the constant strain triangle (cst)

Post on 01-Jan-2017

328 Views

Category:

Documents

11 Downloads

Preview:

Click to see full reader

TRANSCRIPT

MANE 4240 & CIVL 4240Introduction to Finite Elements

Constant Strain Triangle (CST)

Prof. Suvranu De

Reading assignment:

Logan 6.2-6.5 + Lecture notes

Summary:

• Computation of shape functions for constant strain triangle• Properties of the shape functions • Computation of strain-displacement matrix• Computation of element stiffness matrix• Computation of nodal loads due to body forces• Computation of nodal loads due to traction• Recommendations for use• Example problems

Finite element formulation for 2D:

Step 1: Divide the body into finite elements connected to each other through special points (“nodes”)

x

y

Su

STu

v

x

px

py

Element ‘e’

3

21

4

y

xvu

1

2

3

4

u1

u2

u3

u4

v4

v3

v2

v1

4

4

3

3

2

2

1

1

vuvuvuvu

d

44332211

44332211

vy)(x,N vy)(x,N vy)(x,N vy)(x,Ny)(x,vu y)(x,Nu y)(x,Nu y)(x,Nu y)(x,Ny)(x,u

4

4

3

3

2

2

1

1

4321

4321

vuvuvuvu

N0N0N0N00N0N0N0N

y)(x,vy)(x,u

u

dNu

TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN EACH ELEMENT

...... vy)(x,N

uy)(x,Ny)(x,vy)(x,u

vy)(x,N

vy)(x,N

v y)(x,N

vy)(x,Ny)(x,v

u y)(x,N

u y)(x,N

u y)(x,N

u y)(x,Ny)(x,u

11

11

xy

44

33

22

11

y

44

33

22

11

x

xyxy

yyyyy

xxxxx

Approximation of the strain in element ‘e’

4

4

3

3

2

2

1

1

B

44332211

4321

4321

xy

vuvuvuvu

y)(x,Ny)(x,Ny)(x,Ny)(x,N y)(x,N y)(x,Ny)(x,Ny)(x,N

y)(x,N0

y)(x,N0

y)(x,N0

y)(x,N0

0y)(x,N

0y)(x,N

0 y)(x,N

0y)(x,N

xyxyxyxy

yyyy

xxxx

y

x

dBε

Displacement approximation in terms of shape functions

Strain approximation in terms of strain-displacement matrix

Stress approximation

Summary: For each element

Element stiffness matrix

Element nodal load vector

dNu

dBD

dBε

eVk dVBDBT

S

eT

b

e

f

S ST

f

V

T dSTdVXf NN

Constant Strain Triangle (CST) : Simplest 2D finite element

• 3 nodes per element• 2 dofs per node (each node can move in x- and y- directions)• Hence 6 dofs per element

x

yu3

v3

v1

u1

u2

v2

2

3

1

(x,y)

vu

(x1,y1)

(x2,y2)

(x3,y3)

166212 dNu

3

3

2

2

1

1

321

321

vuvuvu

N0N0N00N0N0N

y)(x,vy)(x,u

u

The displacement approximation in terms of shape functions is

321

321

N0N0N00N0N0N

N

1 1 2 2 3 3u (x,y) u u uN N N

1 1 2 2 3 3v(x,y) v v vN N N

Formula for the shape functions are

Aycxba

NA

ycxbaN

Aycxba

N

2

2

2

3333

2222

1111

12321312213

31213231132

23132123321

33

22

11

x1x1x1

det21

xxcyybyxyxaxxcyybyxyxaxxcyybyxyxa

yyy

triangleofareaA

where

x

yu3

v3

v1

u1

u2

v2

2

3

1

(x,y)

vu

(x1,y1)

(x2,y2)

(x3,y3)

Properties of the shape functions:

1. The shape functions N1, N2 and N3 are linear functions of x and y

x

y

2

3

1

1

N1

2

3

1

N2

12

3

1

1

N3

nodesotheratinodeat

0''1

N i

2. At every point in the domain

yy

xx

i

i

3

1ii

3

1ii

3

1ii

N

N

1N

3. Geometric interpretation of the shape functionsAt any point P(x,y) that the shape functions are evaluated,

x

y

2

3

1P (x,y)

A1A3

A2

AAAAAA

33

22

11

N

N

N

Approximation of the strains

xy

u

v

u v

x

y

x

Bdy

y x

332211

321

321

332211

321

321

000000

21

y)(x,Ny)(x,N y)(x,N y)(x,Ny)(x,Ny)(x,N

y)(x,N0

y)(x,N0

y)(x,N0

0y)(x,N

0 y)(x,N

0y)(x,N

bcbcbcccc

bbb

A

xyxyxy

yyy

xxx

B

Element stresses (constant inside each element)

dBD

Inside each element, all components of strain are constant: hence the name Constant Strain Triangle

IMPORTANT NOTE:1. The displacement field is continuous across element boundaries2. The strains and stresses are NOT continuous across element boundaries

