 0.165.

Increasing SDW order Increasing SDW order

H

SC

M

SC+SDW

SDW(Small Fermi

pockets)

"Normal"(Large Fermi

surface)

Hc2

Hsdw

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Fluctuating, paired Fermi

pockets

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Fluctuating, paired Fermi

pockets

1. Phenomenological quantum theory of competition between superconductivity and SDW order Survey of recent experiments

2. Overdoped vs. underdoped pairing Electronic theory of competing orders

3. Theory of SDW quantum critical pointDominance of planar graphs

Outline

1. Phenomenological quantum theory of competition between superconductivity and SDW order Survey of recent experiments

2. Overdoped vs. underdoped pairing Electronic theory of competing orders

3. Theory of SDW quantum critical pointDominance of planar graphs

Outline

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Fluctuating, paired Fermi

pockets

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Theory of theonset of d-wave

superconductivityfrom a

large Fermi surface

Fluctuating, paired Fermi

pockets

Increasing SDW order

!!! !

Spin-fluctuation exchange theory of d-wave superconductivity in the cuprates

!"

D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986) K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)

Fermions at the large Fermi surface exchangefluctuations of the SDW order parameter !".

Increasing SDW order

++_

_

!

d-wave pairing of the large Fermi surface

!ck!c"k#" # !k = !0(cos(kx)$ cos(ky))

!"

K

D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986) K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)

Ar. Abanov, A. V. Chubukov and J. Schmalian, Advances in Physics 52, 119 (2003).

Approaching the onset of antiferromagnetism in the spin-fluctuation theory

Ar. Abanov, A. V. Chubukov and J. Schmalian, Advances in Physics 52, 119 (2003).

Approaching the onset of antiferromagnetism in the spin-fluctuation theory

:

• Tc increases upon approaching the SDW transition.SDW and SC orders do not compete, but attract each other.

• No simple mechanism for nodal-anti-nodal dichotomy.

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

Fluctuating, paired Fermi

pockets

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

Theory of theonset of d-wave

superconductivityfrom small

Fermi pockets

Fluctuating, paired Fermi

pockets

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

Fluctuating, paired Fermi

pockets

Physics ofcompetition:

d-wave SC andSDW “eat up’same pieces ofthe large Fermi

surface.

Begin with SDW ordered state, and rotate to a framepolarized along the local orientation of the SDW order !̂"

!c!c"

"= R

!#+

##

"; R† !̂" · !$R = $z ; R†R = 1

Theory of underdoped cuprates

Increasing SDW order

!!! !

H. J. Schulz, Physical Review Letters 65, 2462 (1990)

With R =!

z! !z"#z# z"!

"

the theory is invariant under theU(1) gauge transformation

z! " ei"z! ; !+ " e$i"!+ ; !$ " ei"!$

and the SDW order is given by

"̂# = z"!"$!#z#

Theory of underdoped cuprates

Theory of underdoped cuprates

Starting from the “SDW-fermion” modelwith Lagrangian

L =!

k

c†k!

"!

!"! #k

#ck!

!Esdw

!

i

c†i! $̂%i · $&!"ci"eiK·ri

+12t

$!µ $̂%

%2

Theory of underdoped cuprateswe obtain a U(1) gauge theory of

• fermions !p with U(1) charge p = ±1 and pocket Fermisurfaces,

• relativistic complex scalars z! with charge 1, represent-ing the orientational fluctuations of the SDW order

• Shraiman-Siggia term

L! =!

k,p=±

"!†kp

#"

"#! ipA" + $k!pA

$!kp

! Esdw!†kpp!k+K,p

%

Theory of underdoped cuprateswe obtain a U(1) gauge theory of

• fermions !p with U(1) charge p = ±1 and pocket Fermisurfaces,

• relativistic complex scalars z! with charge 1, represent-ing the orientational fluctuations of the SDW order

• Shraiman-Siggia term

Lz =1t

!|(!! ! iA! )z"|2 + v2|"! iA)z"|2 + i"(|z"|2 ! 1)

"

• d-wave superconductivity.

• Nodal-anti-nodal dichotomy: strong pairing near (!, 0),(0, !), and weak pairing near zone diagonals.

• Tc decreases as spin correlation increases (competingorder e!ect).

