response-based analysis of fpso systems for squall loadings omae response-based analysis o… ·...

Post on 04-Jun-2018

233 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1Challenge the future

Response-based analysis of FPSO systems for squall loadingsOMAE2012 Rio de JaneiroJuly 3rd 2012

OMAE2012-83633 - Joerik Minnebo - Amir Izadparast - Arun Duggal - René Huijsmans

2Challenge the future

Introduction

0 2000 4000 6000 8000 10000time[s]

(1‐minavg)w

indspeed[m/s]

originalsquallscaledsquall

3Challenge the future

Research goals

• Characterize the available squalls• Influence of the individual squall parameters• Compare the current design practice to a response based method

Presentation outline

4Challenge the future

Squall characterization

0 2000 4000 6000 8000 10000‐2

0

2

4

6

8

10

12

14

time[s]

windspeed[m/s]

OMAE2011-49855

• Rising slope• Peak wind speed• Decay (half‐life) time

OMAE2006-92328

5Challenge the future

Squall characterizationCorrelations and distributions

12 14 16 18 20 22

0.01

0.05

0.1

0.25

0.5

0.750.90.950.99

Peakwindspeedu0[m/s]

p(u0)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.01

0.05

0.1

0.25

0.5

0.750.90.950.99

Risingslopesr(m/s2)

p(s r)

0 50 100 150

0.01

0.25

0.5

0.75

0.9

0.95

0.99

Decayhalflifetime[min]

p()

OMAE2011-49855

10‐510‐410‐310‐210‐11000

10

20

30

40

50

60

70

80

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

CurrentPracticeDesignValueSampleDistributionGPDfit58UnscaledSqualls

6Challenge the future

Spread Mooring Analysis

OMAE2011-49855

7Challenge the future

Spread Mooring AnalysisResponse Characteristics

10 12 14 16 18 20 220

1

peakwindspeedu0[m/s]

norm

alizedoffset

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.080

1

risingslopesr[m/s2]

norm

alizedoffset

0 50 100 1500

1

decayhaflifetime[min]

norm

alizedoffset

8Challenge the future

Spread Mooring AnalysisResponse Characteristics

20

202

uCukAC

y styw

st

st

dyny

y

yst

time[s]

Offset[m

]

ydyn

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.51

1.2

1.4

1.6

1.8

2

y dyn/yst

StepResponse

Tn=100sTn=130sTn=160sTn=190sTn=220sTn=250sTn=280sTn=310sTn=340sTn=370sTn=400s

u0

time[s]

windspeed

9Challenge the future

Spread Mooring AnalysisResponse Characteristics

050

100150

200

00.050.10.150.20.25

0.9

1

1.1

1.2

1.3

1.4

1.5

sr[m/s2]

[min]

y dyn/yst

=0.2=0.3=0.4=0.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.51

1.2

1.4

1.6

1.8

2

y dyn/yst

StepResponse

Tn=100sTn=130sTn=160sTn=190sTn=220sTn=250sTn=280sTn=310sTn=340sTn=370sTn=400s

10Challenge the future

Design Value Estimation

• Current Design Practice• Response Based Methods

“The 100 year event”

• Spread moored FPSO• 800m water depth• Tn = 290s• = 0.4

11Challenge the future

Design Value EstimationCurrent Design Practice

smu /3.27100 time[s]

(1‐minavg)w

indspeed[m/s]

u100originalsquallscaledsquall

12Challenge the future

Design Value EstimationCurrent Design Practice

29 30 31 32 33 34 35 36 370

5

10

15

20

offset[m]

numberofevents

my 8.35100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

5

10

15

20

25

30

35

40

risingslopesr[m/s2]

numberofevents

UnscaledsquallsScaledsqualls

13Challenge the future

Design Value EstimationResponse based on dynamic amplification

027.10 5 10 15 20 25 300

5

10

15

20

25

30

35

40

peakwindspeedu0[m/s]

offset[m

]

0 5 10 15 20 25 300

5

10

15

20

25

30

35

40

peakwindspeedu0[m/s]

offset[m

]

static=0.0402*u02

0 5 10 15 20 25 300

5

10

15

20

25

30

35

40

peakwindspeedu0[m/s]

offset[m

]

offset=0.0413*u02

static=0.0402*u02

20

20

20 0402.0

2uuCu

kAC

y styw

st

14Challenge the future

Design Value EstimationPeak wind speed relation and dynamic amplification

024.1, rsE

15Challenge the future

Design Value EstimationPeak wind speed relation and dynamic amplification

200 )( uCuyy ststdyn

0 5 10 15 20 25 300

10

20

30

40

50

peakwindspeedu0[m/s]

offset[m

]

static=0.0402*u02

offset=0.0413*u02

10‐410‐310‐210‐110010

15

20

25

30

35

40

ProbabilityofExceedancePE

Peakwindspeed[m/s]

1year

10year

100year

1000year

EstimatedProbabilityDistributionSampleDistributionExtremeValues

16Challenge the future

Design Value Estimation

• Case I Expected Values• Case II Maximum Observed Values• Case III 100 Year Return Values

