the bootstrap program for integrable quantum eld theories...

Post on 04-Jul-2020

12 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

The ”Bootstrap Program”for integrable quantum field theories in 1+1 dimensions

H. Babujian, A. Foerster, and M. Karowski

Natal, September 2016

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 1 / 29

3 Lectures

I. The general Idea:

S-Matrix , Form Factors, Wightman Functions

II. Sine-Gordon Model

III. SU(N) and O(N) Models

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 2 / 29

Contents

1 The “Bootstrap Program”General idea

2 Examples:Sine-Gordon modelMassive Thirring model

3 Form factorsForm factor definitionExamples: Sine GordonGeneral form factor formula

“Bethe ansatz” state

4 Field equation and Wightman functionsQuantum field equationShort distance behavior

5 References

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 3 / 29

Contents

1 The “Bootstrap Program”General idea

2 Examples:Sine-Gordon modelMassive Thirring model

3 Form factorsForm factor definitionExamples: Sine GordonGeneral form factor formula

“Bethe ansatz” state

4 Field equation and Wightman functionsQuantum field equationShort distance behavior

5 References

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 3 / 29

Contents

1 The “Bootstrap Program”General idea

2 Examples:Sine-Gordon modelMassive Thirring model

3 Form factorsForm factor definitionExamples: Sine GordonGeneral form factor formula

“Bethe ansatz” state

4 Field equation and Wightman functionsQuantum field equationShort distance behavior

5 References

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 3 / 29

Contents

1 The “Bootstrap Program”General idea

2 Examples:Sine-Gordon modelMassive Thirring model

3 Form factorsForm factor definitionExamples: Sine GordonGeneral form factor formula

“Bethe ansatz” state

4 Field equation and Wightman functionsQuantum field equationShort distance behavior

5 References

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 3 / 29

Contents

1 The “Bootstrap Program”General idea

2 Examples:Sine-Gordon modelMassive Thirring model

3 Form factorsForm factor definitionExamples: Sine GordonGeneral form factor formula

“Bethe ansatz” state

4 Field equation and Wightman functionsQuantum field equationShort distance behavior

5 References

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 3 / 29

The “Bootstrap Program”

Construct a quantum field theory explicitly in 3 steps

1 S-matrixusing 1 general Properties: unitarity, crossing etc

2 ”Yang-Baxter Equation”3 ”bound state bootstrap”4 ‘maximal analyticity’

2 “Form factors”

〈 0 | φ(x) | p1, . . . , pn 〉in = e−ix(p1+···+pn) F φ (θ1, . . . , θn)

using 1 the S-matrix2 LSZ-assumptions3 ‘maximal analyticity’

3 “Wightman functions”

〈 0 | φ(x)φ(y) | 0 〉 = ∑n

∫〈 0 | φ(x) | n 〉in in〈 n | φ(y) | 0 〉

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 4 / 29

The “Bootstrap Program”

Construct a quantum field theory explicitly in 3 steps

1 S-matrixusing 1 general Properties: unitarity, crossing etc

2 ”Yang-Baxter Equation”3 ”bound state bootstrap”4 ‘maximal analyticity’

2 “Form factors”

〈 0 | φ(x) | p1, . . . , pn 〉in = e−ix(p1+···+pn) F φ (θ1, . . . , θn)

using 1 the S-matrix2 LSZ-assumptions3 ‘maximal analyticity’

3 “Wightman functions”

〈 0 | φ(x)φ(y) | 0 〉 = ∑n

∫〈 0 | φ(x) | n 〉in in〈 n | φ(y) | 0 〉

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 4 / 29

The “Bootstrap Program”

Construct a quantum field theory explicitly in 3 steps

1 S-matrixusing 1 general Properties: unitarity, crossing etc

2 ”Yang-Baxter Equation”3 ”bound state bootstrap”4 ‘maximal analyticity’

2 “Form factors”

〈 0 | φ(x) | p1, . . . , pn 〉in = e−ix(p1+···+pn) F φ (θ1, . . . , θn)

using 1 the S-matrix2 LSZ-assumptions3 ‘maximal analyticity’

3 “Wightman functions”

〈 0 | φ(x)φ(y) | 0 〉 = ∑n

∫〈 0 | φ(x) | n 〉in in〈 n | φ(y) | 0 〉

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 4 / 29

The “Bootstrap Program”

