the angra neutrino project - cbpfangra/files/i_encontro/the angra neutrino project_e... ·...

Post on 12-Feb-2018

223 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

14/12/2007 E.Kemp - Encontro CBPF - 05/07 1

The ANGRA

Neutrino ProjectErnesto Kemp

kemp@ifi.unicamp.br

State University at Campinas - UNICAMP

“Gleb Wataghin” Physics Institute

Cosmic Rays and Chronology Department

14/12/2007 E.Kemp - Encontro CBPF - 05/07 2

Doing Physics with Neutrinos from Reactors

The neutrino history is closely related to nuclear reactors. The original neutrino discovery experiment, by Reines and Cowan, used reactor neutrinos…

Original papers on neutrino first detection:•"Detection of the Free Neutrino: A Confirmation", C. L. Cowan, Jr., F. Reines, F. B. Harrison, H. W. Kruse and A. D. McGuire, Science 124, 103 (1956).•"The Neutrino", Frederick Reines and Clyde L. Cowan, Jr., Nature 178, 446 (1956).

Control room at Savannah River reactor

14/12/2007 E.Kemp - Encontro CBPF - 05/07 3

OutlineNeutrinos from Reactors: main features of the particle source

Production, Flux and SpectraPhysics with Reactor Neutrinos

Detection and DetectorsMeasurements and Applications

Oscillations (lepton mixing parameters)Control of released thermal powerNuclear fuel composition

The ANGRA Project: all of this in BrazilConclusions

Special thanks for the people that directly (or not…) has contributed with material for this talk:

J. Dos Anjos, D.Reyna, M.Goodman, T.Lasserre, J.Conrad, V.Sinev, A.Barbosa, H.Lima Jr., M.Albuquerque, H.Nunokawa, O.L.G.Peres, A.Bernstein, M.Apollonio

14/12/2007 E.Kemp - Encontro CBPF - 05/07 4

Reactor Neutrinos: main features

Source: copious β-decays from fission process

<Nν> = 6,7 antineutrinos / fission

14/12/2007 E.Kemp - Encontro CBPF - 05/07 5

Reactor Neutrinos: main features

Pressurized Water Reactors (PWR - wider usage around the world)

The emission has 6 main contributionseν

n-capture in fission fragments

Σ on :

~ 6.7 / fissioneν>< νN

14/12/2007 E.Kemp - Encontro CBPF - 05/07 6

Antineutrino Flux:

Where: Typical valuesD = distance from reactor core [50 m]Pth = delivered thermal power [4 GW]W = energy release per fission [203.87 MeV]

21-212

][][10241.6

4−

⋅×

><=Φ cms

MeVWGWP

DN th

πν

ν

2-112106.2 −×=Φ cmsν

Reactor Neutrinos: main features

14/12/2007 E.Kemp - Encontro CBPF - 05/07 7

Spectra

Reactor Neutrinos: main features

ILL Measurements

Phys.Lett. B160, 325 (1985)

Obs.: 238U is only calculated

14/12/2007 E.Kemp - Encontro CBPF - 05/07 8

Reactor Neutrinos:detection principles…actually we detect anti-neutrinos.

The νe interacts with a free proton (hydrogen) via inverse β-decay:

νe

e+

pn

W

Later the neutron captures giving a coincidence signal. Reines and Cowan used cadmium to enhance the neutron capture

14/12/2007 E.Kemp - Encontro CBPF - 05/07 9

Just a personal remark:

Things have not been dramatically changed in the last years…

3500 BC

14/12/2007 E.Kemp - Encontro CBPF - 05/07 10

Just a personal remark:

Things have not been dramatically changed in the last years…

Last week

14/12/2007 E.Kemp - Encontro CBPF - 05/07 11

This is also true in the field ofReactor Neutrinos detection...

Few modifications has been introduced if one consider the main guidelines and detection principles successfully applied in the experimental design of Reines and Cowan :

A large liquid scintillator volume viewed by PMTs.

