treewidth and treelength of internetmausoto/talks/200811_talk_poitiers.pdf · 2013-01-24 ·...

Post on 18-Jul-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Outline

Treewidth and Treelength of Internet

Fabien de Montgolfier Mauricio Soto Laurent Viennot

LIAFAUniversite Paris Diderot - Paris 7 CNRS

GANGINRIA Paris Rocquencourt

Reunion ALADDIN , Poitiers / Novembre 2008

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 1 / 27

Outline

Outline

1 IntroductionTree Decomposition

2 Data Source

3 Treelength

4 TreewidthLower BoundUpper Bound

5 Conclusions

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 2 / 27

Outline

Outline

1 IntroductionTree Decomposition

2 Data Source

3 Treelength

4 TreewidthLower BoundUpper Bound

5 Conclusions

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 2 / 27

Outline

Outline

1 IntroductionTree Decomposition

2 Data Source

3 Treelength

4 TreewidthLower BoundUpper Bound

5 Conclusions

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 2 / 27

Outline

Outline

1 IntroductionTree Decomposition

2 Data Source

3 Treelength

4 TreewidthLower BoundUpper Bound

5 Conclusions

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 2 / 27

Outline

Outline

1 IntroductionTree Decomposition

2 Data Source

3 Treelength

4 TreewidthLower BoundUpper Bound

5 Conclusions

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 2 / 27

Introduction Data Source Treelength Treewidth Conclusions

Goal

Goal

Compute

bounds on

treewidth and treelength on Internetgraph.

Understand Internet graph structure.

Motivation

Small treewidth graphs have polynomial (linear) algorithms forNP-hard problems.

Small treelength graphs have compact routing protocols.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 3 / 27

Introduction Data Source Treelength Treewidth Conclusions

Goal

Goal

Compute bounds on treewidth and treelength on Internetgraph.

Understand Internet graph structure.

Motivation

Small treewidth graphs have polynomial (linear) algorithms forNP-hard problems.

Small treelength graphs have compact routing protocols.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 3 / 27

Introduction Data Source Treelength Treewidth Conclusions

Goal

Goal

Compute bounds on treewidth and treelength on Internetgraph.

Understand Internet graph structure.

Motivation

Small treewidth graphs have polynomial (linear) algorithms forNP-hard problems.

Small treelength graphs have compact routing protocols.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 3 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Outline

1 IntroductionTree Decomposition

2 Data Source

3 Treelength

4 TreewidthLower BoundUpper Bound

5 Conclusions

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 4 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Tree Decomposition

Tree Decomposition

- bags {Xi ⊆ V , i ∈ I}- tree T = (I ,F )

1 every node is in a bag.

2 every edge has its ends in a bag.

3 bags containing a vertex formconnected subtree.

- Width: maxi |Xi | − 1

- Length: maxi diamG (Xi )

Tree

is the minimum over all treedecompositions.

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 5 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Tree Decomposition

Tree Decomposition

- bags {Xi ⊆ V , i ∈ I}

- tree T = (I ,F )

1 every node is in a bag.

2 every edge has its ends in a bag.

3 bags containing a vertex formconnected subtree.

- Width: maxi |Xi | − 1

- Length: maxi diamG (Xi )

Tree

is the minimum over all treedecompositions.

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 5 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Tree Decomposition

Tree Decomposition

- bags {Xi ⊆ V , i ∈ I}- tree T = (I ,F )

1 every node is in a bag.

2 every edge has its ends in a bag.

3 bags containing a vertex formconnected subtree.

- Width: maxi |Xi | − 1

- Length: maxi diamG (Xi )

Tree

is the minimum over all treedecompositions.

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 5 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Tree Decomposition

Tree Decomposition

- bags {Xi ⊆ V , i ∈ I}- tree T = (I ,F )

1 every node is in a bag.

2 every edge has its ends in a bag.

3 bags containing a vertex formconnected subtree.

- Width: maxi |Xi | − 1

- Length: maxi diamG (Xi )

Tree

is the minimum over all treedecompositions.

