superconduttori e magneti a.ballarino te-msc-scd … · te-msc-scd cern, geneva . a. ballarino, ......

Post on 19-May-2018

220 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Superconduttori e Magneti

A. Ballarino TE-MSC-SCD

CERN, Geneva

A. Ballarino, 10/10/2014

Outline

Introduzione Superconduttivita’ e magneti per LHC Superconduttivita’ e magneti per LHC upgrades Conclusione

A. Ballarino, 10/10/2014

Superconductivity for HE Physics The use of Superconductivity is important in the quest for higher energy

• Detector magnets provide magnetic field to determine the momentum of charged particles. Higher energies imply larger volumes and higher fields •RF cavities provide the electric field required to accelerate the beams of charged particles. Higher energies imply greater fields for a given length • Accelerator magnets provide magnetic field for bending and focusing particle beams. Higher energies imply higher fields for a given machine diameter greater energy for a given radius

A. Ballarino, 10/10/2014

Synchrotron: E[GeV]=0.29979 B[T] R[m]

Accelerator energy and magnetic field

A. Ballarino, 10/10/2014

Nb-Ti stand and cables for LHC

7 mm filaments

LHC inner cable

LHC outer cable cross section (15.11.48) mm2

Ic(1.9K, 10T)13750 A 7500 km (1200 tons) of Nb-Ti superconducting cables with extremely tight property control

< 1 mm 6300 filaments Ic(1.9K, 10T)510 A

A. Ballarino, 10/10/2014

Coil winding

• Tight controls on – Winding quality – Dimensions (field quality)

• Spectacular precision (typical waviness in the range of 20 mm)

A. Ballarino, 10/10/2014

Assemblaggio complesso

• Meccanica di precisione

• Grandi attrezzature

• Componenti speciali

A. Ballarino, 10/10/2014

Magnet installation

• Logistic and planning

A. Ballarino, 10/10/2014

LHC magnets LHC: 8000 magneti superconduttori 1232 dipoli (L=15 m, 35 tons) I magneti occupano 85% del tunnel LHC

A. Ballarino, 10/10/2014

> 35% dipoli LHC fatti in Italia (ASG – Gruppo Malacalza) – 15 % del superconduttore – 20% componenti

A. Ballarino, 10/10/2014

Barrel Toroid magnet system (bobine SC fatte in Italia, ASG)

A. Ballarino, 10/10/2014

Alimentazione elettrica LHC

Discendenti di corrente 13 kA assemblati in CECOM, Roma

3 MA 3300 Discendenti di corrente 31 km HTS (BSCCO 2223)

A. Ballarino, 10/10/2014

Tecnologie Sviluppo ed analisi di materiali superconducttori Assemblaggi meccanici Elettronica Sviluppo ed analisi di materiali strutturali e di isolamento Tecniche di impregnazione Criostati Elettronica Elettronica di potenza Instrumentazione Misure magnetiche Misure criogeniche …………… .............

4 July 2012 Announcement of discovery of Higgs boson

LHC Integrated Total Luminosity

A. Ballarino, 10/10/2014

F. Bordry, CERN Director for Accelerators and Technology

A. Ballarino, 10/10/2014

Superconduttivita’

per Hi-Luminosity LHC

A. Ballarino, 10/10/2014

LHC Achievements so far:

Higgs boson discovery Consolidation of Standard Model LHC expected integrated luminosity by 2020: 300 fb-1

Larger integrated luminosity required to extend the discovery potential of the LHC machine and answer to some fundamental outstanding questions

High Luminosity LHC: 3000 fb-1 in about 10 years

LHC High-Luminosity Upgrade The Physics Landscape

SC links

IR quadrupoles in IP1 and IP5

Dipoles D1 & D2 in IP1/IP5

Matching section Q4 in

IP1/IP5

Collimation units (11 T MB) in IP2, possibly IP7/IP1/IP5

LHC High-Luminosity Upgrade

LS2 - 2018

LS3 - 2023

11 T Dipoles , P2/P7 HTS SC Links P7/P1/P5

P1 and P5 11 T Dipoles and Triplets D1+ D2+Q4+ Correctors

HTS SC Links

L. Rossi, CERN ATS 2012-236

LS1

LHC High-Luminosity Upgrade: time frame

A. Ballarino, 10/10/2014

Superconductivity for LHC-Hi Luminosity upgrade

Nb3Sn for high-field magnets (Bpeak12 T) MgB2 and HTS for power transmission lines

