spin(9), rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6....

Post on 22-Sep-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Spin(9), Rosenfeld planes and canonical differential formsin octonionic geometry

Maurizio Parton - Paolo Piccinni

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

MP, Paolo Piccinni.Spin(9) and almost complex structures on 16-dimensional manifolds.Annals of Global Analysis and Geometry, 41 (2012), 321–345.

MP, Paolo Piccinni.Spheres with more than 7 vector fields: all the fault of Spin(9).Linear Algebra and its Applications, 438 (2013), 1113–1131.

Liviu Ornea, MP, Paolo Piccinni, Victor Vuletescu.Spin(9) geometry of the octonionic Hopf fibration.Transformation Groups, 18 (2013), 845–864.

MP, Paolo Piccinni.Canonical Differential Forms, Rosenfeld Planes, and a Matryoshka inOctonionic Geometry.Work in progress.

MP, Paolo Piccinni.Spin(9) and almost complex structures on 16-dimensional manifolds.Annals of Global Analysis and Geometry, 41 (2012), 321–345.

MP, Paolo Piccinni.Spheres with more than 7 vector fields: all the fault of Spin(9).Linear Algebra and its Applications, 438 (2013), 1113–1131.

Liviu Ornea, MP, Paolo Piccinni, Victor Vuletescu.Spin(9) geometry of the octonionic Hopf fibration.Transformation Groups, 18 (2013), 845–864.

MP, Paolo Piccinni.Canonical Differential Forms, Rosenfeld Planes, and a Matryoshka inOctonionic Geometry.Work in progress.

Further references

Robert Bryant.Remarks on Spinors in Low Dimensions.http://www.math.duke.edu/~bryant/Spinors.pdf (1999).

Thomas Friedrich.Weak Spin(9)-Structures on 16-dimensional Riemannian Manifolds.Asian Journal of Mathematics, 5 (2001), 129–160.

Andrei Moroianu, Uwe Semmelmann.Clifford structures on Riemannian manifolds.Advances in Mathematics, 228 (2011), 940–967.

Main aim of the talk

Convince you that Spin(9) is beautiful.

Method

Introduce Spin(9) little brother: Sp(2) · Sp(1)

Show you that Spin(9) is involved in many curious phenomena

Relatives

Construction of relevant differential forms associated with the groups

Spin(9), Spin(10),Spin(12), Spin(16)

appearing as structure and holonomy group in the exceptional symmetricspaces

FII EIII,EVI,EVIII

Cayley plane Rosenfeld planes

1 What you should expect in this talk

2 Spin(9)Why and whatQuaternionic analogyCuriosities about Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

1 What you should expect in this talk

2 Spin(9)Why and whatQuaternionic analogyCuriosities about Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

Berger’s list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

SO(n)U(n)

SU(n)

Sp(n) · Sp(1)

Sp(n)G2

Spin(7)Spin(9)

Simply connected, complete, holonomy Spin(9)⇔

OP2 = F4Spin(9) (s > 0), R16(flat), OH2 = F4(−20)

Spin(9) (s < 0)[Alekseevsky, Funct. Anal. Prilozhen 1968].

Berger’s list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

SO(n)U(n)

SU(n)

Sp(n) · Sp(1)

Sp(n)G2

Spin(7)Spin(9)Spin(9)×

Simply connected, complete, holonomy Spin(9)⇔

OP2 = F4Spin(9) (s > 0), R16(flat), OH2 = F4(−20)

Spin(9) (s < 0)[Alekseevsky, Funct. Anal. Prilozhen 1968].

First Spin(9) definition

Definition

Spin(9) is the Lie group which has been excluded from a list.

First Spin(9) definition

Definition

Spin(9) is the Lie group which has been excluded from a list.

What is Spin(9)?

Definition

Spin(9) ⊂ SO(16) is the group of symmetries of the Hopf fibration

O2 ⊃ S15 S7

→ S8 ∼= OP1[Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Λ8(R16)Spin(9)

= Λ81 + . . . [Friedrich, Asian Journ. Math 2001].

Spin(9) is the stabilizer in SO(16) of any element of Λ81

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

Spin(9) is the stabilizer in SO(16) of the 8-form

ΦSpin(9) =

∫OP1

p∗l νl dl Details More details

[Berger, Ann. Ec. Norm. Sup. 1972].

What is Spin(9)?

Definition

Spin(9) ⊂ SO(16) is the group of symmetries of the Hopf fibration

O2 ⊃ S15 S7

→ S8 ∼= OP1[Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Λ8(R16)Spin(9)

= Λ81 + . . . [Friedrich, Asian Journ. Math 2001].

Spin(9) is the stabilizer in SO(16) of any element of Λ81

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

Spin(9) is the stabilizer in SO(16) of the 8-form

ΦSpin(9) =

∫OP1

p∗l νl dl Details More details

[Berger, Ann. Ec. Norm. Sup. 1972].

1 What you should expect in this talk

2 Spin(9)Why and whatQuaternionic analogyCuriosities about Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

The closest relative: the quaternionic group Sp(2) · Sp(1)

Analogy 1

Spin(9) and Sp(2) · Sp(1) are the symmetry groups of the Hopf fibrations:

S15 −→ OP1 S7 −→ HP1

Analogy 2

Spin(9) is the stabilizer in SO(16) of the 8-form

ΦSpin(9) =

∫OP1

p∗l νl dl

Sp(2) · Sp(1) is the stabilizer in SO(8) of the 4-form

Ω =

∫HP1

p∗l νl dl

The closest relative: the quaternionic group Sp(2) · Sp(1)

Analogy 1

Spin(9) and Sp(2) · Sp(1) are the symmetry groups of the Hopf fibrations:

S15 −→ OP1 S7 −→ HP1

Analogy 2

Spin(9) is the stabilizer in SO(16) of the 8-form

ΦSpin(9) =

∫OP1

p∗l νl dl

Sp(2) · Sp(1) is the stabilizer in SO(8) of the 4-form

Ω =

∫HP1

p∗l νl dl

Two alternative constructions for the quaternionic form Ω

Sum of squares: classical

Ω = ω2I + ω2

J + ω2K , where ωI , ωJ , ωK are orthogonal local Kahler forms

Sum of squares: involutions

Ω = τ2(Θ), where

τ2(Θ) =∑

α<β θ2αβ

Θ = (θαβ) matrix of Kahler forms of Jαβ = Iα IβI1, . . . , I5 self-adjoint anti-commuting involutions in R8:

I1, . . . , I5 ∈ SO(8), I∗α = Iα, I2α = Id, Iα Iβ = −Iβ Iα

Explicit Iα

Two alternative constructions for the quaternionic form Ω

Sum of squares: classical

Ω = ω2I + ω2

J + ω2K , where ωI , ωJ , ωK are orthogonal local Kahler forms

Sum of squares: involutions

Ω = τ2(Θ), where

τ2(Θ) =∑

α<β θ2αβ

Θ = (θαβ) matrix of Kahler forms of Jαβ = Iα IβI1, . . . , I5 self-adjoint anti-commuting involutions in R8:

I1, . . . , I5 ∈ SO(8), I∗α = Iα, I2α = Id, Iα Iβ = −Iβ Iα

Explicit Iα

The five involutions of Sp(2) · Sp(1) as 8× 8 matrices

I1 =

(0 Id

Id 0

)I2 =

(0 −RH

i

RHi 0

)

I3 =

(0 −RH

j

RHj 0

)I4 =

(0 −RH

k

RHk 0

)

I5 =

(Id 0

0 − Id

)Go back

Nine involutions for Spin(9)

Analogy 3

ΦSpin(9) = τ4(Θ), where

t9 +τ2(Θ)t7 + τ4(Θ)t5 +τ6(Θ)t3 + τ8(Θ)t characteristic polynomialof Θ

Θ = (θαβ) matrix of Kahler forms of Jαβ = Iα IβI1, . . . , I9 self-adjoint anti-commuting involutions in R16:

I1, . . . , I9 ∈ SO(16), I∗α = Iα, I2α = Id, Iα Iβ = −Iβ Iα

Explicit Iα

[MP-Piccinni, Ann. Glob. Anal. Geom. 2012].

The nine involutions of Spin(9) as 16× 16 matrices

I1 =

(0 Id

Id 0

)I2 =

(0 −Ri

Ri 0

)I3 =

(0 −Rj

Rj 0

)

I4 =

(0 −Rk

Rk 0

)

I5 =

(0 −Re

Re 0

)

I6 =

(0 −Rf

Rf 0

)I7 =

(0 −Rg

Rg 0

)I8 =

(0 −Rh

Rh 0

)I9 =

(Id 0

0 − Id

)Go back

Spin(9) and Sp(2) · Sp(1) as structure groups

Analogy 4

A Spin(9)-structure on M16 is a rank 9 vector subbundle

spanI1, . . . , I9 ⊂ End(M)

A Sp(2) · Sp(1)-structure on M8 is a rank 5 vector subbundle

spanI1, . . . , I5 ⊂ End(M)

Spin(9) and Sp(2) · Sp(1) as structure groups

Analogy 4

A Spin(9)-structure on M16 is a rank 9 vector subbundle

spanI1, . . . , I9 ⊂ End(M)

A Sp(2) · Sp(1)-structure on M8 is a rank 5 vector subbundle

spanI1, . . . , I5 ⊂ End(M)

Due to the dual role Sp-Spin ofSp(1) = Spin(3) and Sp(2) = Spin(5)

1 What you should expect in this talk

2 Spin(9)Why and whatQuaternionic analogyCuriosities about Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

Jαβ = Iα Iβ1≤α<β≤9 generates spin(9)

There are 36 Kahler forms θαβ for 1 ≤ α < β ≤ 9

There are 84 Kahler forms θαβγ for 1 ≤ α < β ≤ 9

Remark

so(16) = Λ2(R16) = Λ236 ⊕ Λ2

84 = spin(9)⊕ Λ284

generated by θαβ generated by θαβγ

Matryoshka-like structure

Nestedness

The family of complex structures Jαβ1≤α<β≤9 is compatible with theinclusion of Lie algebras

spin(7)∆ ⊂ spin(8) ⊂ spin(9)

in the sense that

spin(7)∆ = spanJαβ2≤α<β≤8

⊆ spanJαβ1≤α<β≤8 = spin(8)

⊆ spanJαβ1≤α<β≤9 = spin(9)

Spheres with more than 7 vector fields: Blame Spin(9)!

Spheres Sm−1 ⊂ Rm admit 1, 3 or 7 linearly independent vector fieldsaccording to whether p = 1, 2 or 3 in

m = (2k + 1)2p

In the general case

m = (2k + 1)2p16q with q ≥ 0 and p = 0, 1, 2, 3

the maximum number of vector fields is

σ(m) = 2p − 1 + 8q

C,H,O contribution Spin(9) contribution

No S1-subfibration

Similarly to the quaternionic Hopf fibration, one would expect severalS1-subfibrations for the octonionic Hopf fibration on S15 ⊂ O2.

Theorem

Any global vector field on S15 which is tangent to the fibers of theoctonionic Hopf fibration S15 → S8 has at least one zero.[Ornea-MP-Piccinni-Vuletescu, Transformation Groups, 2013]

[Loo-Verjovsky, Topology, 1992]

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planesWhy and whatSpin(10)Spin(12) and Spin(16)

4 Applications

5 Conclusion

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planesWhy and whatSpin(10)Spin(12) and Spin(16)

4 Applications

5 Conclusion

Rosenfeld projective planes

What are the Rosenfeld projective planes?

Cayley plane: OP2 =F4

Spin(9)= FII, dimFII = 16

(C⊗O)P2 =E6

Spin(10) ·U(1)=

EIII, dimEIII = 32

(H⊗O)P2 =E7

Spin(12) · Sp(1)=

EVI, dimEVI = 64

(O⊗O)P2 =E8

Spin(16)+=

EVIII, dimEVIII = 128

Rosenfeld projective planes

What are the Rosenfeld projective planes?

Cayley plane: OP2 =F4

Spin(9)= FII, dimFII = 16

(C⊗O)P2 =E6

Spin(10) ·U(1)=

EIII, dimEIII = 32

(H⊗O)P2 =E7

Spin(12) · Sp(1)=

EVI, dimEVI = 64

(O⊗O)P2 =E8

Spin(16)+=

EVIII, dimEVIII = 128

Cayley plane

Rosenfeld projective planes

What are the Rosenfeld projective planes?

Cayley plane: OP2 =F4

Spin(9)= FII, dimFII = 16

(C⊗O)P2 =E6

Spin(10) ·U(1)=

EIII, dimEIII = 32

(H⊗O)P2 =E7

Spin(12) · Sp(1)=

EVI, dimEVI = 64

(O⊗O)P2 =E8

Spin(16)+=

EVIII, dimEVIII = 128

Cayley plane

Rosenfeld projective planes

What are the Rosenfeld projective planes?

Cayley plane: OP2 =F4

Spin(9)= FII, dimFII = 16

(C⊗O)P2 =E6

Spin(10) ·U(1)= EIII, dimEIII = 32

(H⊗O)P2 =E7

Spin(12) · Sp(1)= EVI, dimEVI = 64

(O⊗O)P2 =E8

Spin(16)+= EVIII, dimEVIII = 128

Ros

enfe

ldpr

ojec

tive

pla

nes

Cayley plane

Rosenfeld projective planes

Focus on EIII

Cayley plane: OP2 =F4

Spin(9)= FII, dimFII = 16

(C⊗O)P2 =E6

Spin(10) ·U(1)= EIII, dimEIII = 32

(H⊗O)P2 =E7

Spin(12) · Sp(1)=

EVI, dimEVI = 64

(O⊗O)P2 =E8

Spin(16)+=

EVIII, dimEVIII = 128

What is Spin(n)?

Roughly. . .