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 5 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Tree Decomposition

Tree Decomposition

- bags {Xi ⊆ V , i ∈ I}- tree T = (I ,F )

1 every node is in a bag.

2 every edge has its ends in a bag.

3 bags containing a vertex formconnected subtree.

- Width: maxi |Xi | − 1

- Length: maxi diamG (Xi )

Tree

is the minimum over all treedecompositions.

a

b

c

d

e

f

g

a c d

a b dd f g

b e

a b d

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 5 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Tree Decomposition

Tree Decomposition

- bags {Xi ⊆ V , i ∈ I}- tree T = (I ,F )

1 every node is in a bag.

2 every edge has its ends in a bag.

3 bags containing a vertex formconnected subtree.

- Width: maxi |Xi | − 1

- Length: maxi diamG (Xi )

Tree

is the minimum over all treedecompositions.

a

b

c

d

e

f

g

d

a c d

a b dd f g

b e

a c d

a b dd f g

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 5 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Tree Decomposition

Tree Decomposition

- bags {Xi ⊆ V , i ∈ I}- tree T = (I ,F )

1 every node is in a bag.

2 every edge has its ends in a bag.

3 bags containing a vertex formconnected subtree.

- Width: maxi |Xi | − 1

- Length: maxi diamG (Xi )

Tree

is the minimum over all treedecompositions.

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 5 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Tree Decomposition

Tree Decomposition

- bags {Xi ⊆ V , i ∈ I}- tree T = (I ,F )

1 every node is in a bag.

2 every edge has its ends in a bag.

3 bags containing a vertex formconnected subtree.

- Width: maxi |Xi | − 1

- Length: maxi diamG (Xi )

Tree

is the minimum over all treedecompositions.

a

b

c

d

e

f

g

da

a c d

a b dd f g

b e

a c d

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 5 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Tree Decomposition

Tree Decomposition

- bags {Xi ⊆ V , i ∈ I}- tree T = (I ,F )

1 every node is in a bag.

2 every edge has its ends in a bag.

3 bags containing a vertex formconnected subtree.

- Width: maxi |Xi | − 1

- Length: maxi diamG (Xi )

Treewidth

tw(G ) is the minimum width over alltree decompositions.

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 5 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Tree Decomposition

Tree Decomposition

- bags {Xi ⊆ V , i ∈ I}- tree T = (I ,F )

1 every node is in a bag.

2 every edge has its ends in a bag.

3 bags containing a vertex formconnected subtree.

- Width: maxi |Xi | − 1

- Length: maxi diamG (Xi )

Treelength

tl(G ) is the minimum length over alltree decompositions.

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 5 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Algorithmic Motivation

Claim

Many problems NP-hard problems become linear or polynomialtime solvable on bounded treewidth graphs:Hamiltonian Circuit, Independent Set, VertexCover...

Theorem [Dourisboure. DISC, 2004]

If tw(G ) = δ then it can be constructed a routing scheme with a6δ − 2 additive stretch and address memory of size O(δ log2 n).

Theorem [Dourisboure,Dragan,Gavoille,Yan. Theor. Comput. Sci.,2007]

If tw(G ) = δ then G has an additive 2δ-spanner (4δ-spanners) withO(δn + n log n) (O(δn)) edges.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 6 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Algorithmic Motivation

Claim

Many problems NP-hard problems become linear or polynomialtime solvable on bounded treewidth graphs:Hamiltonian Circuit, Independent Set, VertexCover...

Theorem [Dourisboure. DISC, 2004]

If tw(G ) = δ then it can be constructed a routing scheme with a6δ − 2 additive stretch and address memory of size O(δ log2 n).

Theorem [Dourisboure,Dragan,Gavoille,Yan. Theor. Comput. Sci.,2007]

If tw(G ) = δ then G has an additive 2δ-spanner (4δ-spanners) withO(δn + n log n) (O(δn)) edges.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 6 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Algorithmic Motivation

Claim

Many problems NP-hard problems become linear or polynomialtime solvable on bounded treewidth graphs:Hamiltonian Circuit, Independent Set, VertexCover...