Construct a quantum field theory explicitly in 3 steps

1 S-matrixusing 1 general Properties: unitarity, crossing etc

2 ”Yang-Baxter Equation”3 ”bound state bootstrap”4 ‘maximal analyticity’

2 “Form factors”

〈 0 | φ(x) | p1, . . . , pn 〉in = e−ix(p1+···+pn) F φ (θ1, . . . , θn)

using 1 the S-matrix2 LSZ-assumptions3 ‘maximal analyticity’

3 “Wightman functions”

〈 0 | φ(x)φ(y) | 0 〉 = ∑n

∫〈 0 | φ(x) | n 〉in in〈 n | φ(y) | 0 〉

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 4 / 29

Example: 1 type of particles + a bound state

no backward scattering =⇒ S-matrix = c-number

Assumptions:

unitarity: |S(θ)|2 = S(−θ)S(θ) = 1crossing: S(θ) = S(iπ − θ)‘maximal analyticity’

=⇒ S(θ12) = •

@@

@@

θ1 θ2

=sinh θ12 + i sin πν

sinh θ12 − i sin πν

(θ12 = θ1 − θ2, p± = p0 ± p1 = me±θ

)= S-matrix of sine-Gordon breather b1

The pole belongs to the breather b2 as a breather-breather bound state

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 5 / 29

Example: 1 type of particles + a bound state

no backward scattering =⇒ S-matrix = c-number

Assumptions:

unitarity: |S(θ)|2 = S(−θ)S(θ) = 1crossing: S(θ) = S(iπ − θ)‘maximal analyticity’

=⇒ S(θ12) = •

@@

@@

θ1 θ2

=sinh θ12 + i sin πν

sinh θ12 − i sin πν

(θ12 = θ1 − θ2, p± = p0 ± p1 = me±θ

)= S-matrix of sine-Gordon breather b1

The pole belongs to the breather b2 as a breather-breather bound state

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 5 / 29

Example: 1 type of particles + a bound state

no backward scattering =⇒ S-matrix = c-number

Assumptions:

unitarity: |S(θ)|2 = S(−θ)S(θ) = 1crossing: S(θ) = S(iπ − θ)‘maximal analyticity’

=⇒ S(θ12) = •

@@

@@

θ1 θ2

=sinh θ12 + i sin πν

sinh θ12 − i sin πν

(θ12 = θ1 − θ2, p± = p0 ± p1 = me±θ

)= S-matrix of sine-Gordon breather b1

The pole belongs to the breather b2 as a breather-breather bound state

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 5 / 29

More details

unitarity:

S(θ21)S(θ12) = 1 :@@@@

=

1 2 1 2

crossing:

S(θ1 − θ2) = C−1 S(θ2 + iπ − θ1)C

@@

@@

1 2

=

AAAA

1 2

C = θ θ + iπ , C−1 =

θ θ − iπ

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 6 / 29

More details

unitarity:

S(θ21)S(θ12) = 1 :@@@@

=

1 2 1 2

crossing:

S(θ1 − θ2) = C−1 S(θ2 + iπ − θ1)C

@@

@@

1 2

=

AAAA

1 2

C = θ θ + iπ , C−1 =

θ θ − iπ

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 6 / 29

The classical sine-Gordon model

is given by the wave equation

ϕ(t, x) +α

βsin βϕ(t, x) = 0.

Perturbation theory in terms of Feynman graphs agreeswith the expansion of the exact S-matrix

S(θ) =sinh θ + i sin πν

sinh θ − i sin πν

= 1 + 2iπν

sinh θ− 2π2 ν2

sinh2 θ+O

(ν3)

if

ν =β2

8π − β2

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 7 / 29

The classical sine-Gordon model

is given by the wave equation

ϕ(t, x) +α

βsin βϕ(t, x) = 0.