The first successful neutrino detector

1956 … 2006

KamLANDdesign

14/12/2007 E.Kemp - Encontro CBPF - 05/07 12

Electronics Hut

Steel Sphere

Water Cherenkov outer detector 225 PMTs

1 kton liquid-scintillator

PMTs1325 17”554 20”34% coverage

1km Overburden

Big Detectors:KamLAND (running)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 13

TitoloSurrounding RockFe shield

Region III (VETO): 90 ton of standard scintillator, 48 PMTGeode: opaque vessel, structure for192 PMT of 8 “Region II (buffer): 17 ton of standard scintillatorRegion I (target): transparent plexiglass vesselfilled with 5 ton of Gd dopedscintillator (< 0.1 % of mass)

Big Detectors:

CHOOZ (France) 1995-1998

6 m

14/12/2007 E.Kemp - Encontro CBPF - 05/07 14

Smaller ones:Palo Verde (AZ – E.U.A.)1998-1999

2 reactors @

1 @

14/12/2007 E.Kemp - Encontro CBPF - 05/07 15

Smaller ones:Rovno (Ukraine)1988-1989

10 m

General view of Rovno NPP in Ukraine in 1983

Cores1 & 2

14/12/2007 E.Kemp - Encontro CBPF - 05/07 16

νe

e+γ

γn

Acrylic volume (20 mm) filled with mineral oil

Thin acrylic walls (5 mm) volume containing scintillator doped with Gd(~0.5 g/l)

outer volume (540 l)

central volume (target, 510 l)

mirror light reflectors

light guides(pure mineral oil)

84 PMT

Smaller ones:Rovno (Ukraine)1988-1989

14/12/2007 E.Kemp - Encontro CBPF - 05/07 17

Smaller ones:San Onofre (CA – E.U.A.)2004-running

Currently operational:4 cells with 640 kg of Gd doped scintillator;quasi-hermetic muon veto; hermetic water shield

14/12/2007 E.Kemp - Encontro CBPF - 05/07 18

Reactor Neutrino Event Signature

The main reaction process is inverse β-decay followed by neutron capture

Two part coincidence signal is crucial for background reduction.

Positron energy spectrum implies the neutrino spectrum

In undoped scintillator the neutron will capture on hydrogen

More likely the scintillator will be doped with gadolinium to enhance capture

capturennepe

+→ν

Eν = Evis + 1.8 MeV – 2me

n +H → D* → D + γ (2.2 MeV)

n+ mGd → m+1Gd* →Gd + γ’s (Σ = 8 MeV)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 19

Physics:Flavor Oscillation (the basics)

νe = ν1 cosθ + ν2 sinθ ν(t)=e−ιΕtν(0)νµ = −ν1 sinθ + ν2 cosθ

P(νe→νµ) = <νµ (t)|νe (0)> = sin2θcos2θ|e-ιE2t-e-ιE1t|2

= sin2(2θ) sin2(1.27 ∆m2L/E)

νµ

νe

ν2

ν1 θ

Mass BasisFlavor basis

14/12/2007 E.Kemp - Encontro CBPF - 05/07 20

Mixing Matrix (quark sector)

CKM Matrix

0.2~ where1

11

bsd

VVVVVVVVV

b's'd'

23

2

3

tbtstd

cbcscd

ubusud

λλλ

λλλλ

=

For quarks: flavor basis ≈ mass basis

14/12/2007 E.Kemp - Encontro CBPF - 05/07 21

Mixing Matrix : Neutrinos

=

3

2

1

τ3τ2τ1

µ3µ2µ1

e3e2e1

τ

µ

e

ννν

UUUUUUUUU

ννν

≈−

22

21

21

22

21

21

22

22 0

15.0Ue3 <

For neutrinos: flavor basis ≠ mass basis

•PMNS Matrix

14/12/2007 E.Kemp - Encontro CBPF - 05/07 22

Why Ue3 ?

Ue3 is 100% sensitive to the mixing angle θ13Any observation of CP violation in leptons

requires a non-zero value of θ13

=

3

2

1

τ3τ2τ1

µ3µ2µ1

e3e2e1

τ

µ

e

ννν

UUUUUUUUU

ννν

14/12/2007 E.Kemp - Encontro CBPF - 05/07 23

Oscillation Probability

P = sin2(2θ) sin2(1.27 ∆m2L/E)∆m2= |m1

2-m22| (eV2)

sin2(2θ) is the strength of the mixing; sin2(2θ)=0 is “no oscillations”E is the neutrino energy (GeV) (∝log(Ep) at accelerator)L is the distance from the source to the detector (km)P is the probability of oscillation. On a parameter space plot, (sin2(2θ) vs. ∆m2), a limit or signal curve corresponds to constant P. The level of sensitivity depends on the statistics.