SO(2): multiplication by a unitary complex number in R2 = CSO(3): conjugation by a unitary quaternion in R3 = ImHSO(4): conjugation by 2 unitary quaternions in R4 = H

. . . we can say that. . .

The action of the above Lie groups SO(n) on Rn, for n = 2, . . . , 4, can bedescribed in terms of multiplication in some algebra embedding Rn as asubspace.

Motivation for Clifford algebras

Spin(n) is the generalization of the above fact to every n. The algebraembedding the group Spin(n) and the vector space Rn is called theClifford algebra. Go to MFD of Spin(n)

What is Spin(n)?

Roughly. . .

SO(2): multiplication by a unitary complex number in R2 = CSO(3): conjugation by a unitary quaternion in R3 = ImHSO(4): conjugation by 2 unitary quaternions in R4 = H

. . . we can say that. . .

The action of the above Lie groups SO(n) on Rn, for n = 2, . . . , 4, can bedescribed in terms of multiplication in some algebra embedding Rn as asubspace.

Motivation for Clifford algebras

Spin(n) is the generalization of the above fact to every n. The algebraembedding the group Spin(n) and the vector space Rn is called theClifford algebra. Go to MFD of Spin(n)

What is Spin(n)?

Roughly. . .

SO(2): multiplication by a unitary complex number in R2 = CSO(3): conjugation by a unitary quaternion in R3 = ImHSO(4): conjugation by 2 unitary quaternions in R4 = H

. . . we can say that. . .

The action of the above Lie groups SO(n) on Rn, for n = 2, . . . , 4, can bedescribed in terms of multiplication in some algebra embedding Rn as asubspace.

Motivation for Clifford algebras

Spin(n) is the generalization of the above fact to every n. The algebraembedding the group Spin(n) and the vector space Rn is called theClifford algebra. Go to MFD of Spin(n)

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planesWhy and whatSpin(10)Spin(12) and Spin(16)

4 Applications

5 Conclusion

A basis for spin(10)

spin(10) = liespin(9), u(1) ⊂ su(16), where u(1) is generated by(i Id8 0

0 −i Id8

)

spin(9) is generated by J19, . . . , J89, because Jαβ = [Jβ9, Jα9]/2

=

(i Id8 0

0 i Id8

(Id8 00 − Id8

)

Proposition

spin(10) = spanJαβ = Iα Iβ0≤α<β≤9

A basis for spin(10)

spin(10) = liespin(9), u(1) ⊂ su(16), where u(1) is generated by(i Id8 0

0 −i Id8

)

spin(9) is generated by J19, . . . , J89, because Jαβ = [Jβ9, Jα9]/2

=

(i Id8 0

0 i Id8

(Id8 00 − Id8

)

Proposition

spin(10) = spanJαβ = Iα Iβ0≤α<β≤9

A basis for spin(10)

spin(10) = liespin(9), u(1) ⊂ su(16), where u(1) is generated by(i Id8 0

0 −i Id8

)

spin(9) is generated by J19, . . . , J89, because Jαβ = [Jβ9, Jα9]/2

=

(i Id8 0

0 i Id8

(Id8 00 − Id8

)

Proposition

spin(10) = spanJαβ = Iα Iβ0≤α<β≤9

A basis for spin(10)

spin(10) = liespin(9), u(1) ⊂ su(16), where u(1) is generated by(i Id8 0

0 −i Id8

)

spin(9) is generated by J19, . . . , J89, because Jαβ = [Jβ9, Jα9]/2

=

def= I0

= I9

I0 is a complex structure, not an involution. It acts on the first factor ofC⊗O2 by complex multiplication.

(i Id8 0

0 i Id8

(Id8 00 − Id8

)

Proposition

spin(10) = spanJαβ = Iα Iβ0≤α<β≤9

A basis for spin(10)

spin(10) = liespin(9), u(1) ⊂ su(16), where u(1) is generated by(i Id8 0

0 −i Id8

)

spin(9) is generated by J19, . . . , J89, because Jαβ = [Jβ9, Jα9]/2

=

def= I0

= I9

(i Id8 0

0 i Id8

(Id8 00 − Id8

)

Proposition

spin(10) = spanJαβ = Iα Iβ0≤α<β≤9

Canonical Spin(10)-form

Denote by JN the basis Jαβ = Iα Iβ0≤α<β≤9 of spin(10)

Denote by ΘN its associated skew-symmetric 10× 10 matrix ofKahler forms:

ΘN = (θαβ)0≤α<β≤9

Canonical Spin(10) form: 8-form in R32

The fourth coefficient τ4(ΘN) of the characteristic polynomial of ΘN is acanonical 8-form associated with the representation Spin(10) ⊂ SU(16):

ΦSpin(10) =∑

0≤α1<α2<α3<α4≤9

(θα1α2 ∧θα3α4−θα1α3 ∧θα2α4 +θα1α4 ∧θα2α3)2

ΦSpin(10) generates H8(EIII)

Cohomology of EIII

H∗( (C⊗O)P2 ) =R[d2, d8]

(suitable relations)d2 ∈ H2, d8 ∈ H8

I’m Hermitian symmetric

I’m the Kahler form

What am I?

ΦSpin(10) generates H8(EIII)

Cohomology of EIII

H∗( (C⊗O)P2 ) =R[d2, d8]

(suitable relations)d2 ∈ H2, d8 ∈ H8

I’m Hermitian symmetric

I’m the Kahler form

What am I?

ΦSpin(10) generates H8(EIII)

The d8-Lemma

H∗( (C⊗O)P2 ) =R[d2, d8]

(suitable relations)d2 ∈ H2, d8 ∈ H8

I’m Hermitian symmetric

I’m the Kahler form

What am I?

ΦSpin(10) generates H8(EIII)

0 + 0 2 + 0 4 + 0 6 + 0 8 + 0 10 + 0 12 + 0 14 + 0 16 + 0

0 + 8 2 + 8 4 + 8 6 + 8 8 + 810 + 812 + 814 + 816 + 8

0 + 162 + 164 + 166 + 168 + 1610 + 1612 + 1614 + 1616 + 16

H0 H2 H4 H6 H8 H10 H12 H14 H16

1

2

3

Kahler form

→ generator in H2(EIII)

→ generator in H8(EIII)

ΦSpin(10) generates H8(EIII)

0 + 0 2 + 0 4 + 0 6 + 0 8 + 0 10 + 0 12 + 0 14 + 0 16 + 0

0 + 8 2 + 8 4 + 8 6 + 8 8 + 810 + 812 + 814 + 816 + 8

0 + 162 + 164 + 166 + 168 + 1610 + 1612 + 1614 + 1616 + 16

H0 H2 H4 H6 H8 H10 H12 H14 H16

1

2

3

Kahler form

ΦSpin(10)

→ generator in H2(EIII)

→ generator in H8(EIII)

Time check

How many minutes?

