seismic response of stratified sites and implications for ... · ahmed elgamal, professor, ucsd....

Post on 25-Aug-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

San Diego Regional Chapter

Workshop: Liquefaction Evaluation, Mapping, Simulation and Mitigation September 12, 2014

Geoffrey R. Martin, Professor Emeritus, USC&

Ahmed Elgamal, Professor, UCSD

Seismic Response of Stratified Sites and Implications for Foundation Systems

1

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Representative Stratified Site: Liquefaction Design Issues

2

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Bridges – Lateral Spread Design Issues

3

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Stratified Sites: Variability of Triggering Factors of Safety

4

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Historical DevelopmentsLaboratory Simulation of Seismic Loading

Cyclic Simple Shear Stress Induced by Seismic Loading

Seed et al. / Finn et al.1960’s / 1970’s

5

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Historical Developments

Laboratory Test Results

Representative/Cyclic TriaxialTest Results (Finn, 1971)

Representative/Cyclic Simple Shear Test Results (Peacock and Seed, 1968)

6

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Stress Controlled Cyclic Simple Shear Tests

7

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Constant Volume Strain Controlled Cyclic Simple Shear Tests

8

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Laboratory Tests: Silty Sand – Transitional Behavior

9

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Effective Stress Site Response Analysis

Finn et.al 1978 : DESRA

Matasovic 1993 : D-MOD

Martin/Qui 1998 : DESRA-MUSC

Pyke 2000 : TESS

Elgamal et.al 2002 : Cyclic/Opensees

Hashash 2009 : DEEPSOIL

Boulanger et.al 2010 : PM4 Sand Model/FLAC

Byrne/Beaty 2011 : UBC Sand/FLAC and PLAXIS

10

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Plasticity Based Constitutive Models

PM4 Sand Model Boulanger et. al.

Cyclic 1D ModelElgamal et. al.

11

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Fundamentals Constitutive Model – 1D Effective Stress Site Response Analyses

Computer Programs: DESRA (Lee and Finn, 1978)DESRAMUSC (Qui, 1998)

Objectives:

Time histories of pore water pressure increases in multi layer sites

Determine critical layer for lateral spread analyses

Determine effect of pore water pressure increases on ground surface response

12

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

DESRA Constitutive Model Fundamentals –Cyclic Strain Based Volume Change Parameters

13

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Fundamentals Constitutive Model – 1D Effective Stress Site Response Analyses

Input Data for Practical Applications Nonlinear initial τ/γ backbone

curve matched to G/Gmax curve

Masing criteria used tosimulate hysteretic behavior

Strain hardening suppressed

Backbone curve degraded as a function of pore water pressure increase

Representative elastic rebound curves chosen based on N1 values

Volume change parameters (simplified to 2) chosen based on N1 values

Volume change/rebound parameters adjusted to match field liquefaction strength curves

Pore water pressure dissipation/re-distribution during analyses a program option

(Note 𝑚𝑚𝑣𝑣 = 1�𝐸𝐸𝑟𝑟

)

14

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Fundamentals Constitutive Model – 1D Effective Stress Site Response Analyses

Example illustrating effects of pore water pressure redistribution and sequential liquefaction

15

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Stratified Soil Condition at a Bridge Site

16

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Fundamentals Constitutive Model – 1D Effective Stress Site Response Analyses

Example illustrating effects of large strain liquefaction

17

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

8th WCEE, 198418

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Elgamal et al. 1989

Site Liquefaction (Soil Liquefaction)

19

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Adalier and Elgamal 1992

Site Liquefaction (Soil Liquefaction)

20

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Kokusho et al. (2000)

Site Liquefaction (Soil Liquefaction)

21

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Project VELACS (1993)

(Verification of Liquefaction Analyses by Centrifuge

Studies)

Simple Configurations

Few sensors

Bonnie Silt!

Site Liquefaction (Soil Liquefaction)

22

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Fiegel and Kutter 1994

23

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Boulanger et al. and Kutter et al. 2001-2004

24

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Figure 4. Geotechnical cross-section for WLA developed from CPT data.

Steidl and Seale 2010

Site Stratification (Wildlife Array, Imperial County, CA)

Youd and Holzer 1994 25

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Cyclic mobility at large shear strain (Zeghal and Elgamal 1994)

26

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Cyclic mobility at large shear strain (Zeghal and Elgamal 1994)

27

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Soil Constitutive ModelMulti-yield surface plasticity model (based on Prevost 1985)

Incorporating dilatancy and cyclic mobility effects

Conical yield surfaces for granularsoils (Prevost 1985; Elgamal et al.2003; Yang and Elgamal 2008)

Shear stress-strain and effectivestress path under undrained shearloading condition (Parra 1996, Yang2000, Yang and Elgamal 2002)

28

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Permeability is a critical parameter for the estimation of liquefaction-induced lateral deformations

Yang, Z. and Elgamal, A. “Influence of Permeability on Liquefaction-Induced Shear Deformation,” Journal of Engineering Mechanics, ASCE, 128, 7, July 2002.