14/12/2007 E.Kemp - Encontro CBPF - 05/07 24

First observed by Ray Davis and descendents. Precise measurements by Super-K, SNO and KamLAND. Presumed to be dominated by mixing between states 1and 2 (or θ12)

Seen by Super-K and confirmed by Soudan II and K2K. (θ23)

Unconfirmed observation by LSND, currently being investigated by MiniBooNE. Possibly implies the existence of sterile neutrinos or CPT violation.

Current Status

14/12/2007 E.Kemp - Encontro CBPF - 05/07 25

Open questions:Neutrino Mass Differences

Only 2 independent mass differences

Mass hierarchy unknown

223

212

213 mmm ∆+∆=∆

(∆m2solar~ 5 x 10-5 eV)

(∆m2atm~ 3 x 10-3 eV)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 26

Open questions:Mixing Parameters

θ13 : the last unknown parameter

14/12/2007 E.Kemp - Encontro CBPF - 05/07 27

Physics motivations to do accurate measurements of θ13 :

The discovery of neutrino oscillations imply thatneutrinos are massive and that the Standard Model is incomplete. The minimal extension of the SM requires 3 masseigenstates, ν1, ν2, ν3 and a unitary mixing matrixU which relates the neutrino mass basis to theflavor basis. These observations may have profoundastrophysical consequences. CP violation in thelepton sector may hold the key of matter-antimatterasymmetry in the universe.

14/12/2007 E.Kemp - Encontro CBPF - 05/07 28

3 ν Oscillation Probability Equations

Based on θ12, θ13, θ23

P(νe→νµ) = sin2(2 θ13)sin2(θ23)sin2(∆m2L/4E)P(νe→ντ) = sin2(2 θ13)cos2(θ23)sin2(∆m2L/4E)P(νµ→ντ) = sin2(2 θ23)cos4(θ13)sin2(∆m2L/4E)P(νµ→νe) = sin2(2 θ13)sin2(θ23)sin2(∆m2L/4E)

Ignoring the small ∆m2 scale, CP violation and matter effects.

14/12/2007 E.Kemp - Encontro CBPF - 05/07 29

How to Measure θ13

Option 1: Accelerator based neutrino beamsP(νµ→ντ) = sin2(2 θ23)cos4(θ13)sin2(∆m2L/4E)

P(νµ→νe) = sin2(2 θ13)sin2(θ23)sin2(∆m2L/4E)

Ignoring matter effects, the small ∆m2 scale and CP violation

~1.0

<0.05

14/12/2007 E.Kemp - Encontro CBPF - 05/07 30

The θθ2323 Degeneracy ProblemAtmospheric neutrino measurements are sensitive to sin22θ23

But the leading order term in offaxis νµ→νe oscillations is

If the atmospheric oscillation is not exactly maximal (sin22θ23<1.0) then sin2θ23 has a twofold degeneracy

∆=→

νµ νν

ELmP x

2232

232 27.1sinθ2sin)(

∆=→

νµ νν

ELmP e

2132

132

232 27.1sinθ2sinθsin)(

45º 90º2θ 2θθθ

sin2 sinsin2222θθ2323

sinsin22θθ2323

Super-K Measures

Offaxis θ13 Measures

14/12/2007 E.Kemp - Encontro CBPF - 05/07 31

sin2 2θ 13

δ

~sinδ

~cosδ

There are 2 Observables•P(νµ→νe)•P(νµ → νe)

Interpretation in terms of sin22θ13, δ and sign of ∆m223 depends on the value of these parameters and on the conditions of the experiment: L and E

Minakata and Nunokawa, hep-ph/0108085

Degeneracies in appearance experiments (beam-like)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 32

Resolving Degeneracies

Experiments at different baselines (affects both L/E and matter)Experiments at different energiesData with neutrinos and anti-neutrinosBetter parameter measurements (θ23)Accelerator experiments cost >U$ 200M and take >10 years to build

But, If θ13 = 0, degeneracies collapse anyway.

14/12/2007 E.Kemp - Encontro CBPF - 05/07 33

How to Measure θ13

Option 2: Reactor neutrinosP(νe→νe) = 1 - sin2 2θ13 sin2(∆m2

atm L/4E)

P

L/E(km/MeV)

Ignoring small ∆m2

Look for νe disappearance at small distance (L/E)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 34

Reactor Neutrinos

Eν ~ 4 MeVToo low for CP violation to occur

L ~ 1-4KmToo short for matter effects to begin

No Degeneracy Problems

14/12/2007 E.Kemp - Encontro CBPF - 05/07 35

(syst) %7.2±

MC (no oscillations assumption) vs data

e+ spectrum

R=data/MC compatible with 1→ non oscillation

CHOOZ results

14/12/2007 E.Kemp - Encontro CBPF - 05/07 36

MC (no oscillations assumption) vs data

Compatible with no oscillations

Palo Verderesults

14/12/2007 E.Kemp - Encontro CBPF - 05/07 37

Chooz and Palo Verde Reactor Experiments

•• sin22θ13< 0.18 at 90% CL (at ∆m2=2.0×10-3)

• Future experiments should try to improve on these limits by at leastan order of magnitude.