+ Nb-Ti for magnets

A. Ballarino, 10/10/2014

Nb3Sn for LHC-Hi Luminosity upgrade

JC (kA/mm2)

Dfil (mm) RRR (-)

Performance Peak field

Cost

Stability Protection

Magnetization Field Quality

Stability

2.5

2

1.5

3

3.5

1

4

200

150

100

50

10

20

50 100

PIT

RRP

target

Nb3Sn wire JC(12 T)> 2.5 kA/mm2

Dfil < 50 mm RRR > 150

PIT 192 RRP 108/127

RRP 150/169

Nb3Sn cable

A. Ballarino, 10/10/2014

Nb3Sn at 4.2 K

Nb-Ti at 1.9 K

A. Ballarino, 10/10/2014

A. Ballarino, 10/10/2014

• Nb3Sn coil – Reaction completed

• Nb3Sn coil – Winding/curing completed

Nb3Sn quadrupoles for LHC-Hi Luminosity upgrade

A. Ballarino, 10/10/2014

Superconducting Links at LHC P1 and P5

80 m

LHC Tunnel

8-12 SC Links L300 m Up to 63 cables Icable up to 20 kA I=150-200 kA

Linee di trasferimento di corrente

A. Ballarino, 10/10/2014

wire = 0.99 mm 30 MgB2 filaments Twisted filaments (LT=100 mm) eq_MgB2 = 62 mm ACu 5 % Awire

wire = 0.85 mm 37 MgB2 filaments Twisted filaments (LT=100 mm) eq_MgB2 = 56 mm ACu 5 % Awire (th=30 mm) Sn coating of Cu surface

Cu

Cu

MgB2 round wires

Fili prodotti da Columbus Superconductors, Genova

A. Ballarino, 10/10/2014

20 kA Six cables, = 19.5 mm

Concentric 3 kA Seven cables, = 8.4 mm

0.4 kA Six cables

0.12 kA Eighteen cables

ext 65 mm

Superconducting Links, LHC P1 and P5

18 MgB2 wires = 6.5 mm

Cu

MgB2 , = 0.85 mm

44 MgB2 Cables

A. Ballarino, 10/10/2014

Mass 11 kg/m (880 kg for H=80 m)

Itot= 150 kA

H=80 m L 24 cm

RB1.5 m

Semi-flexible cryostat external diameter = 220 mm

Superconducting Links, LHC P1 and P5

H 4 m L = 20 m ext = 163 mm

Stazione di misura SM-18

Superconducting Links for LHC

A. Ballarino, 10/10/2014

Superconducting Links, LHC P1 and P5

Criostati per Superconducting Links

A. Ballarino, 10/10/2014

Superconduttivita’ e magneti

Dopo Hi-Luminosity LHC?

A. Ballarino, 10/10/2014

The next step – hadron colliders

LHC 27 km, 8.33 T

14 TeV (c.o.m.)

VHE-LHC

80 km, 20 T 100 TeV (c.o.m.)

HE-LHC

27 km, 20 T 33 TeV (c.o.m.)

VHE-LHC

100 km, 16 T 100 TeV (c.o.m.)

A. Ballarino, 10/10/2014

16 T or 20 T– First a question of conductor

T=4.2 K

LTS

BSCCO 2212

BSCCO 2223

Nb-Ti at 1.9 K

A. Ballarino, 10/10/2014

16 T or 20 T– First a question of conductor

Nb3Sn

Then of magnet technology

Courtesy of L. Bottura

16 T

Flat racetracks no bore

Record fields Practical magnets

A. Ballarino, 10/10/2014

Superconduttivita’: cuore della ricerca della fisica delle alte energie Ampia gamma di tecnologie pertinenti a vari settori di ricerca L’upgrade in Luminosita’ di LHC dipende da sviluppi di tecnologie nell’ambito della superconduttivita’ – cosi’ come potenziali futuri upgrades in energia dell’acceleratore

A. Ballarino, 10/10/2014

Grazie per la vostra attenzione !

top related