Go on with EVI, EVIII

Skip to applications

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planesWhy and whatSpin(10)Spin(12) and Spin(16)

4 Applications

5 Conclusion

EVI: cohomology ring

The cohomology of

EVI = (H⊗O)P2 =E7

Spin(12) · Sp(1)

is given by

H∗( (H⊗O)P2 ) =R[d4, d8, d12]

(suitable relations)d4 , d8 , d12 ∈ H4,H8,H12

I’m quaternion-Kahler

I’m the quaternion-Kahler form

? ?

A basis for spin(12) ⊂ sp(16)

Consider the matrices(i Id8 0

0 −i Id8

),

(j Id8 0

0 −j Id8

),

(k Id8 0

0 −k Id8

)where i , j , k act as quaternionic multiplication on H⊗O2

Denote by I0, I−1, I−2 the i , j , k multiplication

Proposition

spin(12) = spanJαβ = Iα Iβ−2≤α<β≤9

Canonical Spin(12) forms: 8 and 12-form in R64

If ΘO is the matrix of Kahler forms of Jαβ = Iα Iβ, then τ4(ΘO) andτ6(ΘO) are a canonical 8-form and a canonical 12-form on R64 = H⊗O2

associated to Spin(12).

EVI: cohomology ring

0 + 0 + 0 4 + 0 + 0 8 + 0 + 0 12 + 0 + 0 16 + 0 + 0 20 + 0 + 0 24 + 0 + 0 28 + 0 + 0 32 + 0 + 0

0 + 8 + 0 4 + 8 + 0 8 + 8 + 0 12 + 8 + 0 16 + 8 + 0 20 + 8 + 0 24 + 8 + 028 + 8 + 032 + 8 + 0

0 + 16 + 0 4 + 16 + 0 8 + 16 + 0 12 + 16 + 0 16 + 16 + 020 + 16 + 024 + 16 + 028 + 16 + 032 + 16 + 0

0 + 24 + 0 4 + 24 + 0 8 + 24 + 012 + 24 + 016 + 24 + 020 + 24 + 024 + 24 + 028 + 24 + 032 + 24 + 0

0 + 32 + 04 + 32 + 08 + 32 + 012 + 32 + 016 + 32 + 020 + 32 + 024 + 32 + 028 + 32 + 032 + 32 + 0

0 + 0 + 12 4 + 0 + 12 8 + 0 + 12 12 + 0 + 12 16 + 0 + 12 20 + 0 + 1224 + 0 + 1228 + 0 + 1232 + 0 + 12

0 + 8 + 12 4 + 8 + 12 8 + 8 + 12 12 + 8 + 1216 + 8 + 1220 + 8 + 1224 + 8 + 1228 + 8 + 1232 + 8 + 12

0 + 16 + 12 4 + 16 + 128 + 16 + 1212 + 16 + 1216 + 16 + 1220 + 16 + 1224 + 16 + 1228 + 16 + 1232 + 16 + 12

0 + 24 + 124 + 24 + 128 + 24 + 1212 + 24 + 1216 + 24 + 1220 + 24 + 1224 + 24 + 1228 + 24 + 1232 + 24 + 12

0 + 32 + 124 + 32 + 128 + 32 + 1212 + 32 + 1216 + 32 + 1220 + 32 + 1224 + 32 + 1228 + 32 + 1232 + 32 + 12

0 + 0 + 24 4 + 0 + 24 8 + 0 + 2412 + 0 + 2416 + 0 + 2420 + 0 + 2424 + 0 + 2428 + 0 + 2432 + 0 + 24

0 + 8 + 244 + 8 + 248 + 8 + 2412 + 8 + 2416 + 8 + 2420 + 8 + 2424 + 8 + 2428 + 8 + 2432 + 8 + 24

0 + 16 + 244 + 16 + 248 + 16 + 2412 + 16 + 2416 + 16 + 2420 + 16 + 2424 + 16 + 2428 + 16 + 2432 + 16 + 24

0 + 24 + 244 + 24 + 248 + 24 + 2412 + 24 + 2416 + 24 + 2420 + 24 + 2424 + 24 + 2428 + 24 + 2432 + 24 + 24

0 + 32 + 244 + 32 + 248 + 32 + 2412 + 32 + 2416 + 32 + 2420 + 32 + 2424 + 32 + 2428 + 32 + 2432 + 32 + 24

1 1 2 3 4 5 6 6 7

Quaternionic form

τ4(ΘO)

τ6(ΘO)

→ generator in H4(EVI)

→ generator in H8(EVI)

→ generator in H12(EVI)

EVIII: cohomology ring

The cohomology of

EVIII = (O⊗O)P2 =E8

Spin(16)+

is given by

H∗( (O⊗O)P2 ) =R[d8, d12, d16, d20]

(suitable relations)d8 ,d12 ,d16 ,d20∈ H8,H12,H16,H20

?

?

?

?

A basis for spin(16) ⊂ so(128)

Denote by I0, I−1, I−2, I−3, I−4, I−5, I−6 the i , j , k, e, f , g , hmultiplication by the octonion units on the first factor of O⊗O2

Proposition

spin(16) = spanJαβ = Iα Iβ−6≤α<β≤9

Canonical Spin(16) forms: 8, 12, 16 and 20-form in R128

If ΘR is the matrix of Kahler forms of Jαβ = Iα Iβ, then τ4(ΘR),τ6(ΘR), τ8(ΘR) and τ10(ΘR) are canonical forms associated with thestandard Spin(16) structure on R128 = O⊗O2.

EVIII: cohomology ring

The cohomology of

EVIII = (O⊗O)P2 =E8

Spin(16)+

is given by

H∗( (O⊗O)P2 ) =R[d8, d12, d16, d20]

(suitable relations)d8 ,d12 ,d16 ,d20∈ H8,H12,H16,H20

I’m τ4(ΘR)

I’m τ6(ΘR)

I’m τ8(ΘR)

I’m τ10(ΘR)

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 ApplicationsBack to spheresMatryoshkaClifford structures

5 Conclusion

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 ApplicationsBack to spheresMatryoshkaClifford structures

5 Conclusion

More than 7 vector fields on spheres? Spin(9)’s fault. . .

σ(m) = 2p − 1 + 8q

C,H,O contribution Spin(9) contribution

Maximal system of σ(m) = 8, 9, 11, 15 vector fields on S15,S31,S63, S127

Sphere σ(m) Vector fields Structures involved

S15 (p = 0, q = 1) 0 + 8 J19, . . . , J89 Spin(9)

S31 (p = 1, q = 1) 1 + 8 i ·, J19, . . . , J89 C + Spin(9)

S63 (p = 2, q = 1) 3 + 8 i ·, j ·, k ·,J19, . . . , J89 H + Spin(9)

S127 (p = 3, q = 1) 7 + 8 i ·, j ·, k ·, e·, f ·, g ·, h·, J19, . . . , J89 O + Spin(9)

but Spin(10), Spin(12) and Spin(16) are co-conspirators

σ(m) =

0 + 8q Spin(9) contribution

1 + 8q Spin(10) contribution

3 + 8q Spin(12) contribution

7 + 8q Spin(16) contribution

Maximal system of σ(m) = 8, 9, 11, 15 vector fields on S15, S31,S63,S127

Sphere σ(m) Vector fields Structures involved

S15 (p = 0, q = 1) 0 + 8 J19, . . . , J89 Spin(9)

S31 (p = 1, q = 1) 1 + 8 J09,J19, . . . , J89 Spin(10)

S63 (p = 2, q = 1) 3 + 8 J(−2)9, J(−1)9, J09,J19, . . . , J89 Spin(12)

S127 (p = 3, q = 1) 7 + 8 J(−6)9, . . . , J(−1)9, J09,J19, . . . , J89 Spin(16)

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 ApplicationsBack to spheresMatryoshkaClifford structures

5 Conclusion

The dolls. . .