Down to sin22θ13< 0.01

•• Neither experiments found evidence for νe oscillation.

• This null result eliminated νµ→ νe as the primary mechanism for the Super-K atmospheric deficit.

Chooz Systematic Uncertainties

14/12/2007 E.Kemp - Encontro CBPF - 05/07 38

Applications of Reactor Neutrinos

Instantaneous Measurements of:Released thermal power

In principle, a precise control of the RTP leads to improvement on the efficiency of heat transfer

Nuclear fuel compositionPrecise determination of fuel refreshment (fuel cycles)Safeguards tool on non-proliferation

14/12/2007 E.Kemp - Encontro CBPF - 05/07 39

Thermal power measurements using neutrino detection

σf =

Nν = 1

4πR2

Wth

Ef · 1,602×10-19Np ε σf

Σ

ρ(E) σ(E) R(E,T) dE dT

Ethr

Emax

∫T

ρ(E) = αi ρi (E) Ef = αi EiΣi = 5,9,8,1

Σi = 5,9,8,1 i = 5,9,8,1

αi σi

σf =

αi = 1Σ

Change duringreactoroperational cycle

constant

σf, Ef

235U 6.39 201.9239Pu 4.18 210.0238U 8.89 205.5241Pu 5.76 213.6

14/12/2007 E.Kemp - Encontro CBPF - 05/07 40

Thermal power measurements using neutrino detection

Nν = constant · Wth · Ef

σf

E5

σ5· (1 + k)

Nν = γ · (1 + k) · Wth

Account of fuel composition

14/12/2007 E.Kemp - Encontro CBPF - 05/07 41

Date2/23/05 2/27/05 3/3/05 3/7/05 3/11/05 3/15/05 3/19/05

Rea

ctor

Pow

er(%

)

-20

0

20

40

60

80

100

Date2/23/05 2/27/05 3/3/05 3/7/05 3/11/05 3/15/05 3/19/05

Ant

ineu

trino

cou

nts

per d

ay0

100

200

300

400

500

600

Predicted count rate using reported reactor powerObserved count rate, 24 hour averageReported reactor power

Checking reactor activity:

Rovno (Ukraine) San Onofre (USA)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 42

Dependence of the detector rate from reactor power

nν ~ γW

Reactor power in % from nominal value (1375 MW)

Rat

e pe

r 105

sec 174000

events

14/12/2007 E.Kemp - Encontro CBPF - 05/07 43

Measuring of power production by neutrino method

0 100 200 3000

100

200

300

400

0.9

1.0

1.1

N ν [x103]

ε ν[ G

W⋅ d

ay]

εν/ εT

δεT ~ δWth ·t

δεν ~ 1/(Nν)1/2

14/12/2007 E.Kemp - Encontro CBPF - 05/07 44

Fuel composition:The Burn-up effect

14/12/2007 E.Kemp - Encontro CBPF - 05/07 45

Observing the Fuel Burn-up

Calculated cross-section evolution

Observed counting rate evolution : ~ 6%

14/12/2007 E.Kemp - Encontro CBPF - 05/07 46

Ratio of spectra: time evolution

1 2 3 4 5 6 7visible energy, MeV

1.001.011.021.031.041.051.061.071.081.091.101.111.121.131.141.15

S /Si b

20406080

120

160

200

240280

305S(t)/S(t=0)

time (days) after reactor starts

For standard cycle of PWR at Rovno Nuclear Station, Wth=1375 MW

14/12/2007 E.Kemp - Encontro CBPF - 05/07 47

Spectra

Reactor Neutrinos: main features – just to remember

Other isotopes than 235U become dominant in higher energies

14/12/2007 E.Kemp - Encontro CBPF - 05/07 48

2 3 4 5 6 7 8 9

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Eν (MeV)

ρ en d

/ρbe

g–

1

Ratio of neutrino spectra at the beginning and end of reactor campaign

Expected fromILL spectra

Rovno 1988-1990

14/12/2007 E.Kemp - Encontro CBPF - 05/07 49

Nuclear Reactors Around the World

14/12/2007 E.Kemp - Encontro CBPF - 05/07 50

How Does The IAEA Monitor Fissile Material Now ?

