sizing cmos circuits by means of the g /i methodology and a

Post on 01-Jan-2017

218 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1MOS-AK workshop, Dec 13, 2008. P.G.A. Jespers

MOS-AK workshop13 Dec. 2008

Sizing CMOS circuits by means of the gm/ID methodology and a compact model.

P.G.A. JespersUniversité Catholique de Louvain

paul.jespers@uclouvain.be

2

sizing....

find D.C. currents and transistor sizes meeting :

• a prescribed gain-bandwidth product• minimal power consumption• minimal area• large gain• ….

short channel devices,..low-voltage, low-power circuits

BWRC, Dec 12, 2008. P.G.A. Jespers

low- voltage, low-power MOS circuitslow- voltage, low-power MOS circuits

3BWRC, Dec 12, 2008. P.G.A. Jespers

Outline

Sizing... • the Intrinsic Gain Stage (I.G.S.)

gm/ID semi-empirical methodology gm/ID compact model methodology

L-V, L-P, short channel I.G.S. • the Miller Op. Amp.

Conclusion

4BWRC, Dec 12, 2008. P.G.A. Jespers

The Intrinsic Gain Stage (I.G.S.)

IDW/L

Vin (sat) C

Vout

gm ID

.VA

log ω

A (dB)

- 20 dB/decade

gm CωT =

gm = ωT.C

gain-bandwidth sizing:

find ID and W/Lachieving ωT

5

ID

Vin (sat) C

Vout

W/L

!

gm ="TC

1) (strong inversion)

!

W

L=

n "TC( )

2

2µ # C ox

$1

ID

!

ID

power decreases, gain increases

?

!

" = µ # C ox

W

L

gm =$ ID

$VG

=2" ID

n

!

A =gm

IDVA =

2"

nIDVA

BWRC, Dec 12, 2008. P.G.A. Jespers

6

2) weak inversion)

!

ID = Io expVG

nUT

"

# $

%

& '

gm =ID

nUT

!

W

L

!

ID

ID = nUT! T C

!

Amax

= "VA

nUT

ID

Vin (sat) C

Vout

W/L

!

gm ="TC

sizing in moderate inversion?

BWRC, Dec 12, 2008. P.G.A. Jespers

7BWRC, Dec 12, 2008. P.G.A. Jespers

Outline

Sizing... • the Intrinsic Gain Stage (I.G.S.)

gm/ID semi-empirical methodology gm/ID compact model methodology

L-V, L-P, short channel I.G.S. • the Miller Op. Amp.

Conclusion

8

what does gm/ID represent ?

BWRC, Dec 12, 2008. P.G.A. Jespers

!

gm

ID

"

# $

%

& ' =

1

ID

(ID(VGS

=(

(VGSlog ID( )

0 0.5 1 1.5 2 2.5 310

-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

ID

S.I. approx(quadratic)

W.I. approx(expon)

VG

0 0.5 1 1.5 2 2.5 30

5

10

15

20

25

30

35

VG

gm/ID

9

• gm/ID does not depend on the transistor widthgm and ID are proportional to W

• gm/ID bridges a small signal and a large signal quantity

• gm/ID controls gain, power consumption ...

!

gm " ID

!

A =gm

IDVA

why gm/ID?

BWRC, Dec 12, 2008. P.G.A. Jespers

10

The gm/ID sizing methodology(semi-empirical)

BWRC, Dec 12, 2008. P.G.A. Jespers!

W VGS( ) =ID VGS( )ID ref VGS( )

W( )ref

!

gm ="T C

!

ID VGS( ) =gm

gm

ID

"

# $

%

& '

!

"

"VGSlog IDref VGS( )( )

• measurements• reconstructed data (BSIM, PSP...)• model E.K.V...

monitors the mode of operationof the MOS transistor

!

Wref

11

ID (A)

W/L

fT = 1 GHz; Co = 1 pf; L = 120 nm; VS = 0; VDS = 0.6 V; Wmax = 1 µm;

BWRC, Dec 12, 2008. P.G.A. Jespers

mobility degradation

parasitic drain junction

Example

12

A gm/ID Based Methodology for the Design of CMOS Analog Circuits andIts Application to the Synthesis of a Silicon-on-Insulator Micropower OTA

F. Silveira, D. Flandre, P.G.A. Jespers

IEEE JOURNAL OF SOLID STATE CIRCUITS, VOL. 31, NO. 9, SEPTEMBER 1996p. 1314 ...