Recall that the Spin(9) family

J I = Jαβ1≤α<β≤9

contains the Spin(8) and Spin(7)∆ subfamilies

JP = Jαβ1≤α<β≤8, JS = Jαβ2≤α<β≤8

Using the first factor multiplication in C⊗O2, H⊗O2, O⊗O2 weobtain the larger families

JN = Jαβ0≤α<β≤9, JO = Jαβ−2≤α<β≤9, J

R = Jαβ−6≤α<β≤9

. . . and their Matryoshka

The Lie group inclusions

Spin(7)∆ ⊂ Spin(8) ⊂ Spin(9) ⊂ Spin(10) ⊂ Spin(12) ⊂ Spin(16)

are preserved by the spinor inclusions

JS ⊂ JP ⊂ J I ⊂ JN ⊂ JO ⊂ JR

= JSPINOR

. . . and their Matryoshka

The Lie group inclusions

Spin(7)∆ ⊂ Spin(8) ⊂ Spin(9) ⊂ Spin(10) ⊂ Spin(12) ⊂ Spin(16)

are preserved by the spinor inclusions

JS ⊂ JP ⊂ J I ⊂ JN ⊂ JO ⊂ JR = JSPINOR

INOR details

so(16) = Λ2(R16) = Λ236 ⊕ Λ2

84 = spin(9)⊕ Λ284

generated by J I = Iα Iβ

Add I0 to obtain JN = Iα Iβ0≤α<β≤9 and

spanJN = spin(10) ⊂ so(32)

Add I−1, I−2 to obtain JO = Iα Iβ−2≤α<β≤9 and

spanJO = spin(12) ⊂ so(64)

Add I−6, . . . , I−3 to obtain JR = Iα Iβ−6≤α<β≤9 and

spanJR = spin(16) ⊂ so(128)

INOR details

so(16) = Λ2(R16) = Λ236 ⊕ Λ2

84 = spin(9)⊕ Λ284

generated by J I = Iα Iβ

Add I0 to obtain JN = Iα Iβ0≤α<β≤9 and

spanJN = spin(10) ⊂ so(32)

Add I−1, I−2 to obtain JO = Iα Iβ−2≤α<β≤9 and

spanJO = spin(12) ⊂ so(64)

Add I−6, . . . , I−3 to obtain JR = Iα Iβ−6≤α<β≤9 and

spanJR = spin(16) ⊂ so(128)

INOR details

so(16) = Λ2(R16) = Λ236 ⊕ Λ2

84 = spin(9)⊕ Λ284

generated by J I = Iα Iβ

Add I0 to obtain JN = Iα Iβ0≤α<β≤9 and

spanJN = spin(10) ⊂ so(32)

Add I−1, I−2 to obtain JO = Iα Iβ−2≤α<β≤9 and

spanJO = spin(12) ⊂ so(64)

Add I−6, . . . , I−3 to obtain JR = Iα Iβ−6≤α<β≤9 and

spanJR = spin(16) ⊂ so(128)

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 ApplicationsBack to spheresMatryoshkaClifford structures

5 Conclusion

Even Clifford structures

A rank r even Clifford structure on a Riemannian manifold Mn is:

a rank r oriented Euclidean vector bundle E over M

an algebra bundle morphism φ : Cl0(E )→ End(TM) such thatφ(Λ2E ) ⊂ End−(TM)

Classification

Rank of E Mn n

. . . . . . . . .

9 OP2 = FII = F4Spin(9) 16

10 (C⊗O)P2 = EIII = E6Spin(10)·U(1) 32

12 (H⊗O)P2 = EVI = E7Spin(12)·Sp(1) 64

16 (O⊗O)P2 = EVIII = E8Spin(16)+ 128

[Moroianu-Semmelmann, Adv. Math. 2011]

Explicit even Clifford structures on Rosenfeld planes

Holonomy representation

Local endomorphisms

Vector bundle

Spin(9)

Local I1, . . . , I9

E = spanI1, . . . , I9

Rank of E E φ Mn n

9 spanI1, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ OP2 16

10 spanI0, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (C⊗O)P2 32

12 spanI−2, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (H⊗O)P2 64

16 spanI−6, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (O⊗O)P2 128

Explicit even Clifford structures on Rosenfeld planes

Holonomy representation

Local endomorphisms

Vector bundle

Spin(9)

Local I1, . . . , I9

E = spanI1, . . . , I9

Rank of E E φ Mn n

9 spanI1, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ OP2 16

10 spanI0, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (C⊗O)P2 32

12 spanI−2, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (H⊗O)P2 64

16 spanI−6, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (O⊗O)P2 128

Explicit even Clifford structures on Rosenfeld planes

Holonomy representation

Local endomorphisms

Vector bundle

Spin(9)

Local I1, . . . , I9

E = spanI1, . . . , I9

Rank of E E φ Mn n

9 spanI1, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ OP2 16

10 spanI0, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (C⊗O)P2 32

12 spanI−2, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (H⊗O)P2 64

16 spanI−6, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (O⊗O)P2 128

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

Wrapping up

Spin(9) is the octonionic version of the quaternionic group Sp(2) · Sp(1).

Spin(9) is the reason why there are more than 7 vector fields on spheres.

The Spin(9) form on R16 = O2 can be extended to C⊗O2, H⊗O2 andO⊗O2, to obtain explicit generators for the cohomology of particularsymmetric spaces called Rosenfeld planes.

Between the Spin(n) groups, Spin(10), Spin(12) and Spin(16) are moreequal than others to Spin(9).

Homology interpretation

Interpretation in terms of the homology of the Rosenfeld planes of thecanonical differential forms living in

H2,H8 H4,H8,H12 H8,H12,H16,H20

EIII EVI EVIII

Extending

Following

Iα1≤α≤9 ∈ End(O2)→ Iα0≤α≤9 ∈ End(C⊗O2)→ . . .

what happens extending the Pauli matrices

I1, I2, I3 ∈ End(C2)→ I0, . . . , I3 ∈ End(C⊗ C2)

and the

I1, . . . , I5 ∈ End(H2)→ I0, . . . , I5 ∈ End(C⊗H2)→ . . .

Subordinated structures

Can we write formulas as in

Ω = ω2I + ω2

J + ω2K

for our Spin(9), . . . ,Spin(16) canonical 8-forms in terms of compatiblequaternonic structures?