(1-1.5 years) (months) (forever)

1. Check Input and Output Declarations

2. Verify with Item Accountancy

3.Containment and Surveillance

1 ‘Gross Defect’ Detection

2 Continue Item Accountancy

3. Containment and Surveillance

1 Check Declarations2 Verify with Bulk

Accountancy:

(months to years)

Operators Report Fuel Burnup and Power HistoryNo Direct Pu Inventory Measurement is Made Until the Fuel is Reprocessed

14/12/2007 E.Kemp - Encontro CBPF - 05/07 51

Antineutrino Detectors Advantages as Safeguards Tool

A. Measure fissile content directly

B. Measure thermal power, which constraints fissile content

C. Operate continuously, non-intrusively, and remotely

• experimental works has already demonstrated B and C with a simple detector, and data (Rovno+SanOnofre) are fully consistent with A

14/12/2007 E.Kemp - Encontro CBPF - 05/07 52

Where should we go?The present geopolitics of reactor experiments

Angra

Daya Bay

KASKARENO

Double Chooz?

14/12/2007 E.Kemp - Encontro CBPF - 05/07 53

All of this in BrazilAngra dos Reis Reactor Experiment:The ANGRA Neutrino Project

14/12/2007 E.Kemp - Encontro CBPF - 05/07 54

The ANGRA collaboration

•17 Researchers14 physicists2 ingeneerings1 Pos-Doc

• 2 Students1 PhD1 Undergraduate

Applying:2 Pos-Docs + 1 MsC students

14/12/2007 E.Kemp - Encontro CBPF - 05/07 55

Frontier Physics in BrazilVery interesting for the Brazilian science:

Possibility to do frontier experimental physics profiting from an already existing facility (Angra-I and II reactors). (Angra-III ?)Relative low cost investments compared with ANGRA (I + II + III) reactors cost.Possibility to use the future facility for other experiments and purposes:

R&D for new neutrino detection techniques gravitational antenna: GRAVITON project

14/12/2007 E.Kemp - Encontro CBPF - 05/07 56

Angra dos Reis RJ – Brazil

Angra-IAngra-II

Angra-III

SP

MG

RJ

14/12/2007 E.Kemp - Encontro CBPF - 05/07 57

Angra dos Reis nuclear plant features

3 Reactors: 2 in operation + 1 planned

--4.0Angra-IIIplanned > 2010

~1.3 years90 %4.0

~ 1.2 x 1020 f/sAngra-II(2000)

~1.5 years80 %1.8Angra-I(1985)

Fuel CycleAverage Uptime

Thermal Power (GW)

Reactor(starting date)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 58

Institutional Responsibilities

Experimental Group ELETRONUCLEAR

CNEN

construction

operation

regulatorysubmission

approval

All communication channels established !!

Support from brazilian nuclear authorities:ELETRONUCLEAR (Operating Company) CNEN (National Commission for Nuclear Energy)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 59

Current ConfigurationNear (reference) detector:

50 ton detector (7.2 m dia)300 m from core250 m.w.e.

Far (oscillation) detector:500 tons (12.5 m dia)1500 m from core2000 m.w.e. (under “Frade” peak )

Very Near detector:1 ton prototype project~ 50m of reactor core

Detector ConstructionStandard 3 volume design

reactors

“Morro do Frade”

14/12/2007 E.Kemp - Encontro CBPF - 05/07 60

Sites

Near Site

Far Site

Very Near Detector(power monitor and safeguards)

Detectors for Neutrino OscilationMeasurements

Reactor

tunnel

500 m

Angra III

14/12/2007 E.Kemp - Encontro CBPF - 05/07 61

Morro do Frade Zoom Out

Far Site

Near Site

Entrance L = 1500 m

depth = 100 m

Angra-I

View of the Experimental Layout

14/12/2007 E.Kemp - Encontro CBPF - 05/07 62

Civil Construction Design

25 m

15 m20 m

8 m 1250 m

10 m15 m

10 m

8 m

~100 m

ExperimentalHall

Ground Level

Far Near

14/12/2007 E.Kemp - Encontro CBPF - 05/07 63

101 102 103 10410-7

10-6

1x10-5

1x10-4

10-3

10-2

10-1

100

Angra

Kaska

Gran Sasso

D-Chooz / Braidwood

Daya Bay

Kamioka

Palo VerdeBugey

µ

vert

ical

inte

nsity

(cm

-2s-1

str-1

)

Far Detector Depth (m.w.e.)