Theorem [Dourisboure. DISC, 2004]

If tw(G ) = δ then it can be constructed a routing scheme with a6δ − 2 additive stretch and address memory of size O(δ log2 n).

Theorem [Dourisboure,Dragan,Gavoille,Yan. Theor. Comput. Sci.,2007]

If tw(G ) = δ then G has an additive 2δ-spanner (4δ-spanners) withO(δn + n log n) (O(δn)) edges.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 6 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Structural Motivation

Proposition [Chepoi, Dragan, Estellon, Habib, Vaxes. SoCG 2008]

If tl(G ) = δ then G is δ-hyperbolic

A δ-hyperbolic graph G = (V ,E ) has a tree decomposition oflength at most 4(4 + 3δ + δ log2 n) + 1.

Shavitt, Tankel.IEEE/ACM Trans. Netw. 2008

Internet graph can be embedded into a hyperbolic space.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 7 / 27

Introduction Data Source Treelength Treewidth Conclusions Tree Decomposition

Structural Motivation

Proposition [Chepoi, Dragan, Estellon, Habib, Vaxes. SoCG 2008]

If tl(G ) = δ then G is δ-hyperbolic

A δ-hyperbolic graph G = (V ,E ) has a tree decomposition oflength at most 4(4 + 3δ + δ log2 n) + 1.

Shavitt, Tankel.IEEE/ACM Trans. Netw. 2008

Internet graph can be embedded into a hyperbolic space.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 7 / 27

Introduction Data Source Treelength Treewidth Conclusions

Outline

1 IntroductionTree Decomposition

2 Data Source

3 Treelength

4 TreewidthLower BoundUpper Bound

5 Conclusions

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 8 / 27

Introduction Data Source Treelength Treewidth Conclusions

Internet Routing

Router network.

Autonomous Systems.

Border Gateway Protocol(BGP)

Network Next Hop Metric LocPrf Weight Path

*> 192.9.9.0 134.24.127.3 0 1740 90 i

* 194.68.130.254 0 5459 5413 90 i

* 158.43.133.48 0 1849 702 701 90 i

* 193.0.0.242 0 3333 286 90 i

* 144.228.240.93 0 1239 90 i

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 9 / 27

Introduction Data Source Treelength Treewidth Conclusions

Internet Routing

AS1

AS2

AS3

AS4AS5

Router network.

Autonomous Systems.

Border Gateway Protocol(BGP)

Network Next Hop Metric LocPrf Weight Path

*> 192.9.9.0 134.24.127.3 0 1740 90 i

* 194.68.130.254 0 5459 5413 90 i

* 158.43.133.48 0 1849 702 701 90 i

* 193.0.0.242 0 3333 286 90 i

* 144.228.240.93 0 1239 90 i

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 9 / 27

Introduction Data Source Treelength Treewidth Conclusions

Internet Routing

AS1

AS2

AS3

AS4AS5

Router network.

Autonomous Systems.

Border Gateway Protocol(BGP)

Network Next Hop Metric LocPrf Weight Path

*> 192.9.9.0 134.24.127.3 0 1740 90 i

* 194.68.130.254 0 5459 5413 90 i

* 158.43.133.48 0 1849 702 701 90 i

* 193.0.0.242 0 3333 286 90 i

* 144.228.240.93 0 1239 90 i

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 9 / 27

Introduction Data Source Treelength Treewidth Conclusions

Internet Routing

AS1

AS2

AS3

AS4AS5

Router network.

Autonomous Systems.

Border Gateway Protocol(BGP)

Network Next Hop Metric LocPrf Weight Path

*> 192.9.9.0 134.24.127.3 0 1740 90 i

* 194.68.130.254 0 5459 5413 90 i

* 158.43.133.48 0 1849 702 701 90 i

* 193.0.0.242 0 3333 286 90 i

* 144.228.240.93 0 1239 90 i

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 9 / 27

Introduction Data Source Treelength Treewidth Conclusions

Internet Routing

AS1

AS2

AS3

AS4AS5

Router network.

Autonomous Systems.