Minimal formal definition of Spin(n)

Definition

Cl(n) = Clifford algebra = algebra generated by vectors v ∈ Rn suchthat

v · v = −‖v‖2 · 1

α = canonical involution of Cl(n):

α(v) = −v for vectors v ∈ Rn

Cl0(n) = +1-eigenspace of α.

‖ · ‖ = norm of Cl(n) = extension of ‖ · ‖ to Cl(n).

Spin(n) = x ∈ Cl0(n)|xRnx−1 ⊂ Rnand‖x‖ = 1

Go back

Details for ΦSpin(9) =∫OP1 p∗l νl dl

νl = volume form on the octonionic lines ldef= (x ,mx) or

ldef= (0, y) in O2.

pl : O2 → l = projection on l .

p∗l νl = 8-form in O2 = R16.

The integral over OP1 can be computed over O with polarcoordinates.

The formula arise from distinguished 8-planes in theSpin(9)-geometry → (forthcoming) calibrations.

Go back

Berger and calibrations

Curiosity

Berger appears to know about the fact that ΦSpin(9) is a calibration onOP2 already in 1970 [Berger, L’Enseignement Math. 1970] and more explicitly in 1972[Berger, Ann. Ec. Norm. Sup. 1972, Theorem 6.3], very early with respect to theforthcoming calibration theory.

Time check

ADATTARE E SPOSTAREDo we have at least ... minutes left?

Yes, go ahead as planned No, skip quaternionic analogy

First attempt

Remark

Since Spin(10) ⊂ SU(16), we would like to imitate Spin(9) ⊂ SO(16),and look for I0, . . . , I9 self-adjoint, anti-commuting involutions in C16.

Would-be proposition

Spin(10) ⊂ SU(16) is generated by 10 self-adjoint, anti-commutinginvolutions I0, . . . , I9.

Proposition

C16 with its standard Hermitian scalar product does not admit any familyof 10 self-adjoint, anti-commuting involutions I0, . . . , I9.

First attempt

Remark

Since Spin(10) ⊂ SU(16), we would like to imitate Spin(9) ⊂ SO(16),and look for I0, . . . , I9 self-adjoint, anti-commuting involutions in C16.

Would-be proposition

Spin(10) ⊂ SU(16) is generated by 10 self-adjoint, anti-commutinginvolutions I0, . . . , I9.

Proposition

C16 with its standard Hermitian scalar product does not admit any familyof 10 self-adjoint, anti-commuting involutions I0, . . . , I9.

First attempt

Remark

Since Spin(10) ⊂ SU(16), we would like to imitate Spin(9) ⊂ SO(16),and look for I0, . . . , I9 self-adjoint, anti-commuting involutions in C16.

Would-be proposition

Spin(10) ⊂ SU(16) is generated by 10 self-adjoint, anti-commutinginvolutions I0, . . . , I9.

Proposition

C16 with its standard Hermitian scalar product does not admit any familyof 10 self-adjoint, anti-commuting involutions I0, . . . , I9.

First attempt

Remark

Since Spin(10) ⊂ SU(16), we would like to imitate Spin(9) ⊂ SO(16),and look for I0, . . . , I9 self-adjoint, anti-commuting involutions in C16.

Would-be proposition

Spin(10) ⊂ SU(16) is generated by 10 self-adjoint, anti-commutinginvolutions I0, . . . , I9.

Proposition

C16 with its standard Hermitian scalar product does not admit any familyof 10 self-adjoint, anti-commuting involutions I0, . . . , I9.