µ Intensity vs. Depthfrom LVD data: PHYS. REV. D, 58, 092005 (1998)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 64

VND Detector site:

100 m

Selected Places for the

VERY NEAR DETECTOR

shaft ( < 15 m)

50 m

14/12/2007 E.Kemp - Encontro CBPF - 05/07 65

Expected Rates for Angra

~ 2< 2044Correlated background (9Li)(events/day)

0.3~ 30150Muon rate (Hz)

1000(1500m)

2500(300m)

1000(66m)

Signal(events/day)

FarNear Very Near

14/12/2007 E.Kemp - Encontro CBPF - 05/07 66

Expected Signal & Background

457100564907148093370

127060

Signal (day)Distance(m)

1108024550350404503075520

Muons (Hz)Depth(mwe)

Cilindrical detector dimensionsR= 1.40m; H=3.10m target=1ton

14/12/2007 E.Kemp - Encontro CBPF - 05/07 67

Costs: civil construction

14/12/2007 E.Kemp - Encontro CBPF - 05/07 68

Costs: detectors

Near Detector

$33.4M$9.2MTotal / Detector(design, contingency, etc…..ie. X 2)

$16.7M$4.6MSubTotal

$730K$100KLiquid Scintillator (w/o Gadolinium)($1190 / ton)

$232K$70KMineral Oil ($553 / ton)

$3.6M(3293

Channels)

$1.2M(1054

Channels)

Electronics ($100/channel + $1K/PMT)

$600K$200KSteel / Structural Support (outer sphere + PMT supports)

$11.5M$3MAcrylic (2 concentric spheres)(scaling from SNO)

FarNear

14/12/2007 E.Kemp - Encontro CBPF - 05/07 69

ν Survival Probabilities: experimental overview

14/12/2007 E.Kemp - Encontro CBPF - 05/07 70

ν Survival Probabilities: AngraEth= 1.8 MeV (both detectors) ; P=95%@5MeV (far detector)

0,1 1 10 1000,00,10,20,30,40,50,60,70,80,91,0

Far D

etec

tor:

1.5

km

E = 1.8 MeVE = 5.0 MeVE = 1.8 MeV

Nea

r Det

ecto

r: 0

.3 k

m

P (

ν e ν e)

L/E [km/MeV]

14/12/2007 E.Kemp - Encontro CBPF - 05/07 71

ANGRA’s approach:Precise Shape measurement

Ratio ofenergyspectra

Challenge: uniformity in both detector responses

14/12/2007 E.Kemp - Encontro CBPF - 05/07 72

90%CL at ∆m2 = 3×10-3 eV2

σcal → bin-to-bin energy calibration error

σnorm → normalization error

From Huber, Lindner, Schwetz and Winter

Statistical error only

Spectral shape only

Exposure (GW·ton·years)

sin2 2

θ 13

Sens

itivi

tyShape vs. Rate A Luminosity Transition

14/12/2007 E.Kemp - Encontro CBPF - 05/07 73

ANGRA Sensitivity studies

conventions

•d/D: detectors

•b/B: bin (energy)

•capital: correlated

•small: uncorrelated

• 500 ton (fiducial volume)

• 3 years

DC expectations

14/12/2007 E.Kemp - Encontro CBPF - 05/07 74

Sensitivity studies

conventions

•d/D: detectors

•b/B: bin (energy)

•capital: correlated

•small: uncorrelated

14/12/2007 E.Kemp - Encontro CBPF - 05/07 75

Reactor ν experiment physics

18,000/yr0.82.00.03340(1)Late 09RENO

15,000/yr0.8 ×0.92.5

0.080.040.025

29(1)29(1+1)80(1+3)

Oct 07(far)

Oct 08(near)Double Chooz

70,000/yr110,000/yr(before/after 2010)

0.75×0.832.50.013700(3)08(fast)09(full)Daya Bay

350,000/yr0.8×0.92.5

0.00700.00600.0055

3900(1)9000(3)

15000(5)2013(full)ANGRA

Far event rate

Efficienciesfor ∆m2

(10-3eV2)Sin22θ sensitivity

GW-t-yr(yr)