29

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Before After

1m of Lateral Spreading ( > 3 pile diameters)

NIED, Tsukuba, Japan

Shaking Table Tests: US-Japan Research (UCSD, NSF, NIED, PEER, CALTRANS)5m height: Liquefaction-Induced lateral Spreading Effects on Piles (NIED, Tsukuba)

Professor Kohji Tokimatsu, Dr. Masayoshi Sato, and Dr. Akio Abe

30

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Shaking Table Tests: US-Japan Research (UCSD, NSF, NIED, PEER, CALTRANS)5m height: Liquefaction-Induced lateral Spreading Effects on Piles (NIED, Tsukuba)Professor Kohji Tokimatsu, Dr. Masayoshi Sato, and Dr. Akio Abe

NIED, Tsukuba, Japan

31

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Shaking Table Tests: US-Japan Research (UCSD, NSF, NIED, PEER, CALTRANS)5m height: Liquefaction-Induced lateral Spreading Effects on Piles (NIED, Tsukuba)Professor Kohji Tokimatsu, Dr. Masayoshi Sato, and Dr. Akio Abe

32

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Shaking Table Tests: US-Japan Research (UCSD, NSF, NIED, PEER, CALTRANS)5m height: Liquefaction-Induced lateral Spreading Effects on Piles (NIED, Tsukuba)Professor Kohji Tokimatsu, Dr. Masayoshi Sato, and Dr. Akio Abe

33

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Shaking Table Tests: US-Japan Research (UCSD, NSF, NIED, PEER, CALTRANS)5m height: Liquefaction-Induced lateral Spreading Effects on Piles (NIED, Tsukuba)Professor Kohji Tokimatsu, Dr. Masayoshi Sato, and Dr. Akio Abe

34

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Shaking Table Tests: US-Japan Research (UCSD, NSF, NIED, PEER, CALTRANS)5m height: Liquefaction-Induced lateral Spreading Effects on Piles (NIED, Tsukuba)Professor Kohji Tokimatsu, Dr. Masayoshi Sato, and Dr. Akio Abe

35

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Shaking Table Tests: US-Japan Research (UCSD, NSF, NIED, PEER, CALTRANS)5m height: Liquefaction-Induced lateral Spreading Effects on Piles (NIED, Tsukuba)Professor Kohji Tokimatsu, Dr. Masayoshi Sato, and Dr. Akio Abe

36

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Shaking Table Tests: US-Japan Research (UCSD, NSF, NIED, PEER, CALTRANS)5m height: Liquefaction-Induced lateral Spreading Effects on Piles (NIED, Tsukuba)Professor Kohji Tokimatsu, Dr. Masayoshi Sato, and Dr. Akio Abe

37

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Side-view shear

Plan-view shear

around the pile (depends on pile

stiffness)

Shaking Table Tests: US-Japan Research (UCSD, NSF, NIED, PEER, CALTRANS)5m height: Liquefaction-Induced lateral Spreading Effects on Piles (NIED, Tsukuba)Professor Kohji Tokimatsu, Dr. Masayoshi Sato, and Dr. Akio Abe

38

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

OpenSees FE Model

39

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

5.0

LVDT Accelerometer Pore pressure sensor Strain gage

3.8 m 3.9 m 3.9 m----------------------------------- 11.6 m ------------------------------

2 degrees

5.0

mInstrumentation Layout/Experimental Data

40

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ground Lateral Displacement (m)

Depth

(m)

Free-Field Displacement Profile at 10 seconds

NumericalExperimental

Recorded and computed free-field displacement profile at 10 seconds

k= 5 e-5 m/sec

41

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ground Lateral Displacement (m)

Depth

(m)

Free-Field Displacement Profile at 10 seconds

k = 5 e -5 m/sk = 5 e -4 m/sk = 5 e -3 m/sk = 5 e -2 m/s

Influence of permeability on free-field displacement profile at 10 seconds

1 2 34

1 2 34

(undrained) k1<k2<k3<k4 (drained)

42

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Influence of permeability on stiff pile moment profile at 10 seconds

-20 0 20 40 60 80 100 120 140 160 180

-1

0

1

2

3

4

5

Moment (kN·m)

Depth

(m)

Stiff Pile Moment Profile at 10 seconds

k = 5 e -5 m/sk = 5 e -4 m/sk = 5 e -3 m/sk = 5 e -2 m/s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ground Lateral Displacement (m)

Depth

(m)

Free-Field Displacement Profile at 10 seconds

k = 5 e -5 m/sk = 5 e -4 m/sk = 5 e -3 m/sk = 5 e -2 m/s

1

1

2

234

34

Free-Field Displacement

1 2 34

(undrained) k1<k2<k3<k4 (drained)

43

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Conclusion-Permeability is a critical parameter for the estimation of liquefaction-induced lateral deformations- Permeability is a critical parameter for the estimation of pile moments due to liquefaction-induced lateral ground deformation- Larger ground displacement is not always proportional to higher moment in piles

Yang, Z. and Elgamal, A. “Influence of Permeability on Liquefaction-Induced Shear Deformation,” Journal of Engineering Mechanics, ASCE, 128, 7, July 2002 44

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

For Saturated Cohesionless soils…

Shear resistance depends on:

1) N1(60) , CPT qc1 , Vs

2) Soil/System Permeability k

45

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

http://soilquake.net/openseespl/

46

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

OpenSeesPL: http://soilquake.net/openseespl/

47

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

OPENSEESPL Example Input Files (http://soilquake.net/openseespl/example_input_files/

Pile in Ground Strata 3-D Shear Beam Site Amplification48

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

OPENSEESPL Example Input Files (http://soilquake.net/openseespl/example_input_files/

Ground Modification by Stone Columns. Pile-pinning, Earthquake Drain, or Deep Soil Mixing Grids

49

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

Pile Groups and Piled Rafts

OPENSEESPL Example Input Files (http://soilquake.net/openseespl/example_input_files/

50

EERI

_San

Dieg

o_Se

pt_2

014_

Mar

tin_E

lgam

al

top related