structural design of long-life asphalt pavements

Post on 06-Jan-2022

6 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

STRUCTURAL DESIGNSTRUCTURAL DESIGNOFOF

LONGLONG--LIFE ASPHALT PAVEMENTSLIFE ASPHALT PAVEMENTS

Marshall R. ThompsonProfessor Emeritus

Department of Civil EngineeringUniversity of Illinois @ U-C

TAC

ASPHALT CONCRETE

SUBGRADE

DESIGN• AC FATIGUE• AC RUTTING• SUBGRADE RUTTING

PHILOSOPHY* “VERY LOW” PROBABILITY OF HMA FATIGUE

* MILL & FILL REHAB

-RUTTING

-“SURFACE WEATHERING”

-“TOP-DOWN” CRACKING

FULL-DEPTH AC PAVEMENT

TAC

εAC

ASPHALT CONCRETE(EAC)

SUBGRADE(ERi)

EXTENDED LIFE HMADESIGN CONCEPTS

RepeatedStress - Strain

Leads toRutting

Subgrade

RepeatedBending

Leads toFatigue Cracking

HMA

BaseBase

NON-STRUCTURAL RUTTING

TRL

M32

M32CORE

TRL

Longitudinal

crack in

M1

TRL

Crack (surface initiated)

WHEEL LOAD

TOP-DOWN CRACKING

TRL

TRL Report 250Nunn, Brown, Weston& Nicholls

Design of Long-Life FlexiblePavements for Heavy Traffic

http:\\www.trl.co.uk

High ModulusRut Resistant Material(Varies As Needed)

40-75 mm SMA, OGFC or Superpave100 mmto150 mm

ZoneOf High

Compression

Max Tensile StrainFlexible Fatigue ResistantMaterial 75 - 100 mm

Pavement Foundation

AASHTO TP 8-94

Standard Test Method for Determination of the Fatigue Life of Compacted HMA

Subjected to Repeated Flexural Bending

FATIGUE DESIGN• Tensile Strain at Bottom of Asphalt• Tensile Strain in Flexural Beam Test

Other Configurations

FATIGUE TESTING

• Tensile Strain in Flexural Beam Test– Other Configurations

– 10 Hz Haversine Load, 20o C, Controlled Strain

STIFFNESS CURVE

2000

3000

4000

5000

6000

7000

8000

0 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000 35,000,000 40,000,000

Number of Load Cycles

Stiff

ness

, Mpa

Failure

LABORATORY ALGORITHM

0.00001

0.0001

0.001

0.01

1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

Load Repetitions

Tens

ile S

train

K1 = InterceptK2 = Slope

AC FATIGUE

LOG N

LOG

εAC

N = K (1/εAC)n

n’ > n

n’

nn

K

FATIGUE ALGORITHM

• Nf = K1(1/ε)K2

• Nf = K( ε)a (E*)b

• 2002 Guide Will Have an Algorithm

HMA FATIGUE

N = K (1 / εAC)n

n : 3.5 - 6

2003 TRB PAPERSGhuzlan - Carpenter – Shen

University of IL @ U-C

• Traditional Fatigue Analysis of Asphalt Concrete Mixtures

• A Fatigue Endurance Limit for Highway and Airport Pavements

MATERIALS – 84 MIXES

• Illinois DOT– 25 mixes, 19, 12.5, 9.5 mm NMS– Production Samples

• Aggregate Interlock– Gradation Control, One Aggregate

• Dubai, U.A.E.– 4 Asphalts, 2 Aggregates, 8 gradations

• Various Others

ILLINOIS DOT

y = -0.3224x + 1.2471R2 = 0.9383

01234567

-16 -11 -6 -1Log(K1)

K2

ALL MIXTURES

y = -0.3269x + 1.1857R2 = 0.9445

01234567

-16 -12 -8Log(K1)

K2

OTHER STUDIES

0

1

2

3

4

5

6

7

-16 -14 -12 -10 -8 -6 -4 -2 0

Log(K1)

K2

U of IllinoisMaupin ResultsMyreFHWAFinnLinear (U of Illinois)Linear (Maupin Results)Linear (Myre)Linear (FHWA)

K – n RELATIONS

• Myre / Norway NTH (1992)LOG K = (1.332 – n) / 0.306

• U of ILGhuzlan & Carpenter (2001)LOG K = (1.186 – n) / 0.327

MAUPIN WORK

• Constant Strain Conditions– Different Failure Assumptions– One-Third Modulus Reduction

• K2 = 0.0374 σ IT - 0.744

• Calculate K1

– σIT = Indirect Tensile Strength (psi) @ 72oF– Marshall Samples

THERE IS

NO “UNIQUE”

HMA FATIGUE ALGORITHM !!!!