Element stiffness matrix

eVk dVBDBT

AtkeV

BDBdVBDB TT t=thickness of the elementA=surface area of the element

Since B is constant

t

A

S

eT

b

e

f

S ST

f

V

T dSTdVXf NN

Element nodal load vector

Element nodal load vector due to body forces

ee A

T

V

T

bdAXtdVXf NN

e

e

e

e

e

e

A b

A a

A b

A a

A b

A a

yb

xb

yb

xb

yb

xb

b

dAXNt

dAXNt

dAXNt

dAXNt

dAXNt

dAXNt

ffffff

f

3

3

2

2

1

1

3

3

2

2

1

1

x

yfb3x

fb3y

fb1y

fb1x

fb2x

fb2y

2

3

1

(x,y)

Xb Xa

EXAMPLE:

If Xa=1 and Xb=0

03

03

03

0

0

0

3

2

1

3

3

2

2

1

1

3

3

2

2

1

1

tA

tA

tA

dANt

dANt

dANt

dAXNt

dAXNt

dAXNt

dAXNt

dAXNt

dAXNt

ffffff

f

e

e

e

e

e

e

e

e

e

A

A

A

A b

A a

A b

A a

A b

A a

yb

xb

yb

xb

yb

xb

b

Element nodal load vector due to traction

eTS

ST

SdSTf N

EXAMPLE:

x

yfS3x

fS3y

fS1y

fS1x

2

3

1

el Salong

T

SdSTtf

31 31N

Element nodal load vector due to traction

EXAMPLE:

x

y

fS3x

2

31

el Salong

T

SdSTtf

32 32N

fS3y

fS2x

fS2y

(2,0)

(2,2)

(0,0)

01

STtt

dyNtf ex l alongS

1221

)1(32

2 322

0

0

3

3

2

y

x

y

S

S

S

f

tf

f

Similarly, compute

1

2

Recommendations for use of CST

1. Use in areas where strain gradients are small

2. Use in mesh transition areas (fine mesh to coarse mesh)

3. Avoid CST in critical areas of structures (e.g., stress concentrations, edges of holes, corners)

4. In general CSTs are not recommended for general analysis purposes as a very large number of these elements are required for reasonable accuracy.

Example

x

y

El 1

El 2

1

23

4

300 psi1000 lb

3 in

2 inThickness (t) = 0.5 inE= 30×106 psi=0.25

(a) Compute the unknown nodal displacements.(b) Compute the stresses in the two elements.

Realize that this is a plane stress problem and therefore we need to use

psiED 72 10

2.10002.38.008.02.3

2100

0101

1

Step 1: Node-element connectivity chart

ELEMENT Node 1 Node 2 Node 3 Area (sqin)

1 1 2 4 3

2 3 4 2 3

Node x y

1 3 0

2 3 2

3 0 2

4 0 0

Nodal coordinates

Step 2: Compute strain-displacement matrices for the elements

332211

321

321

000000

21

bcbcbcccc

bbb

AB

Recall

123312231

213132321

xxcxxcxxcyybyybyyb

with

For Element #1:

1(1)

2(2)

4(3)(local numbers within brackets)

0;3;30;2;0

321

321

xxxyyy

Hence

033202

321

321

cccbbb

200323003030020002

61)1(B

Therefore

For Element #2:

200323003030020002

61)2(B

Step 3: Compute element stiffness matrices

7

)1(T)1()1(T)1()1(

10

2.005333.002.02.1

3.00045.02.02.02.13.04.1

3.05333.02.045.05.09833.0BDB)5.0)(3(BDB

Atk

u1 u2 u4 v4v2v1

7

)2(T)2()2(T)2()2(

10

2.005333.002.02.1

3.00045.02.02.02.13.04.1

3.05333.02.045.05.09833.0BDB)5.0)(3(BDB

Atk

u3 u4 u2 v2v4v3

Step 4: Assemble the global stiffness matrix corresponding to the nonzero degrees of freedom

014433 vvuvuNotice that

Hence we need to calculate only a small (3x3) stiffness matrix

7104.102.0

0983.045.02.045.0983.0

K

u1 u2v2

u1

u2

v2

Step 5: Compute consistent nodal loads

y

x

x

fff

f

2

2

1

yf2

00

ySy ff2

10002

The consistent nodal load due to traction on the edge 3-2

lbx

dxx

dxN

tdxNf

x

x

xS y

2252950

250

3150

)5.0)(300(

)300(

3

0

2

3

0

3

0 233

3

0 2332

3 2

3232xN

lb

ffySy

1225

100022

Hence

Step 6: Solve the system equations to obtain the unknown nodal loads

fdK

122500

4.102.00983.045.02.045.0983.0

10

2

2

17

vuu

Solve to get

ininin

vuu

4

4

4

2

2

1

109084.0101069.0102337.0

Step 7: Compute the stresses in the elements

)1()1()1( dBD

With

00109084.0101069.00102337.0

d444

442211)1(

vuvuvuT

Calculate

psi

1.761.13911.114

)1(

In Element #1

)2()2()2( dBD

With

44

224433)2(

109084.0101069.00000

d

vuvuvuT

Calculate

psi

35.36352.281.114

)2(

In Element #2

Notice that the stresses are constant in each element

top related