Peak wind speed relation and dynamic amplification

17Challenge the future

Design Value Estimation

10‐510‐410‐310‐210‐11000

10

20

30

40

50

60

70

80

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

CurrentPracticeDesignValueCaseI:ExpectedValuesCaseII:Max.ObservedValuesCaseIII:100YearReturnValuesStaticValuesStepResponse

Peak wind speed relation and dynamic amplification

= 1.024 = 1.110 = 1.213ααα

18Challenge the future

Conclusions

• Characterized the squall events••••

Found the governing response characteristicsCompared the different DVE methodsCDP for spread moored is highly conservativeBest method is based on response knowledge 

0 2000 4000 6000 8000 10000‐2

0

2

4

6

8

10

12

14

time[s]

windspeed[m/s]

0 5 10 15 20 25 300

5

10

15

20

25

30

35

40

peakwindspeedu0[m/s]

offset[m

]

offset=0.0413*u02

static=0.0402*u02

10‐5

10‐4

10‐3

10‐2

10‐1

1000

10

20

30

40

50

60

70

80

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

SampleDistributionCurrentDesignPracticeStaticOffsetValuesPWSrelation=1.027StepResponse=1.255DirectExtrapolationMonteCarloSimulations

19Challenge the future

Thank you for your attention!

20Challenge the future

14 Bachelor Programs38 Master Programs16,400 students

Master Program “Offshore Engineering”• Partly Civil Engineering• Partly Mechanical Engineering• Partly Maritime Engineering

21Challenge the future

22Challenge the future

Introduction

23Challenge the future

Design Value EstimationDirect Extrapolation

my 6.37100 10‐510‐410‐310‐210‐1100

0

10

20

30

40

50

60

70

8058unscaledsqualls

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

CurrentDesignPractice58unscaledsquallsEstimatedProbabilityDistribution95%confidenceintervals

24Challenge the future

Design Value EstimationMonte Carlo Simulations

my 0.30100 10‐510‐410‐310‐210‐1100

0

10

20

30

40

50

60

70

80

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

CurrentPracticeDesignValueSampleDistributionGPDfit58UnscaledSqualls

25Challenge the future

Design Value EstimationPeak wind speed relation and dynamic amplification

10‐510‐410‐310‐210‐11000

10

20

30

40

50

60

70

80

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

SampleDistributionCurrentDesignPractice

10‐510‐410‐310‐210‐11000

10

20

30

40

50

60

70

80

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

SampleDistributionCurrentDesignPracticeStaticOffsetValues

10‐510‐410‐310‐210‐11000

10

20

30

40

50

60

70

80

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

SampleDistributionCurrentDesignPracticeStaticOffsetValuesPWSrelation=1.027

10‐510‐410‐310‐210‐11000

10

20

30

40

50

60

70

80

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

SampleDistributionCurrentDesignPracticeStaticOffsetValuesPWSrelation=1.027StepResponse=1.255

10‐510‐410‐310‐210‐11000

10

20

30

40

50

60

70

80

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

SampleDistributionCurrentDesignPracticeStaticOffsetValuesPWSrelation=1.027StepResponse=1.255DirectExtrapolation

10‐510‐410‐310‐210‐11000

10

20

30

40

50

60

70

80

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

SampleDistributionCurrentDesignPracticeStaticOffsetValuesPWSrelation=1.027StepResponse=1.255DirectExtrapolationMonteCarloSimulations

26Challenge the future

Turret Mooring

27Challenge the future

Turret Mooring

0

0

Xoffset[m]

Yoffset[m

]

0degrees

45degrees

90degrees

135degrees

180degrees

Response characteristicsu0

time[s]

windspeed

28Challenge the future

Turret MooringResponse characteristics

12 14 16 18 20 22 240

5

10

15

20

25

peakwindspeed[m/s]

Offset[m

]

0deg45deg90deg135deg180deg

29Challenge the future

Turret MooringResponse characteristics

30Challenge the future

‐60 ‐50 ‐40 ‐30 ‐20 ‐10 0 10 20 30‐10

0

10

20

30

40

Xoffset[m]

Yoffset[m

]

0deg18deg36deg54deg72deg90deg108deg126deg144deg162deg180deg

Turret MooringCurrent Design Practice

my 7.35100

31Challenge the future

Turret MooringDynamic Amplification limitations

α 2.60 α 2.67

32Challenge the future

Turret MooringDynamic Amplification limitations

12 14 16 18 20 22 240

5

10

15

20

25

30

peakwindspeed[m/s]

Offset[m

]

0deg45deg90deg135deg180degStaticMaxobservedDA100yearreturnDAMaxDA

33Challenge the future

Turret MooringDynamic Amplification limitations

10‐510‐410‐310‐210‐11000

10

20

30

40

50

60

ProbabilityofExceedancePE

Offset[m

]

100yearreturnvalues

CurrentPracticeDesignValueStaticResponseMaximumDAMaximumObservedDA100yearreturnDA

top related