study of the neutrino background in the t2k near …mural.uv.es/joalau/tesina-talk.pdf · 17...

Post on 06-Jun-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

STUDY OF THE NEUTRINO BACKGROUND IN THE T2K NEAR DETECTOR

Jose Luis Alcaraz Aunion

Treball de recerca de tercer cicle en física

  2

OUTLINE

● PART I: NEUTRINO PHYSICS

● PART II: T2K EXPERIMENT

● PART III: THE BACKGROUND  SIMULATION

● PART IV: ANALYSIS

● PART V: SUMMARY & CONCLUSIONS

  3

PART I: NEUTRINO PHYSICS

● Neutrino oscillation theory.

● Neutrino oscillation experiments:

– Solar  neutrino experiment.

– Atmospheric neutrino experiment.

– Artificial neutrino sources experiments.

  4

mixing matrix (MNSP) 

Mass eigenstates 

Weak eigenstates 

● If the neutrino has mass,  the flavour eigenstates could be  different from the mass eigenstates.

where the evolution in time of each i  is:

NEUTRINO OSCILLATION THEORY I(in vacuum)

~ atmospheric oscillation (

23)

~ solar oscillation  (12

)(13 ,

 ) ~reactors

(23 

, 12

, 13 ,

 ) are the oscillation mixing parameters

  5

NEUTRINO OSCILLATION THEORY II(in vacuum)

...then oscillation is .....In the two neutrino species:

the survival probability can be different from 1

There experiments where L and E can be under control.

  is the mixing angle; m2= m22 ­ m2

1; 

  6

 NATURAL NEUTRINO SORUCES

(Phys. Rev. Lett. 89:011301, 2002)

● Super­Kamiokande (1998):

– Measurements: ­  flux dependency with the zenith angle.

– Results: Evidence for oscillation in atmospheric neutrinos.

● Sudbury Neutrino Observatory (SNO, 2001/2002) 

– Measurements:­  flux from the 8B process into the sun.

– Results: Direct evidence for neutrino flavour transformation.

Sensible to all neutrino flavours:

SOLAR NEUTRINOS ATMOSPHERIC NEUTRINOS

hep­exp/9810001

  7

ARTICIFICAL SOURCES

● ACCELERATORS: large long baseline experiments (LBL)

Neutrino oscillation evidence using man­made neutrino sources.

● REACTORS: KamLAND (Japan): found evidence of  anti­e deficit.

● K2K (L=250 Km, Japan): found evidence for   

disappearance 

– MINOS (L=735 Km, USA ) : found evidence for    

disappearance 

– T2K (L=295 Km, Japan):  will measure   

disappearance, e   

appearance

L

Far Detector

Near Detector

Accelerator

  8

PART II:  T2K EXPERIMENT

● The T2K experiment. ● The Off Axis Configuration● Physics motivations.● Background in the measurements. ● The ND280 near detector.

  9

THE T2K EXPERIMENT● Tokai to Kamioka (T2K) Experiment: next generation of long 

baseline neutrino oscillation experiment in Japan.

  10

T2K: neutrino beam● JPARC : 

– protons E= 40/50 GeV.

– I = 3.3 x 1014 p/spill. ● Target collision ( graphite) .

● Focusing elements (3 e.m. horns will focus the pions).

● Decay pipe (130 m length)

● Beam dump (to stop all the charged particles).

● Muon monitor: to obtain the profile of  neutrino beam.

●  spill width = 5.6 s. (is the temporal width of the neutrino pulse). T = 3.5 s;     

  11

PHYSICS MOTIVATIONS● disappearance measurements:  Improve the precision measurements 

(23 

,  m223

) .  In 5 years of full operation :

● 23 

~ 1.00  0.01 (precision of 1%).

● m223

: uncertainty of  10­5  eV2  (2 orders of magnitude better than K2K results.)

.

● eappearance measurements: to determine 13  

(sub­dominant oscillation   

­> e )

– Precision:  an order of magnitude better than CHOOZ limit. (oscillation excluded at sin2(2) > 0.17 )

– Important for CP­violating phase   ­> Related with the matter asymmetry of the universe.

  12

T2K: off axis configuration

2, 2.5, 3 degrees

●ADVANTAGES ( with respect to on axis):

● A  narrow  neutrino  beam  peaked  at  the  energy  of  the  oscillation maximum (0.75 GeV) for the distance of 295 Km.