LOW STRAIN HMAFATIGUE BEHAVIOR

70 Micro Strain Test

4000

5000

6000

7000

8000

0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07 2.5E+07 3.0E+07 3.5E+07 4.0E+07

Number of Load Cycles

Stiff

ness

, Mpa

University of IllinoisFailure @ Stiffness < 50%

FATIGUE ENDURANCE LIMIT

0.00001

0.0001

0.001

0.01

1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

Load Repetitions

Tens

ile S

train

K1 = InterceptK2 = Slope

FATIGUE ENDURANCE LIMIT

• Damage and Healing Concepts and Test Data Support a Strain Limit Below Which Damage Does Not Accumulate

• Different Limit for Different Mixes and Binders

Significance of Fatigue Endurance Limit

“….such a limit would provide a thickness limit for the pavement..Increasing the thickness beyond the limiting thickness… would provide no increased structural resistance to fatigue damage and represent an unneeded expense.”

Prof. Carpenter

HMA FATIGUE

N (LOG)

ε AC

(LO

G)

N = K (1 / εAC)n

70 µε*

ENDURANCE LIMIT

PERPETUAL PAVEMENT

*Monismith and McLean (’72 AAPT)

HMA FATIGUE

N (LOG)

ε AC

(LO

G)

N = K (1 / εAC)n

FATIGUE DAMAGE

ENDURANCE LIMIT

NO FATIGUE DAMAGE

( )100NN P

Ti

ii =

∑=

=n

1i

100 P: FAILURE i

MINER’S

∑=

= 12

1i iN

121

Nf

Nf = “TOTAL” PAVT. LIFE

Ni = PAVT. LIFE-MONTH “i”

STRUCTURAL MODELLING

Elastic Layer (ELP)

Stress Dependent Finite Element

STRUCTURAL MODEL

ILLI-PAVE

FINE - GRAINED

σd – DEVIATOR STRESS

E R=

σ D/ ε

R

~ 6 psi

ERi

ERi CORRELATIONS

ERi = 0.37 Qu – 0.86

ERi(OPT M.C.) = 4.46 + 0.098 (%Clay) + 0.119 (PI)

Qu = 4.5 CBR

ERi - ksiQu - psi

MODULUS CLASSESFINE-GRAINED SOILS

SOIL ERi (ksi) Qu (psi) CBR

STIFF 12.3 33 8MEDIUM 7.7 23 5SOFT 3.0 13 2VERY SOFT 1.0 6 1

ERi (ksi) = 0.42 Qu (psi) - 2

GRANULAR MATERIAL

θ = σ1 + σ2 + σ3 (LOG)

E R(L

OG

) ER = K θn

ER = K θn

AGGREGATE CLASS K, psi n

SILTY SANDS (8) 1620 0.62SAND GRAVEL (37) 4480 0.53SAND/AGG BLENDS (78) 4350 0.59CRUSHED STONE (115) 7210 0.45

WHAT IS THE MODULUS ???

ELP – CONSTANT E!!!

HOT MIX ASPHALT

LINEAR ELASTIC (E)

E = f (Temp & Freq)

FULL-DEPTH AC

LOG εAC = 5.746–1.589 LOG TAC–0.774 LOG EAC–0.097 LOG ERi

εAC : µε TAC : in. EAC , ERi : ksi

O. A. Fonesca & M. W. WitczakAAPT Proceedings – 1996

“A Prediction Methodology for the Dynamic Modulus of In-Place Aged Asphalt Mixtures”

M. W. Witczak & O. A. FonescaTRB RECORD No.1540 (1996)

“Revised Predictive Model for Dynamic (Complex) Modulus of Asphalt Mixtures”

(AASHTO – 2002 Guide)

ASPHALT INSTITUTE EQUATION

EAC = f (X1 , X2 , Xn)

P200 = % - # 200

VV = % AIR VOIDS

η70 F = ABSOLUTE VISCOSITY (poises x 106)

PAC = % ASPHALT (wt. of mix)

tp = TEMPERATURE (F)

f = FREQUENCY (HZ)

SEASONAL EFFECTS

• HMA MODULUS VARIES !!

• HMA ε VARIES !!

• HMA FATIGUE LIFE VARIES !!