Perturbation theory in terms of Feynman graphs agreeswith the expansion of the exact S-matrix

S(θ) =sinh θ + i sin πν

sinh θ − i sin πν

= 1 + 2iπν

sinh θ− 2π2 ν2

sinh2 θ+O

(ν3)

if

ν =β2

8π − β2

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 7 / 29

fermion s and anti-fermion s

with backward scattering

Sδγαβ (θ12) =

@@

@@

α β

γδ

θ1 θ2

α, β, γ, δ = s, s

S ssss (θ) = a(θ), S ss

ss (θ) = b(θ), S ssss (θ) = c(θ)

[A.B. Zamolodchikov (1977)]

crossing + unitarity + extra assump. → a, b, c

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 8 / 29

fermion s and anti-fermion s

with backward scattering

Sδγαβ (θ12) =

@@

@@

α β

γδ

θ1 θ2

α, β, γ, δ = s, s

S ssss (θ) = a(θ), S ss

ss (θ) = b(θ), S ssss (θ) = c(θ)

[A.B. Zamolodchikov (1977)]

crossing + unitarity + extra assump. → a, b, c

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 8 / 29

fermion s and anti-fermion s

with backward scattering

Sδγαβ (θ12) =

@@

@@

α β

γδ

θ1 θ2

α, β, γ, δ = s, s

S ssss (θ) = a(θ), S ss

ss (θ) = b(θ), S ssss (θ) = c(θ)

[A.B. Zamolodchikov (1977)]

crossing + unitarity + extra assump. → a, b, c

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 8 / 29

fermion s and anti-fermion s

with backward scattering

Sδγαβ (θ12) =

@@

@@

α β

γδ

θ1 θ2

α, β, γ, δ = s, s

S ssss (θ) = a(θ), S ss

ss (θ) = b(θ), S ssss (θ) = c(θ)

[A.B. Zamolodchikov (1977)]

crossing + unitarity + extra assump. → a, b, c

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 8 / 29

SUq(2) S-matrix

Yang-Baxter+ crossing + unitarity

=⇒

c(θ) = b(θ)sinh iπ/ν

sinh (iπ − θ) /ν, b(θ) = a(iπ − θ), |a| = |b± c | = 1

a(θ) = − exp∫ ∞

0

dt

t

sinh 12 (1− ν)t

sinh 12νt cosh 1

2 tsinh t

θ

q = −e−iπ/ν

[M. Karowski, H.J. Thun, T.T. Truong and P. Weisz 1977]

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 9 / 29

Massive Thirring Lagrangian

LMTM = ψ(iγ∂−M)ψ− 12g(ψγµψ)2

perturbation expansion ←→ the exact SUq(2) S-matrix

ifν =

π

π + 2g

Coleman:sine-Gordon soliton ←→ massive Thirring fermionsine-Gordon breathers ←→ massive Thirring bound states

ν =β2

8π − β2=

π

π + 2g

↑Coleman

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 10 / 29

Massive Thirring Lagrangian

LMTM = ψ(iγ∂−M)ψ− 12g(ψγµψ)2

perturbation expansion ←→ the exact SUq(2) S-matrix

ifν =

π

π + 2g

Coleman:sine-Gordon soliton ←→ massive Thirring fermionsine-Gordon breathers ←→ massive Thirring bound states

ν =β2

8π − β2=

π

π + 2g

↑Coleman

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 10 / 29

Sine-Gordon ≡ Massive Thirring

This equivalence is also proved in the Bootstrap program:

Using “bound state bootstrap equation”

S(12)3 Γ(12)12 = Γ

(12)12 S13S23

@@

@@

1 23

(12)

• =

@@

@@@

12 3

(12)•

(i) s + s → (ss) = b1 : massiveThirring −→ sine-Gordon S-matrix

(ii) s + b1 → (sb1) = s : sine-Gordon −→ massiveThirring S-matrix

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 11 / 29

Form factors

Definition

Let O(x) be a local operator

〈 0 | O(x) | p1, . . . , pn 〉inα1...αn= FOα1...αn

(θ1, . . . , θn) e−ix ∑ pi

= O

. . .

FOα (θ) = form factor (co-vector valued function)

αi ∈ all types of particles

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 12 / 29

2-particle form factor

〈 0 | O(0) | p1, p2〉in/out = F((p1 + p2)

2 ± iε)= F (±θ12)

where p1p2 = m2 cosh θ12.

”Watson’s equation””crossing equation”

F (θ) = F (−θ) S (θ)F (iπ − θ) = F (iπ + θ)

“maximal analyticity” ⇒ unique solution [Karowski Weisz (1978)]

”maximal analyticity” ↔F (θ) meromorphic and all poles have a physical interpretation

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 13 / 29

2-particle form factor

〈 0 | O(0) | p1, p2〉in/out = F((p1 + p2)

2 ± iε)= F (±θ12)

where p1p2 = m2 cosh θ12.