● Reduction of the e contamination because of the different kinematics.

● Reduction of the high energy neutrinos.

  13

BACKGROUND ● The 

e contamination from 

 beam. (it will be measured by the Time 

projection chamber and ECAL.)

● The NC0 interactions. (it will be measured by the Pi0 Detector).

SK: in e appearance measurements 

NEAR DETECTOR: in all the measurementsn

n

p beam

● Sky­shine background: neutrons coming from atmosphere. 

●   interactions into the rocks of the 

cavern, magnet and other passive materials. 

  .

MOTIVATION OF THIS WORK: A study of this kind of background, analysing the effect over the signal in the near detector.

  14

THE ND280 NEAR DETECTOR 

Designed to measure the    flux, the energy  spectrum, the    flavour and the    cross section before the neutrino can oscillate.

On­axis

Off­axis

Experimental Hall

R = 9.5 m

37 m

  beam

The off axis detector

The on axis detector

● to measure the  ­beam 

direction.

● Composition:

– iron 

– scintillator

  15

● 4: 0 DETECTOR (P0D).

– Measure NC0 in  interactions.● 5,6,7: TIME PROJECTION CHAMBER 

– 3D tracks.

– Identify particles.

– Measure the neutrino spectrum ● 8,9: FINE GRAINED DETECTORS 

– Target for the interactions.

– Also to measure particles from CC interactions.● 1,2 : YOKES, COILS (UA1 Magnet) 

–  B = 0.2 Tesla.● 3: ELECTROMAGNETIC CALORIMETER .

– Measure the e.m. energy coming from  interactions which escapes from P0D or TPC.

~ 8m 

~ 6m~5m

  16

PART III: THE BACKGROUND SIMULATION

● Description.● The near detector in the simulation.●  in GEANT4 .

– get interactions.– get a continuous flux.

  17

DESCRIPTION

● Simulation software package:

–  GEANT4.● to simulate the interaction of the particles through the  matter.

–  NEUGEN. ● Is a neutrino generator event ( 100 MeV < E < 10 GeV).

● The neutrino beam:

– It is used an off axis neutrino beam. (extracted from T2K MC simulation.)

– neutrino flux of 5 years of exposure.

– Energy range 1 MeV ­ 20 GeV.

An off axis neutrino beam is transported throughthe ND280 cavern and “forced” to interact.

  18

The near detector in the simulation

Groud

Walls Cavern

Off­axis detector

Yokes

Coils

Scintillator (Active Volume [A.V.])

  19

IN GEANT4: get interactions

●Interaction lengths in some materials ((E

max= 1 GeV), F= 8 cm):

● L(air

)= F* x 

max /

airF*m ;

● L(quartz

)= F* x 

max /

quartzF*m 

● L(iron

)= F* x 

max /

ironF cm 

where max 

=[max 

(E= 20 GeV, 

iron= 7.87  g/cm3] = 1.41 x 10­36 cm­2;

We “force” the neutrino to interact: 

Pint

[(E

max= 20 GeV, 

max =

iron )]   

max * 

 

iron= 1  

Then , the interaction length is calculated as follows:

L(i)

= F* x 

max /

i; Where F is a free control parameter. Define 

the range of the interaction length.

  20

IN GEANT4: get a continuous flux● As the neutrino is “forced” to interact and an uniform 

background want to be produced, the same neutrino is propagated again to the next interaction. 

● Only the off­axis neutrino flux can interact several times­­> In GEANT4, that neutrinos are redefined as Jnu.

F = 8 cm, ­> Nint ~ 3 /Jnu

Uniform background

Not uniform background

Interactions .vs. Energy

  21

PART IV: ANALYSIS●  Previous concepts.●  Neutrino flux at ND280/ Normalization.● Neutrino background 

– Spacial distribution– Neutrino energy spectrum– Neutrino background estimation.

● Particle background 

– Classification and distribution.● Charged particles.● Neutral particles.

  22

Previous concepts● Neutrino inducing background: neutrinos which, interacting outside of 

the active volume,  generate activity inside of it. 

– variables to analyse:● Kinetic energy and interaction vertex.

● Particle background: particles produced by neutrino background which interact inside of the active volume.