MUST CONSIDER IN M-E DESIGN

PG GRADE EFFECTS

HMA MODULUS (ksi)

TEMP (oF) 64-22 70-22

70 910 116075 765 97580 640 81585 530 67590 435 550

Asphalt: 3.5 % AV: 4 %- # 200: 3 % f = 10 hz

PG 70-22

HMA MODULUS (ksi)

TEMP (oF) AC-4.0 %* AC-3.5 %**

70 1195 116075 995 97580 820 81585 670 67590 540 550

* AV: 2.5 % ** AV: 4.0 %- # 200: 3 % f = 10 hz

ASPHALT INSTITUTE PROCEDURE

MMPT (oF) = MMAT [1 + (1 / {Z + 4})] – [34 / {Z + 4}] + 6

Z: INCHES FROM SURFACE

ICM/AI38.5/38.032.4DEC49.1/46.841.8NOV63.7/62.554.7OCT76.4/74.165.8SEP84.3/82.372.8AUG86.5/84.974.7JUL83.4/82.972.0JUN72.0/73.962.5MAY58.9/59.551.2APR47.8/46.640.6MAR39.1/37.933.0FEB32.5/30.427.1JAN

MMPT (oF)MMAT (oF)MONTHCHAMPAIGN, IL

FULL-DEPTH ACLOG σD = 2.74–1.14 LOG TAC–0.515 LOG EAC+0.29 LOG ERi

σD : psi TAC : in. EAC , ERi : ksi

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TAC

DEV

IATO

R S

TRES

S

ERi = 5 ksiEAC = 500 ksi

Pavement Design Concepts• Fatigue Resistant Asphalt Base

– Minimize Tensile Strain with Pavement Thickness

– Thin Asphalt Pavement = Higher Strain– Higher Strain = Shorter Fatigue Life

Strain

CompressiveStrain

IndefiniteFatigue

Life

Fatigue LifeTensileStrain

PERPETUAL PAVEMENT(70 MICRO-STRAIN / 9 kips)

(SUBGRADE ERi - 5 ksi)

AC MODULUS AC THICKNESS(ksi) (inches)

800 10.00700 10.75600 11.50 500 12.50400 14.00300 16.00

PERPETUAL PAVEMENT(70 MICRO-STRAIN / 10 kips)

(SUBGRADE ERi - 5 ksi)

AC MODULUS AC THICKNESS(ksi) (inches)

800 10.7700 11.4600 12.3 500 13.4400 15.0300 17.2

CMI - IL19 mm SP mix

*AC: 4.8 % PG 64-22 *- # 200: 5 %*AV: 4.0 % *f = 10 hz

LOG EAC (ksi) = 4.33 – 0.0198 T (oF)

N = 8.2*10-8 (1/εAC)3.5

TAC = 13.5 inches ERi = 5 ksi

*NF w/o Endurance Limit: 119 MESALS

*July AC Strain: 70 µε“PERPETUAL” PAVEMENT

RUBBLIZED PCCP

WITH

HMA OVERLAY

THE MHB I-70 / IL

THE MHB

Z-GRID ROLLER

PAVING OPERATION

HOT-MIX ASPHALT OVERLAY DESIGN CONCEPTS FOR RUBBLIZED PORTLAND

CEMENT CONCRETE PAVEMENTS

Marshall R. ThompsonTRB Record 1684 (1999)

LOG εAC = 1.001 + 1.024 LOG(AUPP)

LOG(AUPP) = 1.865 - 0.393 LOG(EACT3 / 1000)

εAC = Micro-strain (10-6)AUPP – inchesEAC – ksiT – inches

RUBBLIZED PVT SECTION

HMA SURFACE

SUBGRADE

SUBBASE

RUBBLIZED PCC

εHMA

THMA

ERi = 5 ksiEAC = 500 ksi

AREA = 6*(D0 + 2*D1 + 2*D2 + D3) / D0

Original Pavement Surface

CL Load

D0 D1D2

D3

Area Under Pavement ProfileAUPP

Deflection Basin Profile

12-inch 12-inch 12-inch

AUPP = (5*D0 - 2*D1 - 2*D2 - D3) / 2

PERPETUAL PAVEMENTRUBBLIZED PCCP

(70 MICRO-STRAIN)

AC MODULUS AC THICKNESS(ksi) (inches)

800 8.2700 8.6600 9.0 500 9.6400 10.4300 11.4

CHAMPAIGN, ILHMA OL / RUBBLIZED PCCP

JULY MMPT = 86.5 oFEAC = 370 ksi

TAC = 11 inchesHMA ε = 67 Micro - ε

Why are Perpetual Pavements Important?

• Lower Life Cycle Cost– Better Use of Resources– Low Incremental Costs for Surface Renewal

• Lower User Delay Cost– Shorter Work Zone Periods– Off-Peak Period Construction

FULL-DEPTH AC

FULL QUALITY AC

Foundation - Illinois

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9CBR

Req

uire

d Th

ickn

ess

Abo

veSu

bgra

de, i

nche

s

Remedial procedurerequired

No

rem

edia

l pro

cedu

re re

quire

d

Remedialprocedureoptional

THANK YOU !!

???????

top related