• Shift in quantum critical point of SDW ordering:gauge fluctuations are stronger in the superconduc-tor.

• After onset of superconductivity, monopoles condenseand lead to confinement and nematic and/orvalence bond solid (VBS) order.

Features of superconductivity

V. Galitski and S. Sachdev, Physical Review B 79, 134512 (2009).

• d-wave superconductivity.

• Nodal-anti-nodal dichotomy: strong pairing near (!, 0),(0, !), and weak pairing near zone diagonals.

• Tc decreases as spin correlation increases (competingorder e!ect).

• Shift in quantum critical point of SDW ordering:gauge fluctuations are stronger in the superconduc-tor.

• After onset of superconductivity, monopoles condenseand lead to confinement and nematic and/orvalence bond solid (VBS) order.

Features of superconductivity

Eun Gook Moon and S. Sachdev, Physical Review B 80, 035117 (2009).

• d-wave superconductivity.

• Nodal-anti-nodal dichotomy: strong pairing near (!, 0),(0, !), and weak pairing near zone diagonals.

• Tc decreases as spin correlation increases (competingorder e!ect).

• Shift in quantum critical point of SDW ordering:gauge fluctuations are stronger in the superconduc-tor.

• After onset of superconductivity, monopoles condenseand lead to confinement and nematic and/orvalence bond solid (VBS) order.

Features of superconductivity

R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, 045110 (2008).

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

Fluctuating, paired Fermi

pockets

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

d-waveSC

T

Tsdw

R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Physical Review B 78, 045110 (2008).

Fluctuating, paired Fermi

pockets

VBSand/ornematic

1. Phenomenological quantum theory of competition between superconductivity and SDW order Survey of recent experiments

2. Overdoped vs. underdoped pairing Electronic theory of competing orders

3. Theory of SDW quantum critical pointDominance of planar graphs

Outline

1. Phenomenological quantum theory of competition between superconductivity and SDW order Survey of recent experiments

2. Overdoped vs. underdoped pairing Electronic theory of competing orders

3. Theory of SDW quantum critical pointDominance of planar graphs

Outline

FluctuatingFermi

pocketsLargeFermi

surface

StrangeMetal

Spin density wave (SDW)

Theory of quantum criticality in the cuprates

Underlying SDW ordering quantum critical pointin metal at x = xm

Increasing SDW orderIncreasing SDW order

Max Metlitski

M. Metlitski and S. Sachdev, to appear

Ar. Abanov, A.V. Chubukov, and J. Schmalian, Advances in Physics 52, 119 (2003)

Sung-Sik Lee, arXiv:0905.4532.

Start from the “spin-fermion” model

Z =!Dc!D!" exp (!S)

S =!

d#"

k

c†k!

#$

$#! %k

$ck!

!&

!d#

"

i

c†i!!"i · !'!"ci"eiK·ri

+!

d#d2r

%($r !")2 +

1c2

($# !")2&

! = 1

! = 2

! = 4

! = 3

Low energy fermions!!

1", !!2"

" = 1, . . . , 4

Lf = !!†1"

!"## ! iv!

1 · !r

"!!

1" + !!†2"

!"## ! iv!

2 · !r

"!!

2"

v!=11 = (vx, vy), v!=1

2 = (!vx, vy)

Lf = !!†1"

!"## ! iv!

1 · !r

"!!

1" + !!†2"

!"## ! iv!

2 · !r

"!!

2"

v1 v2

!2 fermionsoccupied

!1 fermionsoccupied

Order parameter: L! =12

(!r !")2 +s

2!"2 +

u

4!"4

Lf = !!†1"

!"## ! iv!

1 · !r

"!!

1" + !!†2"

!"## ! iv!

2 · !r

"!!

2"

Order parameter: L! =12

(!r !")2 +s

2!"2 +

u

4!"4

“Yukawa” coupling: Lc = !!" ·!#!†

1"!$"##!2# + #!†

2"!$"##!1#

"

Lf = !!†1"

!"## ! iv!

1 · !r

"!!

1" + !!†2"

!"## ! iv!

2 · !r

"!!

2"

Order parameter: L! =12

(!r !")2 +s

2!"2 +

u

4!"4

“Yukawa” coupling: Lc = !!" ·!#!†

1"!$"##!2# + #!†

2"!$"##!1#

"

Hertz-Millis theoryIntegrate out fermions and obtain non-local corrections to L!