”Watson’s equation””crossing equation”

F (θ) = F (−θ) S (θ)F (iπ − θ) = F (iπ + θ)

“maximal analyticity” ⇒ unique solution [Karowski Weisz (1978)]

”maximal analyticity” ↔F (θ) meromorphic and all poles have a physical interpretation

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 13 / 29

Example: Sine Gordon

sine-Gordon breather-breather form factor

Fbb(θ) = exp∫ ∞

0

dt

t sinh t

cosh t(12 + ν

)− cosh 1

2 t

cosh 12 t

cosh t

(1− θ

)

sine-Gordon soliton-soliton

Fss(θ) = exp1

2

∫ ∞

0

dt

t sinh t

sinh 12 t (1 + ν)

sinh 12νt cosh 1

2 t

(1− cosh t

(1− θ

))[Karowski Weisz (1978)]this the highest weight SUq(2) ’minimal’ form factor

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 14 / 29

Example: Sine Gordon

sine-Gordon breather-breather form factor

Fbb(θ) = exp∫ ∞

0

dt

t sinh t

cosh t(12 + ν

)− cosh 1

2 t

cosh 12 t

cosh t

(1− θ

)

sine-Gordon soliton-soliton

Fss(θ) = exp1

2

∫ ∞

0

dt

t sinh t

sinh 12 t (1 + ν)

sinh 12νt cosh 1

2 t

(1− cosh t

(1− θ

))[Karowski Weisz (1978)]this the highest weight SUq(2) ’minimal’ form factor

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 14 / 29

General form factor formula

FOα1...αn(θ1, . . . , θn) = KOα1 ...αn

(θ) ∏1≤i<j≤n

F (θij )

”Off-shell Bethe Ansatz”

KOα1...αn(θ) =

∫Cθ

dz1 · · ·∫Cθ

dzm h(θ, z) pO(θ, z)Ψα1 ...αn(θ, z)

Ψα(θ, z) = Bethe state

h(θ, z) =n

∏i=1

m

∏j=1

φ(θi − zj ) ∏1≤i<j≤m

τ(zi − zj ) , τ(z) =1

φ(z)φ(−z)

depend only on the S-matrix (see below),

pO(θ, z) = depends on the operator OBabujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 15 / 29

General form factor formula

FOα1...αn(θ1, . . . , θn) = KOα1 ...αn

(θ) ∏1≤i<j≤n

F (θij )

”Off-shell Bethe Ansatz”

KOα1...αn(θ) =

∫Cθ

dz1 · · ·∫Cθ

dzm h(θ, z) pO(θ, z)Ψα1 ...αn(θ, z)

Ψα(θ, z) = Bethe state

h(θ, z) =n

∏i=1

m

∏j=1

φ(θi − zj ) ∏1≤i<j≤m

τ(zi − zj ) , τ(z) =1

φ(z)φ(−z)

depend only on the S-matrix (see below),

pO(θ, z) = depends on the operator OBabujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 15 / 29

General form factor formula

FOα1...αn(θ1, . . . , θn) = KOα1 ...αn

(θ) ∏1≤i<j≤n

F (θij )

”Off-shell Bethe Ansatz”

KOα1...αn(θ) =

∫Cθ

dz1 · · ·∫Cθ

dzm h(θ, z) pO(θ, z)Ψα1 ...αn(θ, z)

Ψα(θ, z) = Bethe state

h(θ, z) =n

∏i=1

m

∏j=1

φ(θi − zj ) ∏1≤i<j≤m

τ(zi − zj ) , τ(z) =1

φ(z)φ(−z)

depend only on the S-matrix (see below),

pO(θ, z) = depends on the operator OBabujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 15 / 29

General form factor formula

FOα1...αn(θ1, . . . , θn) = KOα1 ...αn

(θ) ∏1≤i<j≤n

F (θij )

”Off-shell Bethe Ansatz”

KOα1...αn(θ) =

∫Cθ

dz1 · · ·∫Cθ

dzm h(θ, z) pO(θ, z)Ψα1 ...αn(θ, z)

Ψα(θ, z) = Bethe state

h(θ, z) =n

∏i=1

m

∏j=1

φ(θi − zj ) ∏1≤i<j≤m

τ(zi − zj ) , τ(z) =1

φ(z)φ(−z)

depend only on the S-matrix (see below),

pO(θ, z) = depends on the operator OBabujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 15 / 29

Equation for φ(z)

(iii) ←→ φ (z) =1

F (z) F (z + iπ)

Examples: SU(2) :