Border Gateway Protocol(BGP)

Network Next Hop Metric LocPrf Weight Path

*> 192.9.9.0 134.24.127.3 0 1740 90 i

* 194.68.130.254 0 5459 5413 90 i

* 158.43.133.48 0 1849 702 701 90 i

* 193.0.0.242 0 3333 286 90 i

* 144.228.240.93 0 1239 90 i

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 9 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:

Set of monitors.Destinations list.Sends probe packet obtainingconsecutive router links.Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:

Set of monitors.Destinations list.Sends probe packet obtainingconsecutive router links.Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:Set of monitors.

Destinations list.Sends probe packet obtainingconsecutive router links.Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:Set of monitors.Destinations list.

Sends probe packet obtainingconsecutive router links.Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:Set of monitors.Destinations list.Sends probe packet obtainingconsecutive router links.

Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:Set of monitors.Destinations list.Sends probe packet obtainingconsecutive router links.

Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:Set of monitors.Destinations list.Sends probe packet obtainingconsecutive router links.

Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:Set of monitors.Destinations list.Sends probe packet obtainingconsecutive router links.

Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:Set of monitors.Destinations list.Sends probe packet obtainingconsecutive router links.Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:Set of monitors.Destinations list.Sends probe packet obtainingconsecutive router links.Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:Set of monitors.Destinations list.Sends probe packet obtainingconsecutive router links.Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.

AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Traceroute

CAIDA, The CooperativeAssociation for Internet DataAnalysis.http://www.caida.org/

Traceroute:Set of monitors.Destinations list.Sends probe packet obtainingconsecutive router links.Router graph.

BGP tables on RouteViewhttp://www.routeviews.org/

Map each router to its AS.AS graph.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 10 / 27

Introduction Data Source Treelength Treewidth Conclusions

Graph size

Router AS

Monitors 23 13List size 865K 7.4M

|V | 192244 27289|E | 609066 55771

Average degree 6.34 4.09Max. degree 1071 2616

1

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000

CC

DF

Node Degree

Degree Distribution

ASitdk

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 11 / 27

Introduction Data Source Treelength Treewidth Conclusions

Graph size

Router AS

Monitors 23 13List size 865K 7.4M|V | 192244 27289|E | 609066 55771

Average degree 6.34 4.09Max. degree 1071 2616

1

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000

CC

DF

Node Degree

Degree Distribution

ASitdk

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 11 / 27

Introduction Data Source Treelength Treewidth Conclusions

Graph size

Router AS

Monitors 23 13List size 865K 7.4M|V | 192244 27289|E | 609066 55771

Average degree 6.34 4.09Max. degree 1071 2616

1

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000

CC

DF

Node Degree

Degree Distribution

ASitdk

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 11 / 27

Introduction Data Source Treelength Treewidth Conclusions

Graph size

Router AS

Monitors 23 13List size 865K 7.4M|V | 192244 27289|E | 609066 55771

Average degree 6.34 4.09Max. degree 1071 2616

1

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000

CC

DF

Node Degree

Degree Distribution

ASitdk

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 11 / 27

Introduction Data Source Treelength Treewidth Conclusions

Graph size

Router AS

Monitors 23 13List size 865K 7.4M|V | 192244 27289|E | 609066 55771

Average degree 6.34 4.09Max. degree 1071 2616

1

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000

CC

DF

Node Degree

Degree Distribution

ASitdk

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 11 / 27

Introduction Data Source Treelength Treewidth Conclusions

Graph decomposition

Claim

tw(G ) (tl(G )) equals the maximum of treewidth (treelength) overbiconnected components.

Router AS

# Connect. comp. 308 1# Biconnect. comp. 53104 10505Biconnect.comp. size 2 95.3% 99.8%

Biggest biconnected component|V | 132367 16762

68.8% 61.4%|E | 541081 45221

88.8% 81.0%

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 12 / 27

Introduction Data Source Treelength Treewidth Conclusions

Graph decomposition

Claim

tw(G ) (tl(G )) equals the maximum of treewidth (treelength) overbiconnected components.