BWRC, Dec 12, 2008. P.G.A. Jespers

First paper

13BWRC, Dec 12, 2008. P.G.A. Jespers

Outline

Sizing... • the Intrinsic Gain Stage (I.G.S.)

gm/ID semi-empirical methodology gm/ID compact model methodology

L-V, L-P, short channel I.G.S. • the Miller Op. Amp.

Conclusion

14

- An MOS transistor model for analog circuit design Ana I. Cunha, M.C. Schneider, C. G. Montoro. IEEE JSSC,vol 33,n°10,oct, 1998.

- An analytical MOS transistor model valid in all regions of operation and dedicated to Low-Voltage and Low-current applications. Chr. C.Enz, F. Krummenacher, E. A. Vittoz. Analog Integrated Circuits and Signal Processing, Kluwer Ac. Publ. 1995.

A.C.M.

E.K.V.

The ACM and EKV compact models

+ continuous model (saturation, weak to strong inversion)+ few parameters:

n subthreshold slope factorISu unary specific currentVTo threshold voltage

- uniformly doped substrate, no mobility degradation,- gradual channel approximation (1D)

BWRC, Dec 12, 2008. P.G.A. Jespers

15

The compact model (1)

normalized drain current

!

i =ID

IS

!

2nUT

2µ " C ox1 2 4 3 4

W

L

6 7 4 4 8 4 4

!

ISu

specific current

unary specific current (W = L)

drain current normalization

BWRC, Dec 12, 2008. P.G.A. Jespers

EKV ACM

!

1

2nU

T

2µ " C ox

W

L

16

The compact model (2)

BWRC, Dec 12, 2008. P.G.A. Jespers

!

q = "# Q i

2nUT# C ox

normalized mobile charge density

pinch - off voltage

gate voltage

!

VP

=VG"V

To

n

!

i = q2

+ q

norm. drain current (saturation)

!

VP "V =UT 2 q "1( ) + log q( )[ ] channel voltage

17

!

i = qF2 + qF - qR

2 + qR( )!

VP "VS =UT 2 qF "1( ) + log qF( )[ ]

!

VP "VD =UT 2 qR "1( ) + log qR( )[ ]

sat sat

VDVSVS

VD

ID IDForward IDReverse= -

VG VG

The compact model (3)

BWRC, Dec 12, 2008. P.G.A. Jespers

18

!

VP = UT 2 qF "1( ) + logqF( )

!

VG

= nVP

+VTo

example : IDu(VG) of grounded source (VS = 0 V) saturated (q => qF) transistor

!

i = qF2

+ qF

!

IDu

= i ISu

parametric method

% data UT = .026;n = 1.2;Isu = 1e-6; VTo = 0.4; % computeqF = logspace(-4,1.2,50);i = qF.^2 + qF;ID = i*Isu;VP = UT*(2*(qF-1) + log(qF));VG = n*VP + VTo; % plotsemilogy(VG,ID); grid

IDu (A)

VG (V)

W.I.

S.I.

VTo

!

qF

BWRC, Dec 12, 2008. P.G.A. Jespers

19

!

gm

ID=

1

nUT

qF

i=

1

nUT

1

qF +1

!

gm

ID=d log i( )dVG

!

d log i( ) =di

i=2qF +1

idqF

and

dVG = n dVP = nUT 2 +1

qF

"

# $

%

& ' dqF = nUT

2qF +1

qFdqF

gm/ID of the saturated transistor

BWRC, Dec 12, 2008. P.G.A. Jespers

20

% datafT = 1e8;C = 1e-12;n = 1.2;Isu = 1e-6;VTo = 0.4; % computeUT = .026;ωT = 2*pi*fT;gm = ωT*C;qF = logspace(-4,1.5,50);gmoverID = 1./(n*UT*(1+qF));ID = gm./gmoverID;IDu = Isu*(qF.^2 + qF);WsL = ID./IDu;VP = UT*(2*(qF+1) + log(qF));VG = n*VP + VTo; % plotloglog(ID,WsL,'b',ID,VG,'r');

sizing the Intrinsic Gain Stage by means of theE.K.V. model

E.K.V. param

gm/ID sizing

specs

BWRC, Dec 12, 2008. P.G.A. Jespers

21

ID (A)

VGS (V)

W / L

fT = 100 MHzC = 1 pF

strong inversion approx.

weak inversion approx.

gm/ID sizing

sizing the Intrinsic Gain Stage by means of theE.K.V. model

BWRC, Dec 12, 2008. P.G.A. Jespers

22

• The basic EKV / ACM model does not apply to short channel devices!