– variables to analyse:● Kinetic energy just when it enters into the active volume.● Spatial vertexes where particles were created.● Time: Defined as the interval since a neutrino start to be 

propagated until the particle background reach the active volume.

  23

Neutrino flux at ND280/Normalization 

NORM* N int

 sim  =  N int

 CDR  ;

N int

 sim (A.V.) = [2.54 ± 0.06 (stat) ± 0.2(sys*)] x 1016 /year/ton

N int

 CDR  = 1.73 x 105 /year/ton

flux

NORM = 6.91 x 10­12

*(The systematic errors come from the uncertainty in the neutrino cross section of 10%)

flux expected at near detector On Axis (dashed lines) and Off Axis (solid line)

Neutrino interactions at near detector

The values of the neutrino interactions are normalized with respect to theT2K­CDR values for an easy interpretation of our results.T2K­CDR: contains the MC that predicts the number of neutrino interactions 

into the off­axis detector.

T2K­CDRSimulation

Used to normalized the background values

  24

Neutrino Inducing Background: Spatial distribution

● Contribution to the total neutrino background:

– Walls (~80%).– Magnet  (~20%).

  beam ( x~ 3 m)

  beam ( y ~ ­7 m)

top view

front viewside view

  25

● The  background  generated  into  the  magnet  contains  the  low energy neutrinos ( the off­axis neutrinos).

● The  background  generated  into  the  walls  contains  the  high neutrinos (on­axis neutrinos).

Neutrino Inducing Background: Energy spectrum

Total/Cavern/Magnet

  26

Neutrino Inducing Background: Estimation

N bg

  = [2.74 ± 0.00 (stat) ± 0.3(sys)] x 108  /year

N sig

 = 1.73 x 105 /year/ton

● It is obtained an estimation of the background because the simulation adopts several simplifications:

– Composition of Earth: not only quartz.

– Detector geometry: Only magnet simulated. Not the metallic basket or the metallic structure where the magnet sits. Also the others detectors.

r = N(bg) /  N(sig)  = [1.6± 0.2(stat) ± 0.4(sys)] x103 x (Tons Det)

That means, for 1 neutrino interaction inside of the detector (10 tons), there are 100 neutrino interactions outside which could generate “some activity” into the detector.

  27

Particle background: Classification & distribution

● Classification: – Charged particles (~10%). 

– Neutrons (~90%).  

● Distribution: – ~70% neutrons produced in 

cavern.

– Charged particles produced into the magnet.

Magnet /Cavern

*In terms of particles/spill. Better to compare with signal: ~1 interaction/spill

●Neutrons: lose few energy by elastic scattering, then can travel long distances.

●Charged particles: lose the energy by ionization, then only cross short distances. 

*

  28

Charged Background: Time distribution● The charged particles are synchronous with the signal (ns).

● Charged particles produced at Cavern must be relativistic particles.Cavern/Magnet

Cavern/Magnet

Cavern/Magnet

Cavern/Magnet

  29

Charged background: Kinetic Energy Thresholds 

● After physics thresholds:

– Np ~ 0.15 p/spill

– N 0.2 /spill

– N 0.35 /spill

– N 3.5 /spill

● The charged background can be detected by the external detectors like ECAL. The ECAL at the same time could become in another source of background. Further study. 

f(Ek)= 

j N

j(E > E

k)

  30

Neutron Background : Energy

● A high percentage of the neutrons are very low energetic neutrons (E < 0.5 MeV)

● These neutrons mainly come from the cavern (losing their energy by elastic scattering in the different materials).

ENERGY DISTRIBUTION:

Magnet/Cavern

  31

● Largest times: cavern neutrons. They cross large distances and are not relativistic.

● Shortest times: magnet neutrons.

Neutron Background: Time TEMPORAL DISTRIBUTION:

Magnet/Cavern

  32

Neutron Background: Selecting neutron background 

● Cut  in  times:  neutrons  inside  of  spill width (t < 5.6 s)

● Cut  in energies: select neutrons which can  produce  detectable  signals (specially  interested  in   production, E

cut > 140 MeV).

Magnet/Cavern

  33

Neutron background: Interactions

Neutrons  can  interact  inside  of the  detector  giving  a  signal which  could  be  not distinguished from the neutrino signal.

● Neutrons can interact inside of the detector giving a signal which could be not distinguished from the neutrino signal.