Router AS

# Connect. comp. 308 1

# Biconnect. comp. 53104 10505Biconnect.comp. size 2 95.3% 99.8%

Biggest biconnected component|V | 132367 16762

68.8% 61.4%|E | 541081 45221

88.8% 81.0%

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 12 / 27

Introduction Data Source Treelength Treewidth Conclusions

Graph decomposition

Claim

tw(G ) (tl(G )) equals the maximum of treewidth (treelength) overbiconnected components.

Router AS

# Connect. comp. 308 1# Biconnect. comp. 53104 10505

Biconnect.comp. size 2 95.3% 99.8%

Biggest biconnected component|V | 132367 16762

68.8% 61.4%|E | 541081 45221

88.8% 81.0%

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 12 / 27

Introduction Data Source Treelength Treewidth Conclusions

Graph decomposition

Claim

tw(G ) (tl(G )) equals the maximum of treewidth (treelength) overbiconnected components.

Router AS

# Connect. comp. 308 1# Biconnect. comp. 53104 10505Biconnect.comp. size 2 95.3% 99.8%

Biggest biconnected component|V | 132367 16762

68.8% 61.4%|E | 541081 45221

88.8% 81.0%

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 12 / 27

Introduction Data Source Treelength Treewidth Conclusions

Graph decomposition

Claim

tw(G ) (tl(G )) equals the maximum of treewidth (treelength) overbiconnected components.

Router AS

# Connect. comp. 308 1# Biconnect. comp. 53104 10505Biconnect.comp. size 2 95.3% 99.8%

Biggest biconnected component|V | 132367 16762

68.8% 61.4%|E | 541081 45221

88.8% 81.0%

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 12 / 27

Introduction Data Source Treelength Treewidth Conclusions

Outline

1 IntroductionTree Decomposition

2 Data Source

3 Treelength

4 TreewidthLower BoundUpper Bound

5 Conclusions

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 13 / 27

Introduction Data Source Treelength Treewidth Conclusions

Treelength

tl(G ) = 1 ⇐⇒ G is chordal.

tl(G ) = 2 ⊇ AT-free graphs, permutation graphs,distance-hereditary graphs.

tl(Ck) = dk/3e.G is k−chordal ⇒ tl(G ) ≤ k/2 + 3.

Treelength Bounds

Router AS

Upper Bound 10 5Lower Bound 3 2

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 14 / 27

Introduction Data Source Treelength Treewidth Conclusions

Treelength

tl(G ) = 1 ⇐⇒ G is chordal.

tl(G ) = 2 ⊇ AT-free graphs, permutation graphs,distance-hereditary graphs.

tl(Ck) = dk/3e.G is k−chordal ⇒ tl(G ) ≤ k/2 + 3.

Treelength Bounds

Router AS

Upper Bound 10 5Lower Bound 3 2

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 14 / 27

Introduction Data Source Treelength Treewidth Conclusions

Treelength

tl(G ) = 1 ⇐⇒ G is chordal.

tl(G ) = 2 ⊇ AT-free graphs, permutation graphs,distance-hereditary graphs.

tl(Ck) = dk/3e.

G is k−chordal ⇒ tl(G ) ≤ k/2 + 3.

Treelength Bounds

Router AS

Upper Bound 10 5Lower Bound 3 2

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 14 / 27

Introduction Data Source Treelength Treewidth Conclusions

Treelength

tl(G ) = 1 ⇐⇒ G is chordal.

tl(G ) = 2 ⊇ AT-free graphs, permutation graphs,distance-hereditary graphs.

tl(Ck) = dk/3e.G is k−chordal ⇒ tl(G ) ≤ k/2 + 3.

Treelength Bounds

Router AS

Upper Bound 10 5Lower Bound 3 2

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 14 / 27

Introduction Data Source Treelength Treewidth Conclusions

Treelength

tl(G ) = 1 ⇐⇒ G is chordal.

tl(G ) = 2 ⊇ AT-free graphs, permutation graphs,distance-hereditary graphs.

tl(Ck) = dk/3e.G is k−chordal ⇒ tl(G ) ≤ k/2 + 3.