Optimistic start dateReactor

14/12/2007 E.Kemp - Encontro CBPF - 05/07 76

TheThe Neutrino Neutrino DetectorDetector

Detector regions

Active region [∅ 1m, h=1.3m](Liquid Scintillator + ≈ 0.1% Gadolinium)

Gama catcher [∅ 1.6m, h=1.9m](Liquid Scintillator)

Buffer [∅ 2.2m, h=2.5m](Mineral oil)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 77

Very Near Detector: 3 volumes DesignA) Target (1 ton)

• Acrylic vessel + lqd scintillator(+Gd)

B) Gamma-Catcher

• Acrylic vessel + lqd scintillator

C) Buffer

• Steel vessel + mineral oil

D) Vertical Tiles of Veto System&

E) X-Y Horizontal Tiles of Veto System

• Plastic scintillator padles• above and under the

external steel cylinder: muon tracking through the detector

15% of coverage

14/12/2007 E.Kemp - Encontro CBPF - 05/07 78

TheThe Neutrino Neutrino DetectorDetector

PMTs coverage

6.91m

2.5m

2.2m

2.2m

Total area = Sside + Stop + Sbottom

≈ (17.28+3.8+3.8) ≈ 24.88m2

Photocathode area = 0.038m2

20% coverage ⇒ 4.98m2

# PMTs = 4.98/0.038 ≈ 131

0.43m

0,43m0.45m

0.45m

128 PMTs implemented

14/12/2007 E.Kemp - Encontro CBPF - 05/07 79

Testing the Design: Detailed G4 simulation under construction

14/12/2007 E.Kemp - Encontro CBPF - 05/07 80

TheThe VETO VETO systemsystem

14/12/2007 E.Kemp - Encontro CBPF - 05/07 81

TheThe VETO VETO systemsystemX&Y and Barrel Scintillators

X&Y

• 3m long, 1cm thick, 15cm wide

• Readout by: optical fiber + segmented PMT or small size PMTs.

• Assembled as a single piece

Barrel

• 3m long, 1.5cm thick, 60-70cm wide

• Readout by: small size PMTs.

• Fixed on a barrel structure

14/12/2007 E.Kemp - Encontro CBPF - 05/07 82

TheThe VETO VETO systemsystem

Scintillator + fiber setup, built at FNAL, likely to be used at the AMIGA Project under AUGER.

Multianode photomultipliers(Ex: Hamamatsu R8520 series)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 83

Electronics & DAQ

Input Buffer

Amplifier&

ShaperComparator

LineDriver

To ADC

To Trigger

• Front-end electronicsinput buffer + amplifier/shaper

To ADC: + line driver

To Trigger system: + comparator

•Data Acquisition (DAQ)VME-based

off-the-shelf high-performance devices (ADCs, FPGAs, FIFOs)

two sub-systems: neutrino signal / VETO

Neutrino: ∼ 120 input channels sampled at 250Msps / 10-bit resolution

VETO: ∼ 110 LVDS signals to a large/fast FPGA (Stratix II)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 84

Neutrino Detection electronics:Laboratory for Detection Systems @ CBPF / BR

• standard: VME 6U

• one module:16 ADC input channels @ 250 MHz

buffer size per channel = 524 µs

• 128 PMT channels => 8 modules required

• dedicated lines on P2 to receive VETO

• interrupt requests to indicate ‘almost full’

condition

• control / status registers (e.g.: number of

events in a buffer)ADC FPGA BUFFER

(16cm x 23cm)

front panel

P1

P2

VME bus

14/12/2007 E.Kemp - Encontro CBPF - 05/07 85

VETO electronics:Laboratory for Detection Systems @ CBPF / BR

FPGA

(16cm x 23cm)

front panel

P1

P2

LVD

S in

putc

hann

els • Standard: VME 6U

• One module:

2 connectors on the front panel

68 LVDS input channels (total)

• LVDS receivers to reduce I/O pins in FPGA

• 110 scintillators ⇒ 2 modules required

• 26 input channels free for new ideas

LVDSreceivers

LVDSreceivers

VME bus

14/12/2007 E.Kemp - Encontro CBPF - 05/07 86

GEANT(Madrid – ES)

RNPRNP

BrazilianNational Education

and Research Network

CLARA

Latin American Advanced Networks

1Gbps

1Gbps

622MbpsUSA

400Mbps

Rede-Rio100 Mbps

USA

155Mbps

NetworkNetwork InfraInfra--structurestructure for for thetheAngra Neutrino DetectorAngra Neutrino Detector

152.