BWRC, Dec 12, 2008. P.G.A. Jespers

L = 100 nm

L = 500 nmVDS = 0.2 V

VDS = 1.2 V

VGS (V)

ID (A)

90 nm technologyN channelW = 10 µmVSB = 0 V

• Real ID(VGS) characteristics however look very similar.

23

p

source drain

gate silicide

n-

tox

n+

poly

• The spatial distribution of electrical fields in the substrate boils down to a 2D problem controlled mainly by L, VSB, VDS, little by VGS.• The inversion layer confines to a 1D problem controlled by VGS and L, VSB, VDS.

BWRC, Dec 12, 2008. P.G.A. Jespers

• Is it possible to model ID(VG) characteristics by means of the EKV / ACM model with parameters that are functions of L, VS and VD.?

24BWRC, Dec 12, 2008. P.G.A. Jespers

E.K.V. Identification

to be performed in the common source configuration

For L, VS and VDS

S.I.

W.I.M.I.

log(ID) n

VGS

gm/ID

1/nUT

VGS

80 to 70 %mobility

degradation

VTo

25BWRC, Dec 12, 2008. P.G.A. Jespers

!

VGS " VTo

n=VP # q

!

IDuVGS( )i

= ISuVGS( )

!

ISuo

polynomial fit

VGS (V)

!

ISu

= 2nUT

2 µo" C ox

ISuo

1 2 4 3 4 # i( )

mobility degradation factor

(µA)

Isu (specific current)

For L, VS and VDS

26

IDu (A)

VGS (V)

N-channel; L = 100 nm; VDS = 0.6 V; VSB = 0.6 V.

n slope factor

n,VTo and ISuo

+++ n,Vto, Isuo and θ(i)

‘experm.’ data

BWRC, Dec 12, 2008. P.G.A. Jespers

Verification : Iu(VGS) reconstruction

27

gm/ID (V-1)

VGS (V)

edge conductance effect ?

VDS = 0.6 VVSB = 0 VL = 100 nm

mob. degradation

BWRC, Dec 12, 2008. P.G.A. Jespers

+++++‘experimental’model model (no mob degradation)

28BWRC, Dec 12, 2008. P.G.A. Jespers

Outline

Sizing... • the Intrinsic Gain Stage (I.G.S.)

gm/ID semi-empirical methodology gm/ID compact model methodology

L-V, L-P, short channel I.G.S. • the Miller Op. Amp.

Conclusion

29BWRC, Dec 12, 2008. P.G.A. Jespers

!

gm

IDdoes not depend on W

as long as W >> Wmin

(true for most analogue circuits)

depends on L, VDS and VSB for- VT roll-off- D.I.B.L.- C.L.M.- mobility degradation- ….

30

fT = 1 GHz; Co = 1 pf; L = 120 nm; VS = 0; VDS = 0.6 V;

ID (A)

W/L

VGS (V)

stronginversionapprox.

weak inversion approx.

n, VTo and Isuono mobilty degradation: θ = 1

BWRC, Dec 12, 2008. P.G.A. Jespers

31

fT = 1 GHz; Co = 1 pf; L = 120 nm; VS = 0; VDS = 0.6 V;

ID (A)

W/L

VGS (V)

stronginversionapprox.

weak inversion approx.

n, VTo and Isuowith mobilty degradation: θ(ι)

BWRC, Dec 12, 2008. P.G.A. Jespers

32

ID (A)

W/L

VGS (V)

Add drain junction cap. to Co

fT = 1 GHz; Co = 1 pf; L = 120 nm; VS = 0; VDS = 0.6 V; Wmax = 1 µm;

partitioning

BWRC, Dec 12, 2008. P.G.A. Jespers

33

ID (A)

W/L

VGS (V)

fT = 1 GHz; Co = 1 pf; L = 120 nm; VS = 0; VDS = 0.6 V; Wmax = 1 µm;

partitioning

Comparison with semi-empirical method (+++ )

BWRC, Dec 12, 2008. P.G.A. Jespers

34

VDS (V)

L µm 0.100 0.110 0.120 0.130 0.140 0.160 0.500 1.000 4.000

D.I.B.L.