351 terms of ΦSpin(9)12345678

-14

123456

1′ 2

′2

123456

3′ 4

′-2

123456

5′ 6

′-2

123456

7′ 8

′-2

123457

1′ 3

′2

123457

2′ 4

′2

123457

5′ 7

′-2

123457

6′ 8

′2

123458

1′ 4

′2

123458

2′ 3

′-2

123458

5′ 8

′-2

123458

6′ 7

′-2

123467

1′ 4

′-2

123467

2′ 3

′2

123467

5′ 8

′-2

123467

6′ 7

′-2

123468

1′ 3

′2

123468

2′ 4

′2

123468

5′ 7

′2

123468

6′ 8

′-2

123478

1′ 2

′-2

123478

3′ 4

′2

123478

5′ 6

′-2

123478

7′ 8

′-2

1234

1′ 2

′ 3′ 4

′-2

1234

5′ 6

′ 7′ 8

′-2

123567

1′ 5

′-2

123567

2′ 6

′-2

123567

3′ 7

′-2

123567

4′ 8

′2

123568

1′ 6

′-2

123568

2′ 5

′2

123568

3′ 8

′-2

123568

4′ 7

′-2

123578

1′ 7

′-2

123578

2′ 8

′2

123578

3′ 5

′2

123578

4′ 6

′2

1235

1′ 2

′ 3′ 5

′-1

1235

1′ 2

′ 4′ 6

′-1

1235

1′ 3

′ 4′ 7

′-1

1235

1′ 5

′ 6′ 7

′-1

1235

2′ 3

′ 4′ 8

′1

1235

2′ 5

′ 6′ 8

′1

1235

3′ 5

′ 7′ 8

′1

1235

4′ 6

′ 7′ 8

′1

123678

1′ 8

′-2

123678

2′ 7

′-2

123678

3′ 6

′2

123678

4′ 5

′-2

1236

1′ 2

′ 3′ 6

′-1

1236

1′ 2

′ 4′ 5

′1

1236

1′ 3

′ 4′ 8

′-1

1236

1′ 5

′ 6′ 8

′-1

1236

2′ 3

′ 4′ 7

′-1

1236

2′ 5

′ 6′ 7

′-1

1236

3′ 6

′ 7′ 8

′1

1236

4′ 5

′ 7′ 8

′-1

1237

1′ 2

′ 3′ 7

′-1

1237

1′ 2

′ 4′ 8

′1

1237

1′ 3

′ 4′ 5

′1

1237

1′ 5

′ 7′ 8

′-1

1237

2′ 3

′ 4′ 6

′1

1237

2′ 6

′ 7′ 8

′-1

1237

3′ 5

′ 6′ 7

′-1

1237

4′ 5

′ 6′ 8

′1

1238

1′ 2

′ 3′ 8

′-1

1238

1′ 2

′ 4′ 7

′-1

1238

1′ 3

′ 4′ 6

′1

1238

1′ 6

′ 7′ 8

′-1

1238

2′ 3

′ 4′ 5

′-1

1238

2′ 5

′ 7′ 8

′1

1238

3′ 5

′ 6′ 8

′-1

1238

4′ 5

′ 6′ 7

′-1

124567

1′ 6

′2

124567

2′ 5

′-2

124567

3′ 8

′-2

124567

4′ 7

′-2

124568

1′ 5

′-2

124568

2′ 6

′-2

124568

3′ 7

′2

124568

4′ 8

′-2

124578

1′ 8

′-2

124578

2′ 7

′-2

124578

3′ 6

′-2

124578

4′ 5

′2

1245

1′ 2

′ 3′ 6

′1

1245

1′ 2

′ 4′ 5

′-1

1245

1′ 3

′ 4′ 8

′-1

1245

1′ 5

′ 6′ 8

′-1

1245

2′ 3

′ 4′ 7

′-1

1245

2′ 5

′ 6′ 7

′-1

1245

3′ 6

′ 7′ 8

′-1

1245

4′ 5

′ 7′ 8

′1

124678

1′ 7

′2

124678

2′ 8

′-2

124678

3′ 5

′2

124678

4′ 6

′2

1246

1′ 2

′ 3′ 5

′-1

1246

1′ 2

′ 4′ 6

′-1

1246

1′ 3

′ 4′ 7

′1

1246

1′ 5

′ 6′ 7

′1

1246

2′ 3

′ 4′ 8

′-1

1246

2′ 5

′ 6′ 8

′-1

1246

3′ 5

′ 7′ 8

′1

1246

4′ 6

′ 7′ 8

′1

1247

1′ 2

′ 3′ 8

′-1

1247

1′ 2

′ 4′ 7

′-1

1247

1′ 3

′ 4′ 6

′-1

1247

1′ 6

′ 7′ 8

′1

1247

2′ 3

′ 4′ 5

′1

1247

2′ 5

′ 7′ 8

′-1

1247

3′ 5

′ 6′ 8

′-1

1247

4′ 5

′ 6′ 7

′-1

1248

1′ 2

′ 3′ 7

′1

1248

1′ 2

′ 4′ 8

′-1

1248

1′ 3

′ 4′ 5

′1

1248

1′ 5

′ 7′ 8

′-1

1248

2′ 3

′ 4′ 6

′1

1248

2′ 6

′ 7′ 8

′-1

1248

3′ 5

′ 6′ 7

′1

1248

4′ 5

′ 6′ 8

′-1

125678

1′ 2

′-2

125678

3′ 4

′-2

125678

5′ 6

′2

125678

7′ 8

′-2

1256

1′ 2

′ 5′ 6

′-2

1256

3′ 4

′ 7′ 8

′-2

1257

1′ 2

′ 5′ 7

′-1

1257

1′ 2

′ 6′ 8

′1

1257

1′ 3

′ 5′ 6

′-1

1257

1′ 3

′ 7′ 8

′1

1257

2′ 4

′ 5′ 6

′-1

1257

2′ 4

′ 7′ 8

′1

1257

3′ 4

′ 5′ 7

′-1

1257

3′ 4

′ 6′ 8

′1

1258

1′ 2

′ 5′ 8

′-1

1258

1′ 2

′ 6′ 7

′-1

1258

1′ 4

′ 5′ 6

′-1

1258

1′ 4

′ 7′ 8

′1

1258

2′ 3

′ 5′ 6

′1

1258

2′ 3

′ 7′ 8

′-1

1258

3′ 4

′ 5′ 8

′-1

1258

3′ 4

′ 6′ 7

′-1

1267

1′ 2

′ 5′ 8

′-1

1267

1′ 2

′ 6′ 7

′-1

1267

1′ 4

′ 5′ 6

′1

1267

1′ 4

′ 7′ 8

′-1

1267

2′ 3

′ 5′ 6

′-1

1267

2′ 3

′ 7′ 8

′1

1267

3′ 4

′ 5′ 8

′-1

1267

3′ 4

′ 6′ 7

′-1

1268

1′ 2

′ 5′ 7

′1

1268

1′ 2

′ 6′ 8

′-1

1268

1′ 3

′ 5′ 6

′-1

1268

1′ 3

′ 7′ 8

′1

1268

2′ 4

′ 5′ 6

′-1

1268

2′ 4

′ 7′ 8

′1

1268

3′ 4

′ 5′ 7

′1

1268

3′ 4

′ 6′ 8

′-1

1278

1′ 2

′ 7′ 8

′-2

1278

3′ 4

′ 5′ 6

′-2

12

1′ 2

′ 3′ 4

′ 5′ 6

′2

12

1′ 2

′ 3′ 4

′ 7′ 8

′-2

12

1′ 2

′ 5′ 6

′ 7′ 8

′-2

12

3′ 4

′ 5′ 6

′ 7′ 8

′-2

134567

1′ 7

′2

134567

2′ 8

′2

134567

3′ 5

′-2

134567

4′ 6

′2

134568

1′ 8

′2

134568

2′ 7

′-2

134568

3′ 6

′-2

134568

4′ 5

′-2

134578

1′ 5

′-2

134578

2′ 6

′2

134578

3′ 7

′-2

134578

4′ 8

′-2

1345

1′ 2

′ 3′ 7

′1

1345

1′ 2

′ 4′ 8

′1

1345

1′ 3

′ 4′ 5

′-1

1345

1′ 5

′ 7′ 8

′-1

1345

2′ 3

′ 4′ 6

′1

1345

2′ 6

′ 7′ 8

′1

1345

3′ 5