φSU(2) (z) = Γ( z

2πi

)Γ(

1

2− z

2πi

)

SUq(2) : sine-Gordon solitons

φSUq(2) (z) =∞

∏k=0

Γ(12kν +

z

2πi

)Γ(12kν + 1

2 −z

2πi

)Γ(12 (k + 1) ν + 1

2 +z

2πi

)Γ(12 (k + 1) ν + 1− z

2πi

)Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 16 / 29

Equation for φ(z)

(iii) ←→ φ (z) =1

F (z) F (z + iπ)

Examples: SU(2) :

φSU(2) (z) = Γ( z

2πi

)Γ(

1

2− z

2πi

)

SUq(2) : sine-Gordon solitons

φSUq(2) (z) =∞

∏k=0

Γ(12kν +

z

2πi

)Γ(12kν + 1

2 −z

2πi

)Γ(12 (k + 1) ν + 1

2 +z

2πi

)Γ(12 (k + 1) ν + 1− z

2πi

)Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 16 / 29

Equation for φ(z)

(iii) ←→ φ (z) =1

F (z) F (z + iπ)

Examples: SU(2) :

φSU(2) (z) = Γ( z

2πi

)Γ(

1

2− z

2πi

)

SUq(2) : sine-Gordon solitons

φSUq(2) (z) =∞

∏k=0

Γ(12kν +

z

2πi

)Γ(12kν + 1

2 −z

2πi

)Γ(12 (k + 1) ν + 1

2 +z

2πi

)Γ(12 (k + 1) ν + 1− z

2πi

)Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 16 / 29

“Bethe ansatz” state

Example: SU(2) or SUq(2) ≡ sine-Gordon

Ψα(θ, z) = (ΩC (θ, zm) . . .C (θ, z1))α1...αn

=

S-matrix

• •

• •

α1 αn

2

2

1 1

1

1

θ1 θn

z1

zm

. . .

...(1 ≤ αi ≤ 2)

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 17 / 29

Integration contour for SU(N)

• θn − 2πi

•θn − 2πi 1N

• θn

• θn + 2πi(1− 1N )

. . .

• θ2 − 2πi

•θ2 − 2πi 1N

• θ2

• θ2 + 2πi(1− 1N )

• θ1 − 2πi

•θ1 − 2πi 1N

• θ1

• θ1 + 2πi(1− 1N )

-

-

Figure: The integration contour Cθ. The bullets refer to poles of the integrand.

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 18 / 29

General form factor formula

for sine Gordon breathers

FO(θ1, . . . , θn) = KO(θ) ∏1≤i<j≤n

Fbb(θij )

KOnm(θ) =∫Cθ

dz1 · · ·∫Cθ

dzm h(θ, z) pO(θ, z)Ψ(θ, z)

(1)

Ψ(θ, z) = Bethe state = ∏ S(θi − zj )

h(θ, z) =n

∏i=1

m

∏j=1

φ(θi − zj ) ∏1≤i<j≤m

τ(zi − zj ) , τ(z) =1

φ(z)φ(−z)

φb(z) =S(z)

Fbb(z)Fbb(z + 1)= 1 +

i sin πν

sinh z

and∫Cθ

dz · · · = ∑ Resz=θi

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 19 / 29

General form factor formula

for sine Gordon breathers

FO(θ1, . . . , θn) = KO(θ) ∏1≤i<j≤n

Fbb(θij )

KOnm(θ) =∫Cθ

dz1 · · ·∫Cθ

dzm h(θ, z) pO(θ, z)Ψ(θ, z)

(1)

Ψ(θ, z) = Bethe state = ∏ S(θi − zj )

h(θ, z) =n

∏i=1

m

∏j=1

φ(θi − zj ) ∏1≤i<j≤m

τ(zi − zj ) , τ(z) =1

φ(z)φ(−z)

φb(z) =S(z)

Fbb(z)Fbb(z + 1)= 1 +

i sin πν

sinh z

and∫Cθ

dz · · · = ∑ Resz=θi

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 19 / 29

General form factor formula

for sine Gordon breathers

FO(θ1, . . . , θn) = KO(θ) ∏1≤i<j≤n

Fbb(θij )

KOnm(θ) =∫Cθ

dz1 · · ·∫Cθ

dzm h(θ, z) pO(θ, z)Ψ(θ, z)

(1)

Ψ(θ, z) = Bethe state = ∏ S(θi − zj )

h(θ, z) =n

∏i=1

m

∏j=1

φ(θi − zj ) ∏1≤i<j≤m

τ(zi − zj ) , τ(z) =1

φ(z)φ(−z)

φb(z) =S(z)

Fbb(z)Fbb(z + 1)= 1 +

i sin πν

sinh z

and∫Cθ

dz · · · = ∑ Resz=θi

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 19 / 29

Example: Exponential field

O(x) = : e iγϕ(x) :

with : · · · := normal ordering.