– Specially interested in neutrons generating 0's. ● Then, a brief study of the neutron background interaction is done.

N(neutrons) = 97 neutrons/spill

Particles produced by background neutron:

All  reactions with: particles/spill0 0.05 0,18protons 0.17

Particles produced by  interactions:

From T2K­CDR paper.

Magnet/Cavern

  34

Particles produced in neutron background interactionsMomentum distribution

Photons coming from nuclear excitations. With energies smaller than  the 0 mass.

● The physic threshold  (~200 MeV ) reduces the protons the can be observed.(10­5 protons/spill) 

  35

Par

ticle

s pr

oduc

ed b

y ne

utro

n ba

ckgr

ound

Par

ticle

s pr

oduc

ed b

y ne

utr in

o in

tera

ctio

n s

The shape of the momentum distribution for the particles produced by neutron background are shifted to low energies with respect to those particles produced in neutrino interactions.

Particles produced in neutron background interactions

  36

Summary & Conclusions● One of T2K main goals:  e appearance measurements. 

– background for SK is measured into the near detector (P0D, TPC). 

● But near detector has background too:  we have study that, focusing the analysis into the neutron background.

● The simulation has shown that there is many activity around the cavern (~104  interactions in 10 Tons Detector);

● 90% background are neutrons (97 n/spill)

– after temporal and energetic cut (0.88 n/spill)– particles produced by these neutrons,  including 0 are of the 

order of 10­5 particles/spill. (compared with signal ~1  )● But, background muons (~3.5 part/spill) should be taken into 

account.

  37

END

Thanks for coming

  38

ADDITIONAL SLIDES

  39

● Systematic uncertainties in 13

– Background sources: 

● e contamination in 

 

● single 0  production in NC. 

– Reduction for different cuts:● Nu reconstruction 

Energy around maximum oscillation: (0.35 < E < 0.85 ) GeV.

● mass of events reconstructed = m(0).

BACKGROUND IN SK

  40

NORMALIZATIONN 

int sim (A.V.) = [2.54 ± 0.06 (stat) ± 0.2(sys)] x 1016 /year/ton

N int

 sim =  * sim

simi  (E) =  

N int

 sim =  *  i 

~ 1012 

The neutrino flux of the simulation is given as follows:

  41

IN GEANT4: get interactions

P(i(E

i)) = C exp(­L/);  

where  max 

/i

max 

=[max 

(E= 20 GeV, 

iron= 7.87  g/cm3] = 1.41 x 10­36 cm­2;

● As it does GEANT4, we calculate the interaction length for the neutrino.

● We “force” the neutrino to interact: 

– Pint[(E

max= 20 GeV,

max =

iron )] =1

Li= F*

max /

iwhere F is a free parameter to control the 

number of interaction inside the cavern. 

  42

NEUTRINO INTERACTIONS

Quasi­elastic scattering(QE): It is an elastic body scattering between neutrino an nucleon. 

Resonance (RES):The neutrino excites the nucleon to a resonance state. 

Deep Inelastic­scattering:The neutrino interacts with quarks of nucleon, breaking.

Coherent  production:The neutrino interacts with whole the nucleus transferring low momentum.

The neutrino can interact through charged or neutral currents:

  43

● P0D:

– ¾ parts of the detector: Water+Scintillator+lead foils.

● Water­> to have the same target for the neutrino interactions that SK.

– Measure the Ncpi0 neutrino interactions:

● The pi0 momentum distribution is similar ­> It will can predict the Ncpi0 in SK.

THE ND280 NEAR DETECTORP0D

  44

● Tracker of the off­axis detector– 3D tracks: 

● 2D from pad plane● 1D from measurements of e­ drift velocity.

● Technique dE/dx to identify particles:● very important to measure the e contamination.

● Neutrino energy spectrum: measuring the  momentum.

THE ND280 NEAR DETECTORTPC

  45

On axis detector● To measure the neutrino profile

● There is only a counter detector (not energies measured)

  46

Particles/spill

● 1 year ~ 107 seconds.● 1 spill each T ~ 3.5 

seconds● 5 years = 5*107 / 3.5 ~ 

107 spills● Interactions = 1.7x105 

/year/ton– 12 tons ­­> 0.7  

interactions/spill ~ 1 int/spill

●Charged particles: lose the energy by ionization, then only arrive those close to the A.V. 