84.0

.0/1

6

RouterFirewall

CBPFCBPF

...Ethe

rnet

LA

NMinimum 512Kbps

Optimum: 1 Mbps

TelecomInfra-strucutre

Angra PoP

Private Line

152.84.55.0/24

Ethernet Switch

DAQ - DataAcquisition

System

Radio orOptical Fiber Link

2 Steps:1 – Infra-structure investment: router, switch, radio (fiber).2 – permanent private connection (CBPF-Angra)

2 Steps:1 – Infra-structure investment: router, switch, radio (fiber).2 – permanent private connection (CBPF-Angra)

VoIP

VoIP

PSTN

Extension of CBPF LAN´s.RioRio AngraAngra

Data Storage (Mirror) Data

Storage

14/12/2007 E.Kemp - Encontro CBPF - 05/07 87

Alternatives:Single Ended Readout?

Could Reduce footprint by 1.5 – 2 metersReduce height by 60-90 cm.Significant reduction in number of PMTsProblem: Long path lengths for reflected light

Target

GammaCatcher

Mineral OilBuffer

14/12/2007 E.Kemp - Encontro CBPF - 05/07 88

ABACC:The Common System of Accounting and Control of Nuclear Materials is a mechanism created in order to verify if Argentine and Brazil utilize their nuclear materials exclusively for pacific purposes.

Non-proliferation effort in ANGRA

14/12/2007 E.Kemp - Encontro CBPF - 05/07 89

ABACC + ANGRA Project

ASSESSMENT

of the

TECHNICQUE

+ IAEA !

14/12/2007 E.Kemp - Encontro CBPF - 05/07 90

ANGRA itens just under project

Front-end ElectronicsDAQData transfer & Communications : Nuclear Complex << = >> Research Institutions

On work:Construction IngeneeringSimulations

Deployment and operations strategies

Customized FPGA boards

14/12/2007 E.Kemp - Encontro CBPF - 05/07 91

Angra Project:Present Status

Meeting September 05, 2006 with Eletronuclearrepresentatives to define next step.

Authorization to place a container next to thereactor building.

Detailed project under way to be presented to the Minister of Science and Technology and to FAPESP.

14/12/2007 E.Kemp - Encontro CBPF - 05/07 92

Deploiment Streategy:Phase I: Setup infrastructure at the Angra site:

- 20’ container near the reactorbuilding

- Measurement of local muonflux: Cerenkov detector (Auger test tank)

- Muon telescope (4 Minos typescintillator planes)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 93

Deploiment StrategyPhase I:Setup infrastructure at CBPF & UNICAMP:

Start to test componentsat CBPF and UNICAMP:- 8” phototubes- VME electronics

Measurement of radioactivebackground (rocks and

sand)

14/12/2007 E.Kemp - Encontro CBPF - 05/07 94

Phase II: Deploy LVD tank

ISNP, 23/09/05ISNP, 23/09/05 Assunta di VacriAssunta di Vacri 1818

252252CaCa

PMTPMT

Capture on H vs Gd

• <T> capture [t]: 200 µs vs ~30 µs• efficiency [ε(≥Eth)]: 60% vs ~70%

Test on the Test on the dopeddoped TankTank

∑Eγ emitted in the n-capture ・ 8 MeV

MeV

ms

- 1 ton gadolinium doppedliquid scintillator tank

- test signal+background

- Tests with Californiumsource

- Final site selection forunderground laboratory

14/12/2007 E.Kemp - Encontro CBPF - 05/07 95

Phase III:Construction of the underground laboratory.

Construction of three volume detector and muon veto.

Deployment of detector parts, integration and commissioning.

14/12/2007 E.Kemp - Encontro CBPF - 05/07 96

ConclusionsReactor neutrino experiments: faster and cheapermeasurement of θ13

Complementarity with accelerator experiments

Short baseline Neutrino Oscillations :High precision experiment in Brazil around 2013 (possibility of a previous collaboration with Double Chooz)

Previous experiments demonstrate a good capability of using Antineutrinos for Nuclear reactor distant monitoring.

Applications: High precision thermal power and fuel composition measurement can be acchieved.

Good opportunity develop experimental neutrino physics in Brazil and to contribute to new safeguards techniques.

14/12/2007 E.Kemp - Encontro CBPF - 05/07 97

Why not work here ?Collaborators are welcomed…Thank you !

ANGRA III “preview”

kemp@ifi.unicamp.br

top related