We derived all form factors [Babujian Karowski (2002)]

F e iγϕ(θ) = Nn ∏

1≤i<j≤nFbb(θij )

n

∑m=0

qn−2m(−1)mKnm(θ)

where N =√Z ϕ β

2πν and q = exp(iπνγ/β)and Knm(θ) is given by (1) for p = 1

Z ϕ = (1 + ν)12πν

sin 12πν

exp

(− 1

π

∫ πν

0

t

sin tdt

)is the finite wave function renormalization constant[Karowski Weizs (1978)]

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 20 / 29

Example: Exponential field

O(x) = : e iγϕ(x) :

with : · · · := normal ordering.

We derived all form factors [Babujian Karowski (2002)]

F e iγϕ(θ) = Nn ∏

1≤i<j≤nFbb(θij )

n

∑m=0

qn−2m(−1)mKnm(θ)

where N =√Z ϕ β

2πν and q = exp(iπνγ/β)and Knm(θ) is given by (1) for p = 1

Z ϕ = (1 + ν)12πν

sin 12πν

exp

(− 1

π

∫ πν

0

t

sin tdt

)is the finite wave function renormalization constant[Karowski Weizs (1978)]

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 20 / 29

Example: Exponential field

O(x) = : e iγϕ(x) :

with : · · · := normal ordering.

We derived all form factors [Babujian Karowski (2002)]

F e iγϕ(θ) = Nn ∏

1≤i<j≤nFbb(θij )

n

∑m=0

qn−2m(−1)mKnm(θ)

where N =√Z ϕ β

2πν and q = exp(iπνγ/β)and Knm(θ) is given by (1) for p = 1

Z ϕ = (1 + ν)12πν

sin 12πν

exp

(− 1

π

∫ πν

0

t

sin tdt

)is the finite wave function renormalization constant[Karowski Weizs (1978)]

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 20 / 29

Example: the field

the form factors of ϕ(x) are obtained from F e iγϕ(θ) by

F ϕ(θ) = −i ∂

∂γF e iγϕ

(θ)

∣∣∣∣γ=0

We proved the quantum field equation

ϕ(t, x) +α

β: sin βϕ(t, x) := 0

for all matrix elements. [Babujian Karowski (2002)]

The bare and the renormilized masses are related by

α = m2bare =

πν

sin πνm2

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 21 / 29

Example: the field

the form factors of ϕ(x) are obtained from F e iγϕ(θ) by

F ϕ(θ) = −i ∂

∂γF e iγϕ

(θ)

∣∣∣∣γ=0

We proved the quantum field equation

ϕ(t, x) +α

β: sin βϕ(t, x) := 0

for all matrix elements. [Babujian Karowski (2002)]

The bare and the renormilized masses are related by

α = m2bare =

πν

sin πνm2

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 21 / 29

Example: the field

the form factors of ϕ(x) are obtained from F e iγϕ(θ) by

F ϕ(θ) = −i ∂

∂γF e iγϕ

(θ)

∣∣∣∣γ=0

We proved the quantum field equation

ϕ(t, x) +α

β: sin βϕ(t, x) := 0

for all matrix elements. [Babujian Karowski (2002)]

The bare and the renormilized masses are related by

α = m2bare =

πν

sin πνm2

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 21 / 29

Wightman functions

Example: the two-point function

w(x) = 〈 0 | O(x)O(0) | 0 〉 .

Inserting a complete set of states

w(x) = 1 +∞

∑n=1

1

n!

∫dθ1 . . .

∫dθne

−ix ∑ pign(θ) .

where

gn(θ) =1

(4π)n〈 0 | O(0) |θ1, . . . , θn 〉 〈θn, . . . , θ1 | O(0) | 0 〉

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 22 / 29

Wightman functions

We use a cumulant transformation and write

lnw(x) =∞

∑n=1

1

n!

∫dθ1 . . .