●Neutrons: loss few energy by elastic scattering, then can travel long distances.

  47

● 1930: Wolfgang Pauli postulated the neutrino ( ) .ν   

● 1934: Enrico Fermi incorporated the   in his  formulation of the weak ν

interactions theory.

● 1956: First detection of the  :  Cowan and Reines (Project Poltergeist).  ν

● 1957: Bruno Pontecorvo proposed the   ­ν    ν oscillation ( analogously to  

K ­ K). 

● 1962: Maki, Nakaga and Sakata introduced the flavour mixing and 

flavour oscillation.

 HISTORICAL INTRODUCTION I

  48

● 1968: Solar neutrino observations by Davis and Bahcall found “ 

solar neutrino anomaly “ . 

● 1985: “Atmospheric neutrino anomaly” observed at Kamiokande 

experiment.  

● 1998: Super­Kamiokande confirmed the muon neutrino oscillation 

in atmospheric neutrinos.

● 2002: SNO provides evidence that neutrino oscillation  cause the 

solar neutrino defficit.

 HISTORICAL INTRODUCTION II

  49

● Davis'  experiment  goal:  confirm  the  SSM.  They  found  ~  1/3  of  the neutrino flux predicted theoretically.(called “solar nuetrino deficit”)

Sudbury Neutrino Observatory (SNO, 2001/2002) ­ Measure the solar  ­  ν flux coming from the 8B process­ Solved the solar neutrino deficit.

 

Ro=12 Ri= 6m of D20

 SOLAR NEUTRINO

(Phys. Rev. Lett. 89:011301, 2002)

  50

ATMOSPHERIC NEUTRINO ● Kamiokande (1985) : [3kt,~1000 PMT] found an anomaly into the 

atmospheric neutrino flux 3 kt, and ~ 1000 PMT . 

● Super­Kamiokande (1998):  [55 kt, ~ 11000 PMT] found Evidence for oscillation in atmospheric neutrinos.

(hep­ex/9805006)

R=  ν/ ν

e  ~2 R=  ν

up/ ν

down

 ~ 1

  51

The Neutrino Beamz=280 m

y=­8,7 m

S. R.:“Target” S. R.: Centre Cylinder

● 1) z= ­280 m ­­­­> z' = ­29,5 m; 

The  original   beam  correspond to  the expected  flux at the off­axis  detector  in  5  years  of exposure.

● 2) get off axis configuration:

● x= 0m ­­­­> x'= +3 m;● y= ­8.7 m ­­­­> y' = ­8.7 m; 

CHANGE SYSTEM REFERENCE:  “Target” ­­­­> “Centre Cylinder”

  52

Neutron Interactions

● Brief study of the neutron interactions in scintillator. 

● Scintillator box: ~ 100 m3, ~ 100 Tons.

● Neutron sample Ntot

 = 10000 with energies 1 MeV to 10 GeV.

● To have estimative numbers for the background neutron:

– each neutron is weighted:

● Wi = N

n(E

i)/N

tot;  where  N

n(E

i) is the number of background 

neutros with energy Ei  .

● We are only interested in the primary particles (0, ±) -> They are 

not tracked.

Neutrons  can  interact  inside  of  the  detector  giving  a  signal which could be not distinguished from the neutrino signal.

  53

Summary● T2K motivations

–    disappearance

– e appearance:

● It is crucial to know all the background sources:–  e contamination from    beam (SK)

–  NC0   interactions (SK)● There will be the P0D and TPC at the near detector to measure 

these two sources but the near detector has background too:

– sky­shine.

– 0 produced by neutron background interactions could contaminate the measurements of P0D.   

  54

Conclusions● Many activity of neutrino 

interactions around the cavern.

● Main background contribution (90%): Neutrons.

● After an energetic and temporal cut: 

r = N(bg) / [ N(sig) / Mdet] ~ 105 x (Tons Det)

0.88 n/spill

● The number  0's produced by neutron background are negligible (10­5 0/spill). Therefore they will not represent a problem for the P0D. 

● However, this background could appear as some hits into the TPC but this need a further study. 

  55

Why the dimensions of cavern● We want to select the dimensions such as all the background can be 

contained inside.

● Simulation with dimensions:

– walls: 150m (portion of earth crossed by neutrinos)

– ground: 100 m (enough)

top related