L! =12

!"2!q2 + #|$|

"/2 ; # =

2%vxvy

Exponent z = 2 and mean-field criticality (upto logarithms)

Lf = !!†1"

!"## ! iv!

1 · !r

"!!

1" + !!†2"

!"## ! iv!

2 · !r

"!!

2"

Order parameter: L! =12

(!r !")2 +s

2!"2 +

u

4!"4

“Yukawa” coupling: Lc = !!" ·!#!†

1"!$"##!2# + #!†

2"!$"##!1#

"

Hertz-Millis theory

But, higher order terms contain an infinitenumber of marginal couplings . . . . . .

Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, 255702 (2004).

Integrate out fermions and obtain non-local corrections to L!

L! =12

!"2!q2 + #|$|

"/2 ; # =

2%vxvy

Exponent z = 2 and mean-field criticality (upto logarithms)

Lf = !!†1"

!"## ! iv!

1 · !r

"!!

1" + !!†2"

!"## ! iv!

2 · !r

"!!

2"

Order parameter: L! =12

(!r !")2 +s

2!"2 +

u

4!"4

“Yukawa” coupling: Lc = !!" ·!#!†

1"!$"##!2# + #!†

2"!$"##!1#

"

Perform RG on both fermions and !",using a local field theory.

Lf = !!†1"

!"## ! iv!

1 · !r

"!!

1" + !!†2"

!"## ! iv!

2 · !r

"!!

2"

Order parameter: L! =12

(!r !")2 +s

2!"2 +

u

4!"4

“Yukawa” coupling: Lc = !!" ·!#!†

1"!$"##!2# + #!†

2"!$"##!1#

"

Lf = !!†1"

!"## ! iv!

1 · !r

"!!

1" + !!†2"

!"## ! iv!

2 · !r

"!!

2"

With z = 2 scaling, ! is irrelevant.So we take ! ! 0

( watch for dangerous irrelevancy).

Order parameter: L! =12

(!r !")2 +s

2!"2 +

u

4!"4

“Yukawa” coupling: Lc = !!" ·!#!†

1"!$"##!2# + #!†

2"!$"##!1#

"

Set !" wavefunction renormalization bykeeping co-e!cient of (!r !")2 fixed (as usual).

Lf = !!†1"

!"## ! iv!

1 · !r

"!!

1" + !!†2"

!"## ! iv!

2 · !r

"!!

2"

Order parameter: L! =12

(!r !")2 +s

2!"2 +

u

4!"4

“Yukawa” coupling: Lc = !!" ·!#!†

1"!$"##!2# + #!†

2"!$"##!1#

"

Y. Huh and S. Sachdev, Phys. Rev. B 78, 064512 (2008).

Set fermion wavefunction renormalization bykeeping Yukawa coupling fixed.

Lf = !!†1"

!"## ! iv!

1 · !r

"!!

1" + !!†2"

!"## ! iv!

2 · !r

"!!

2"

Order parameter: L! =12

(!r !")2 +s

2!"2 +

u

4!"4

“Yukawa” coupling: Lc = !!" ·!#!†

1"!$"##!2# + #!†

2"!$"##!1#

"

Lf = !!†1"

!"## ! iv!

1 · !r

"!!

1" + !!†2"

!"## ! iv!

2 · !r

"!!

2"

We find consistent two-loop RG factors, as ! ! 0, for thevelocities vx, vy, and the wavefunction renormalizations.

Consistency check: the expression for the boson damp-

ing constant, " =2

#vxvy, is preserved under RG.