Param. dependence on VDS1) n small2) VTo

BWRC, Dec 12, 2008. P.G.A. Jespers

VSB = 0 V.

35

VGS (V)

VDS (V)

mobility degradation (vert)

channel lengthmodulation

Desaturation

!

ISu

µA( )

VSB = 0 V.

mobility (longitudinal)

BWRC, Dec 12, 2008. P.G.A. Jespers

Param. dependence on VDS1) n small2) VTo3) ISu

36BWRC, Dec 12, 2008. P.G.A. Jespers

Param. dependence on VDS1) n small2) VTo3) ISuo

C.M.L.

L µm 0.100 0.110 0.120 0.130 0.140 0.160 0.500 1.000 4.000

VSB = 0 V.

37

vertical field longitudinal field

sat.

not sat.

BWRC, Dec 12, 2008. P.G.A. Jespers

Param. dependence on VDS1) n small2) VTo3) Isuo4) θ(i)

VSB = 0 V.

38

+++++‘experimental’model model (no mob degradation)

0.5 V

0.6 V

0.7 V

VGS

X 10-5

Verification : IDu(VDS) reconstruction (S.I.)

BWRC, Dec 12, 2008. P.G.A. Jespers

39

0.00 V

0.05 V

0.10 V

VGS

X 10-9

+++++‘experimental’model model (no mob degradation)

Verification : IDu(VDS) reconstruction (W.I.)

D.I.B.L.

BWRC, Dec 12, 2008. P.G.A. Jespers

40BWRC, Dec 12, 2008. P.G.A. Jespers

Outline

Sizing... • the Intrinsic Gain Stage (I.G.S.)

gm/ID semi-empirical methodology gm/ID compact model methodology

L-V, L-P, short channel I.G.S. • the Miller Op. Amp.

Conclusion

41

!

"T = gm1

Cm

z = gm2

Cm = Z"T

"ndp = gm2

Cm

Cm2

C1+C2( )Cm + C1C2

= NDP"T

e.g. Z = 10 and NDP = 4… 5 for phase margin of approx. 60°

1) fix NDPole and Zero with respect to ωT to meet phase margin

BWRC, Dec 12, 2008. P.G.A. Jespers

Bias

VDD

VSS

Q5

Cm- vin/2 + vin /2

C1

node 3 node1

node 2

C2

Q4

Q2

Q1a Q1b

Q3a Q3b

C3

ID22 ID1

vout

42

2) Size the ‘A’ transistors.

Bias

VDD

VSS

Q5

Cm- vin/2 + vin /2

C1

node 3 node1

node 2

C2

Q4

Q2

Q1a Q1b

Q3a Q3b

C3

ID22 ID1

vout

BWRC, Dec 12, 2008. P.G.A. Jespers

!

gm2 = Zgm1

ID2 =

gm2

gm

ID

!

" # #

$

% & &

2

qF2

!

W2

L2

= ID2

IDu2

ID1 =

gm1

gm

ID

!

" # #

$

% & &

1

!

W1

L1

= ID1

IDu1

!

gm1 = "TCm

spec. initial guess

qF1

43

3) Size the ‘B’ transistors.

more constraints

BWRC, Dec 12, 2008. P.G.A. Jespers

Bias

VDD

VSS

Q5

Cm- vin/2 + vin /2

C1

node 3 node1

node 2

C2

Q4

Q2

Q1a Q1b

Q3a Q3b

C3

ID22 ID1

vout

!

IDu4

= IDu5

!

W

L

"

# $

%

& '

4

= ID2

IDu4

!

W

L

"

# $

%

& '

5

= 2 I

D1

IDu4

• choose bias so that Q4 and Q5 are in strong inversion

• zero systematic offset

VG3 = VG2

!

W

L

"

# $

%

& '

3

= ID1

IDu2

44

Choose …L1 medium (voltage gain)L2 min. sizeL3 large for min 1/f noise (beware from doublet!)L4 matching + sizeL5 matching + common mode rejection

4) Estimate C1, C2, C3 and compute Cm

• the parasitic cap. are estimated knowing W’s and L’s + techno. data

BWRC, Dec 12, 2008. P.G.A. Jespers

reiterate until Cm gets constant

Cm = 0.5NDP

Z! C1 +C2 + C1 +C2( ) + 4

Z

NDPC1C2

"

# $

%

& '

• a new Cm is extracted from inverted NDP equation

45

fT = 50 MHz;C = 1 pF;VDD = 1.2 V;