∫dθne

−ix ∑ pihn(θ)

where the g ’s and h’s are related by

g

1. . .

n

= h

1. . .

n

+n

∑i=1

h

. .h

i

+ · · · + h

1

. . . h

n

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 23 / 29

Example: The sinh-Gordon model

ϕ +α

βsinh βϕ = 0

is obtained from sine-Gordon by β→ iβ =⇒ ν < 0.

Short distances behavior for O(x) = exp βϕ(x)

w(x) ∼(√−x2

)−4∆for x → 0

“Dimension” ∆

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 24 / 29

Example: The sinh-Gordon model

ϕ +α

βsinh βϕ = 0

is obtained from sine-Gordon by β→ iβ =⇒ ν < 0.

Short distances behavior for O(x) = exp βϕ(x)

w(x) ∼(√−x2

)−4∆for x → 0

“Dimension” ∆

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 24 / 29

Wightman functions

The two-point function

w(x) = 〈 0 | O(x)O′(0) | 0 〉

Example: The sinh-Gordon model

ϕ +α

βsinh βϕ = 0

Short distances behavior for O(x) = exp βϕ(x)

w(x) ∼(√−x2

)−4∆for x → 0

“Dimension” ∆Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 25 / 29

Wightman functions

The two-point function

w(x) = 〈 0 | O(x)O′(0) | 0 〉

Example: The sinh-Gordon model

ϕ +α

βsinh βϕ = 0

Short distances behavior for O(x) = exp βϕ(x)

w(x) ∼(√−x2

)−4∆for x → 0

“Dimension” ∆Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 25 / 29

Short distance behavior

“Dimension” ∆ for sinh-Gordon1- and 1+2-particle intermediate state contributions

0

0.1

0.2

0.3

0.4

0 1 21-particle

B

1+2-particlewhere B = 2β2

8π+β2

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 26 / 29

[H. Babujian and M. Karowski (2004)]

∆1+2 = −sin πν

πF (iπ)+

(sin πν

πF (iπ)

)2 ∫ ∞

−∞dθ (F (θ)F (−θ)− 1)

= − sin πν

πF (iπ)− π

2sin πνF 2(iπ)− π

cos πν− 1

sin πν+ 2

(1− πν cos πν

sin πν

)

B = 2β2

8π+β2 = −2ν

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 27 / 29

Some References

S-matrix:A.B. Zamolodchikov, JEPT Lett. 25 (1977) 468

M. Karowski, H.J. Thun, T.T. Truong and P. WeiszPhys. Lett. B67 (1977) 321

M. Karowski and H.J. Thun, Nucl. Phys. B130 (1977) 295

A.B. Zamolodchikov and Al. B. ZamolodchikovAnn. Phys. 120 (1979) 253

M. Karowski, Nucl. Phys. B153 (1979) 244

V. Kurak and J. A. Swieca, Phys. Lett. B82, 289–291 (1979).

R. Koberle, V. Kurak, and J. A. Swieca, Nucl. Phys. B157, 387–391 (1979).

Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 28 / 29

Some References

Form factors:M. Karowski and P. Weisz Nucl. Phys. B139 (1978) 445

B. Berg, M. Karowski and P. Weisz Phys. Rev. D19 (1979) 2477

F.A. Smirnov World Scientific 1992

H. Babujian, A. Fring, M. Karowski and A. ZapletalNucl. Phys. B538 [FS] (1999) 535-586

H. Babujian and M. Karowski Phys. Lett. B411 (1999) 53-57,

Nucl. Phys. B620 (2002) 407; Journ. Phys. A: Math. Gen. 35 (2002)

9081-9104; Phys. Lett. B 575 (2003) 144-150.

H. Babujian, A. Foerster and M. Karowski, SU(N) off-shell Bethe ansatz

hep-th/0611012; Nucl.Phys. B736 (2006) 169-198; SIGMA 2 (2006), 082; J.

Phys. A41 (2008) 275202, Nucl. Phys. B 825 [FS] (2010) 396–425;

O(N) σ- model, arXiv:1308.1459, Journal of High Energy Physics 2013:89 ;O(N) Gross-Neveu model, in preparation

H. Babujian and M. Karowski, . . . Constructions of Wightman Functions. . . ,

International Journal of Modern Physics A, 19 (2004) 34-49Babujian, Foerster, Karowski (FU-Berlin) The Bootstrap Program Natal, September 2016 29 / 29

top related