smolders the 3 d unstructured scaldis model

Post on 10-Feb-2017

279 Views

Category:

Engineering

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

SCALDIS : A 3D Hydrodynamic

model of the tidal Scheldt

05/10/2015

Belgian Hydraulics Day 2015

Smolders, S.; Vanlede, J.; Maximova, T.

Introduction

• Project “Integrated Plan Upper Sea Scheldt”

• Improve navigability of the Upper Sea Scheldt

• Without negative effects on nature and safety against flooding

• Integrated within Flemish-Dutch research programme "Agenda for the Future“(2014-2017)

Need for a hydrodynamics and sediment transport model that covers the entire tidally influenced zone of the Scheldt Estuary and the mouth area, and that has sufficient resolution in the upstream part.

05/10/2015 Belgian Hydraulics Day 2

Unstructured mesh

• Existing NEVLA model (SIMONA) has structured

mesh and lacks high spatial resolution in upper part of

the estuary,

• Need for a new schematisation

• Increase the resolution in the upstream part

• Keep one model domain for practical reasons (so

no nesting or domain decomposition) and

• With an acceptable computational cost

• Move to an Unstructured Grid

• Choice for TELEMAC 3D platform

3 Belgian Hydraulics Day 05/10/2015

Model domain

4 Belgian Hydraulics Day 05/10/2015

Model domain includes CRT

and FCA

5

Lippenbroek

Belgian Hydraulics Day 05/10/2015

NEVLA

6

Bergenmeersen

Belgian Hydraulics Day 05/10/2015

NEVLA

7

Bergenmeersen

Belgian Hydraulics Day 05/10/2015

SCALDIS

8 Belgian Hydraulics Day 05/10/2015

Bergenmeersen

SCALDIS

9 Belgian Hydraulics Day 05/10/2015

Bergenmeersen

Model Comparison

NEVLA SCALDIS

Model Domain

Grid type Structured Unstructured

Software platform SIMONA TELEMAC

Resolution @Antwerp ~65m ~25m

Resolution @Ghent ~20m ~7m

Calibrated HD

Mud transport LTV-Slib (Delwaq) Foreseen

Sand transport Delft3D Foreseen

10 Belgian Hydraulics Day 05/10/2015

Extended model domain

11

• Possibility to include scenarios in the mouth area

• Model boundary far enough from mouth area WS

• Necessary to include Eastern Scheldt in model

domain

Belgian Hydraulics Day 05/10/2015

Grid & Bathymetry

12

• 200 to 500 m in North Sea and mouth area

• 200 m in Eastern Scheldt

• 120 m in Western Scheldt

• 7 m in upper Sea Scheldt to 5 m at upstream boundaries

+460,000 nodes in the horizontal

3D in 5 sigma layers

+2,300,000 nodes in total

• Bathymetry from 2013-2014

Belgian Hydraulics Day 05/10/2015

Boundary conditions

downstream

13

• Derived from CSM-ZUNO modeling train

• CSMv5 – Continental Shelf Model • driven at ocean boundaries by astronomical water levels (tidal

components: M2, S2, N2, K2, O1, K1, Q1, P1, NU2, L2, SA)

• ZUNOv3 – Zuidelijke Noordzee Model • nested in CSM

• HIRLAM winddata

• ZUNO incl Salinity

• Run for 2013

Belgian Hydraulics Day 05/10/2015

Boundary conditions upstream

14

• 8 discharge boundaries with daily

averaged discharge values

Belgian Hydraulics Day 05/10/2015

Channel Bath

Channel Ghent-Terneuzen

Dender Merelbeke

Zenne Dijle

Grote Nete

Kleine Nete

Calculation time

15

• Dependant on:

• Number of parallel processors used

• Including tracers or not

• Activation of Culverts for Controlled Reduced Tide

areas and Flood Control Areas

• Fastest: 128 processors, 1 active tracer, no culverts

1 day simulated in 1 hour (x24 speed-up) or

0,001302 seconds per time step per processor

Belgian Hydraulics Day 05/10/2015

Calibration strategy

16

• Focus on data 2013

• Water Levels

• Timeseries + Extrema

• Harmonic Components

• Normal conditions + Storm dec 2013

• Fluxes

• Velocities

• Sailed ADCP measurements

• Fixed Velocity Measurements

Belgian Hydraulics Day 05/10/2015

Calibration strategy

17

• Data availability 2013

• 48 WL stations (10’ TS)

• 58 sailed ADCP campaigns (2005-2014)

• 11 salinity stations (10’ TS)

• 29 discharge transects

• Cost Function

• Water levels 50%

• ADCP velocities 40%

• Cross-sectionally averaged Flux 10%

Belgian Hydraulics Day 05/10/2015

Bottom Roughness

18

• The modeled horizontal and vertical tide is calibrated

by adapting the bottom roughness, which is

represented by Manning’s equation for the

dimensionless friction coefficient

Belgian Hydraulics Day 05/10/2015

Model Skill Assessment

• Vertical Tide

• WL History

• WL Harmonic Analysis

• Horizontal Tide

• Point velocities (dug-in ADCP’s)

• Sailed ADCP transects

• Q measurements

• Assessed using VIMM toolbox (in-house development FHR)

• +5000 figures

• +40 tables

19 Belgian Hydraulics Day 05/10/2015

WL History Vlissingen

20 Belgian Hydraulics Day 05/10/2015

WL History Antwerpen

21 Belgian Hydraulics Day 05/10/2015

WL History Schelle

22 Belgian Hydraulics Day 05/10/2015

RMSE Water levels

23 Belgian Hydraulics Day 05/10/2015

M2 Amplitude

24 Belgian Hydraulics Day 05/10/2015

M2 Phase

25 Belgian Hydraulics Day 05/10/2015

Phase shift 2M2-M4

26 Belgian Hydraulics Day 05/10/2015

Velocity: shallow ADCP

27 Belgian Hydraulics Day 05/10/2015

Model performance

ADCP Waarde

28

Max Ebb Max Flood

Belgian Hydraulics Day 05/10/2015

Model performance

ADCP Liefkenshoek

29

Max Ebb Max Flood

Belgian Hydraulics Day 05/10/2015

Model performance

ADCP Schoonaarde

30

Max Ebb Max Flood

Belgian Hydraulics Day 05/10/2015

Model Performance

Q Boom

31 Belgian Hydraulics Day 05/10/2015

Model Application

Hydrodynamics

3D TELEMAC model

Sand

Transport

model

= Sisyphe

Mud

Transport

model

= DELWAQ

(+ Sisyphe)

Integrated

ecosystem

modeling

OMES model

for primary

production

Dispersion

coefficients

32 Belgian Hydraulics Day 05/10/2015

05/10/2015 33

Thank you for your attention

Belgian Hydraulics Day

top related