BWRC, Dec 12, 2008. P.G.A. Jespers

Q 5

Cm

C1

node 3 node1

node 2

C2

Q4

Q2

Q 1

Q 3

C3

ID22 ID1

1.2 V

0 V

Spec:

example

qF1 = 0.0316 --> 3.16qF2 = 0.10 --> 2qF4 = 2,90

Z = 10NDP = 4

L1 = 1 µmL2 = 0.5 µmL3 = 1 µmL4 = 0.5 µmL5 = 1 µm

phase margin

qF exploration space

46BWRC, Dec 12, 2008. P.G.A. Jespers

W1 W2

W3 W4

VG1VG2

47BWRC, Dec 12, 2008. P.G.A. Jespers

constant active area (µm2)

48BWRC, Dec 12, 2008. P.G.A. Jespers

constant supply (A)constant active area (µm2)

49BWRC, Dec 12, 2008. P.G.A. Jespers

constant gain (dB)constant supply (A)constant active area (µm2)

50BWRC, Dec 12, 2008. P.G.A. Jespers

constant gain (dB)constant supply (A)constant active area (µm2)

51BWRC, Dec 12, 2008. P.G.A. Jespers

0.6242CmpF

0.0576C3pF

1.0375C2pF

0.1965C1pF

39.245.1

7.691

57.830.5

2.231

47.50.5

67.31

2 x 8.1143.72 x 8.1

0.490.490.400.400.29

2.902.901.2361.0650.433qF

VGS (V)

I (µA)

gain (dB)

Q1 Q2 Q3 Q4 Q5

gain = 81 dBpower consump. = 191 µW

WL

(µm)

Q 5

Cm

C1

node 3 node1

node 2

C2

Q4

Q2

Q 1

Q 3

C3

ID22 ID1

1.2 V

0 V

The selected point

52

Conclusion

gm/ID• relates a small signal param. to a large signal quantity• does not vary with transistor widths• controls the mode of operation, power consump, gain ...

paves the way for sizing CMOS circuits• semi-empirically

(look-up tables : ID, gm, gd, ..)• by means of the E.K.V./A.C.M. model

(parameters look-up tables or fitting functions)• simple expressions of ID, gm/ID, gd/ID• qF monitors mode of operation• increased physical insight

suitable for sub-micron low-voltage low-power circuits

BWRC, Dec 12, 2008. P.G.A. Jespers

53

gm/ID sizing methodologyfor low-power/voltage

CMOS circuitsby P.G A. Jespers

to be published 2009 by Springer

paul.jespers@uclouvain.be

BWRC, Dec 12, 2008. P.G.A. Jespers

54

A list of references concerning the gm/ID methodology:

1) A gm/ID based methodology for the design of CMOS analog circuits and its applicationto the synthesis of a silicon-on-insulator micropower OTA.F. Silveira, D. Flandre and P.G.A. JespersIEEE Journal of Solid-State Circuits, vol 31, n° 9, sept 1996, p. 1314 - 1319.(the first reference)2) A CAD methodology for optimizing transistor current and sizing in analog CMOS design.D.M. Binkley, C.E. Hopper, S.D. Tucker, B.C. Moss, J.M. Rochelle and D.P. Foty.IEEE Trans. on computer-aided design of integrated circuits and systems,vol 22, n° 2, Febr. 2003.3) gm/ID-based mosfet modeling and modern analog design.D. Foty, D. Binkley, Matthias Bucher.Presented at MIXDES, Wroclaw, Poland, 20 June 2002.4) Une méthodologie de conception des amplificateurs opérationnels à faible consommationP. Jespers.FTFC’2001 records, mai-juin, Paris, p.99-1065) Automated design methodology for CMOS analog circuit blocks in complex systems.R. Ionita, A. Vladimirescu and P.G.A. Jespers.contact Prof Vladimirescu, UCBerkeley, BWRC,2208 Allston Way, Berkeley, CA 94704.6) Sizing of MOS transistors for amplifier design.R.L. Oliveira Pinto, M.C. Schneider and C.G. Montoro.ISCAS 2000.7) A behavioral model of a 1.8-V flash A/D converter based on device parameters.M. Hasan, H.H.P. Shen, D.R. Allee, M. Pennell.IEEE Trans. on computer-aided design of integrated circuits and systems, vol 19, n° 1,Jan 2000, p 69-82

BWRC, Dec 12, 2008. P.G.A. Jespers

top related