RG-improved Migdal-Eliashberg theory

RG flow can be computed a 1/N expansion (with Nfermion species) in terms of a single dimensionless

coupling ! = vy/vx whose flow obeys

d!

d"= ! 3

#N

!2

1 + !2

RG-improved Migdal-Eliashberg theory

RG flow can be computed a 1/N expansion (with Nfermion species) in terms of a single dimensionless

coupling ! = vy/vx whose flow obeys

d!

d"= ! 3

#N

!2

1 + !2

The velocities flow as

1vx

dvx

d!=

A(") + B(")2

;1vy

dvy

d!=!A(") + B(")

2

A(") " 3#N

"

1 + "2

B(") " 12#N

!1"! "

" !1 +

!1"! "

"tan!1 1

"

"

RG-improved Migdal-Eliashberg theory

RG flow can be computed a 1/N expansion (with Nfermion species) in terms of a single dimensionless

coupling ! = vy/vx whose flow obeys

d!

d"= ! 3

#N

!2

1 + !2

The anomalous dimensions of !" and # are

$! =1

2%N

!1&! & +

!1&2

+ &2

"tan!1 1

&

"

$" = ! 14%N

!1&! &

" !1 +

!1&! &

"tan!1 1

&

"

Dynamical Nesting

RG-improved Migdal-Eliashberg theory

v1 v2

Bare Fermi surface

! = vy/vx ! 0 logarithmically in the infrared.

Dynamical Nesting

RG-improved Migdal-Eliashberg theory! = vy/vx ! 0 logarithmically in the infrared.

Dressed Fermi surface

Dynamical Nesting

RG-improved Migdal-Eliashberg theory

Bare Fermi surface

! = vy/vx ! 0 logarithmically in the infrared.

Dynamical Nesting

RG-improved Migdal-Eliashberg theory

Dressed Fermi surface

! = vy/vx ! 0 logarithmically in the infrared.

RG-improved Migdal-Eliashberg theory

In !" SDW fluctuations, characteristic q and # scale as

q ! #1/2 exp

!" 3

64$2

"ln(1/#)

N

#3$

.

However, 1/N expansion cannot be trustedin the asymptotic regime.

! = vy/vx ! 0 logarithmically in the infrared.

!" propagator

fermion propagator

1N

1(q2 + !|"|)

1

v · q + i!" + i1

N!

#v

!"F

!v2q2

"

"

New infra-red singularities as ! ! 0 at higher loops(Breakdown of Migdal-Eliashberg)

!" propagator

fermion propagator

Dangerous

1N

1(q2 + !|"|)

1

v · q + i!" + i1

N!

#v

!"F

!v2q2

"

"

New infra-red singularities as ! ! 0 at higher loops(Breakdown of Migdal-Eliashberg)

Ignoring fermion self energy: ! 1N2

" 1!2" 1

"

New infra-red singularities as ! ! 0 at higher loops(Breakdown of Migdal-Eliashberg)

Actual order ! 1N0

Ignoring fermion self energy: ! 1N2

" 1!2" 1

"

New infra-red singularities as ! ! 0 at higher loops(Breakdown of Migdal-Eliashberg)

Double line representation• A way to compute the order of a diagram.

• Extra powers of N come from the Fermi-surface

• What are the conditions for all propagators to be on the Fermi surface?

• Concentrate on diagrams involving a single pair of hot-spots

• Any bosonic momentum may be (uniquely) written as

R. Shankar, Rev. Mod. Phys. 66, 129 (1994).S. W. Tsai, A. H. Castro Neto, R. Shankar, and D. K. Campbell, Phys. Rev. B 72, 054531 (2005).

=

New infra-red singularities as ! ! 0 at higher loops(Breakdown of Migdal-Eliashberg)

Actual order ! 1N0

Singularities as ! ! 0 appear when fermions in closed blueand red line loops are exactly on the Fermi surface

Graph is planar after turning fermion propagators also into double lines by drawing additional dotted single line loops for each fermion loop

Actual order ! 1N0

=

New infra-red singularities as ! ! 0 at higher loops(Breakdown of Migdal-Eliashberg)

Sung-Sik Lee, arXiv:0905.4532

A consistent analysis requires resummation of all planar graphs

Actual order ! 1N0

=

New infra-red singularities as ! ! 0 at higher loops(Breakdown of Migdal-Eliashberg)

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

LargeFermi

surface

StrangeMetal

d-waveSC

T

Tsdw

Fluctuating, paired Fermi

pockets

Fluctuating, paired Fermi

pockets

VBS and/or Ising nematic order

SDWInsulator

T*

Tc

Hc2

94

Identified quantum criticality in cuprate superconductors with a critical point at optimal

doping associated with onset of spin density wave order in a metal

Conclusions

Elusive optimal doping quantum critical point has been “hiding in plain sight”.

It is shifted to lower doping by the onset of superconductivity

top related