′ 6′ 7

′-1

1345

4′ 5

′ 6′ 8

′-1

134678

1′ 6

′-2

134678

2′ 5

′-2

134678

3′ 8

′-2

134678

4′ 7

′2

1346

1′ 2

′ 3′ 8

′1

1346

1′ 2

′ 4′ 7

′-1

1346

1′ 3

′ 4′ 6

′-1

1346

1′ 6

′ 7′ 8

′-1

1346

2′ 3

′ 4′ 5

′-1

1346

2′ 5

′ 7′ 8

′-1

1346

3′ 5

′ 6′ 8

′-1

1346

4′ 5

′ 6′ 7

′1

1347

1′ 2

′ 3′ 5

′-1

1347

1′ 2

′ 4′ 6

′1

1347

1′ 3

′ 4′ 7

′-1

1347

1′ 5

′ 6′ 7

′1

1347

2′ 3

′ 4′ 8

′-1

1347

2′ 5

′ 6′ 8

′1

1347

3′ 5

′ 7′ 8

′-1

1347

4′ 6

′ 7′ 8

′1

1348

1′ 2

′ 3′ 6

′-1

1348

1′ 2

′ 4′ 5

′-1

1348

1′ 3

′ 4′ 8

′-1

1348

1′ 5

′ 6′ 8

′1

1348

2′ 3

′ 4′ 7

′1

1348

2′ 5

′ 6′ 7

′-1

1348

3′ 6

′ 7′ 8

′-1

1348

4′ 5

′ 7′ 8

′-1

135678

1′ 3

′-2

135678

2′ 4

′2

135678

5′ 7

′2

135678

6′ 8

′2

1356

1′ 2

′ 5′ 7

′-1

1356

1′ 2

′ 6′ 8

′-1

1356

1′ 3

′ 5′ 6

′-1

1356

1′ 3

′ 7′ 8

′-1

1356

2′ 4

′ 5′ 6

′1

1356

2′ 4

′ 7′ 8

′1

1356

3′ 4

′ 5′ 7

′1

1356

3′ 4

′ 6′ 8

′1

1357

1′ 3

′ 5′ 7

′-2

1357

2′ 4

′ 6′ 8

′-2

1358

1′ 3

′ 5′ 8

′-1

1358

1′ 3

′ 6′ 7

′-1

1358

1′ 4

′ 5′ 7

′-1

1358

1′ 4

′ 6′ 8

′-1

1358

2′ 3

′ 5′ 7

′1

1358

2′ 3

′ 6′ 8

′1

1358

2′ 4

′ 5′ 8

′1

1358

2′ 4

′ 6′ 7

′1

1367

1′ 3

′ 5′ 8

′-1

1367

1′ 3

′ 6′ 7

′-1

1367

1′ 4

′ 5′ 7

′1

1367

1′ 4

′ 6′ 8

′1

1367

2′ 3

′ 5′ 7

′-1

1367

2′ 3

′ 6′ 8

′-1

1367

2′ 4

′ 5′ 8

′1

1367

2′ 4

′ 6′ 7

′1

1368

1′ 3

′ 6′ 8

′-2

1368

2′ 4

′ 5′ 7

′-2

1378

1′ 2

′ 5′ 7

′1

1378

1′ 2

′ 6′ 8

′1

1378

1′ 3

′ 5′ 6

′-1

1378

1′ 3

′ 7′ 8

′-1

1378

2′ 4

′ 5′ 6

′1

1378

2′ 4

′ 7′ 8

′1

1378

3′ 4

′ 5′ 7

′-1

1378

3′ 4

′ 6′ 8

′-1

13

1′ 2

′ 3′ 4

′ 5′ 7

′2

13

1′ 2

′ 3′ 4

′ 6′ 8

′2

13

1′ 3

′ 5′ 6

′ 7′ 8

′-2

13

2′ 4

′ 5′ 6

′ 7′ 8

′2

145678

1′ 4

′-2

145678

2′ 3

′-2

145678

5′ 8

′2

145678

6′ 7

′-2

1456

1′ 2

′ 5′ 8

′-1

1456

1′ 2

′ 6′ 7

′1

1456

1′ 4

′ 5′ 6

′-1

1456

1′ 4

′ 7′ 8

′-1

1456

2′ 3

′ 5′ 6

′-1

1456

2′ 3

′ 7′ 8

′-1

1456

3′ 4

′ 5′ 8

′1

1456

3′ 4

′ 6′ 7

′-1

1457

1′ 3

′ 5′ 8

′-1

1457

1′ 3

′ 6′ 7

′1

1457

1′ 4

′ 5′ 7

′-1

1457

1′ 4

′ 6′ 8

′1

1457

2′ 3

′ 5′ 7

′-1

1457

2′ 3

′ 6′ 8

′1

1457

2′ 4

′ 5′ 8

′-1

1457

2′ 4

′ 6′ 7

′1

1458

1′ 4

′ 5′ 8

′-2

1458

2′ 3

′ 6′ 7

′-2

1467

1′ 4

′ 6′ 7

′-2

1467

2′ 3

′ 5′ 8

′-2

1468

1′ 3

′ 5′ 8

′-1

1468

1′ 3

′ 6′ 7

′1

1468

1′ 4

′ 5′ 7

′1

1468

1′ 4

′ 6′ 8

′-1

1468

2′ 3

′ 5′ 7

′1

1468

2′ 3

′ 6′ 8

′-1

1468

2′ 4

′ 5′ 8

′-1

1468

2′ 4

′ 6′ 7

′1

1478

1′ 2

′ 5′ 8

′1

1478

1′ 2

′ 6′ 7

′-1

1478

1′ 4

′ 5′ 6

′-1

1478

1′ 4

′ 7′ 8

′-1

1478

2′ 3

′ 5′ 6

′-1

1478

2′ 3

′ 7′ 8

′-1

1478

3′ 4

′ 5′ 8

′-1

1478

3′ 4

′ 6′ 7

′1

14

1′ 2

′ 3′ 4

′ 5′ 8

′2

14

1′ 2

′ 3′ 4

′ 6′ 7

′-2

14

1′ 4

′ 5′ 6

′ 7′ 8

′-2

14

2′ 3

′ 5′ 6

′ 7′ 8

′-2

1567

1′ 2

′ 3′ 5

′-1

1567

1′ 2

′ 4′ 6

′1

1567

1′ 3

′ 4′ 7

′1

1567

1′ 5

′ 6′ 7

′-1

1567

2′ 3

′ 4′ 8

′1

1567

2′ 5

′ 6′ 8

′-1

1567

3′ 5

′ 7′ 8

′-1

1567

4′ 6

′ 7′ 8

′1

1568

1′ 2

′ 3′ 6

′-1

1568

1′ 2

′ 4′ 5

′-1

1568

1′ 3

′ 4′ 8

′1

1568

1′ 5

′ 6′ 8

′-1

1568

2′ 3

′ 4′ 7

′-1

1568

2′ 5

′ 6′ 7

′1

1568

3′ 6

′ 7′ 8

′-1

1568

4′ 5

′ 7′ 8

′-1

1578

1′ 2

′ 3′ 7

′-1

1578

1′ 2

′ 4′ 8

′-1

1578

1′ 3

′ 4′ 5

′-1

1578

1′ 5

′ 7′ 8

′-1

1578

2′ 3

′ 4′ 6

′1

1578

2′ 6

′ 7′ 8

′1

1578

3′ 5

′ 6′ 7

′1

1578

4′ 5

′ 6′ 8

′1

15

1′ 2

′ 3′ 5

′ 6′ 7

′-2

15

1′ 2

′ 4′ 5

′ 6′ 8

′-2

15

1′ 3

′ 4′ 5

′ 7′ 8

′-2

15

2′ 3

′ 4′ 6

′ 7′ 8

′2

1678

1′ 2

′ 3′ 8

′-1

1678

1′ 2

′ 4′ 7

′1

1678

1′ 3

′ 4′ 6

′-1

1678

1′ 6

′ 7′ 8

′-1

1678

2′ 3

′ 4′ 5

′-1

1678

2′ 5

′ 7′ 8

′-1

1678

3′ 5

′ 6′ 8

′1

1678

4′ 5

′ 6′ 7

′-1

16

1′ 2

′ 3′ 5

′ 6′ 8

′-2

16

1′ 2

′ 4′ 5

′ 6′ 7

′2

16

1′ 3

′ 4′ 6

′ 7′ 8

′-2

16

2′ 3

′ 4′ 5

′ 7′ 8

′-2

17

1′ 2

′ 3′ 5

′ 7′ 8

′-2

17

1′ 2

′ 4′ 6

′ 7′ 8

′2

17

1′ 3

′ 4′ 5

′ 6′ 7

′2

17

2′ 3

′ 4′ 5

′ 6′ 8

′2

18

1′ 2

′ 3′ 6

′ 7′ 8

′-2

18

1′ 2

′ 4′ 5

′ 7′ 8

′-2

18

1′ 3

′ 4′ 5

′ 6′ 8

′2

18

2′ 3

′ 4′ 5

′ 6′ 7

′-2

Go

ba

ck

top related