Treelength Bounds

Router AS

Upper Bound 10 5Lower Bound 3 2

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 14 / 27

Introduction Data Source Treelength Treewidth Conclusions

Treelength

tl(G ) = 1 ⇐⇒ G is chordal.

tl(G ) = 2 ⊇ AT-free graphs, permutation graphs,distance-hereditary graphs.

tl(Ck) = dk/3e.G is k−chordal ⇒ tl(G ) ≤ k/2 + 3.

Treelength Bounds

Router AS

Upper Bound 10 5Lower Bound 3 2

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 14 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.

2 From bottom, put twovertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer and

exists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L31 L3

3L32

L21 L2

2

L11

L0

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L31 L3

3L32

L21 L2

2

L11

L0

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L31 L3

3L32

L21 L2

2

L11

L0

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering

O(|E |+ |V |)

1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L31 L3

3L32

L21 L2

2

L11

L0

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering O(|E |+ |V |)1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Layer Tree [Chepoi, Dragan. Europ. J. Combin. 2000]

L31 L3

3L32

L21 L2

2

L11

L0

L0

L0 ∪ L11

L11 ∪ L2

1

L21 ∪ L3

1

L11 ∪ L2

2

L22 ∪ L3

1 L22 ∪ L3

2

BFS-Layering O(|E |+ |V |)1 Construct a BFS tree.2 From bottom, put two

vertices in the same bag if

are in the same layer andexists a path of verticesfurther from root.

3 Constructtree-decomposition T (G ).

Theorem [Doursboure, Gavoille.EUROCOMB 2003]

tl(G ) ≤ length(T ) ≤ 3 tl(G ) + 1

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 15 / 27

Introduction Data Source Treelength Treewidth Conclusions

Treelength: Bounds

Router graph AS

BFS-Layer 10 6

MCS - 56δ − 2 58 28

Diameter 19 8

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 16 / 27

Introduction Data Source Treelength Treewidth Conclusions

Treelength: Bounds

Router graph AS

BFS-Layer 10 6MCS - 5

6δ − 2 58 28Diameter 19 8

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 16 / 27

Introduction Data Source Treelength Treewidth Conclusions

Treelength: Bounds

Router graph AS

BFS-Layer 10 6MCS - 5

6δ − 2 58 28

Diameter 19 8

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 16 / 27

Introduction Data Source Treelength Treewidth Conclusions

Treelength: Bounds

Router graph AS

BFS-Layer 10 6MCS - 5

6δ − 2 58 28Diameter 19 8

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 16 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Outline

1 IntroductionTree Decomposition

2 Data Source

3 Treelength

4 TreewidthLower BoundUpper Bound

5 Conclusions

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 17 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth

tw(G ) = 1 ⇐⇒ G is a tree

tw(G ) ≤ 2 ⇐⇒ G has no K 4 as minor (Series parallelgraphs, cycles, outerplanar, . . . )

tw(Kn) = n − 1

tw(grid(n ×m)) = min{n,m}

Treewidth Bounds

Router AS

Lower Bound 372 82Upper Bound - 473

Dijk, van den Heuvel, Slob, Bodlaender.www.treewidth.com

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 18 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth

tw(G ) = 1 ⇐⇒ G is a tree

tw(G ) ≤ 2 ⇐⇒ G has no K 4 as minor (Series parallelgraphs, cycles, outerplanar, . . . )

tw(Kn) = n − 1

tw(grid(n ×m)) = min{n,m}

Treewidth Bounds

Router AS

Lower Bound 372 82Upper Bound - 473

Dijk, van den Heuvel, Slob, Bodlaender.www.treewidth.com

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 18 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth

tw(G ) = 1 ⇐⇒ G is a tree

tw(G ) ≤ 2 ⇐⇒ G has no K 4 as minor (Series parallelgraphs, cycles, outerplanar, . . . )

tw(Kn) = n − 1

tw(grid(n ×m)) = min{n,m}

Treewidth Bounds

Router AS

Lower Bound 372 82Upper Bound - 473

Dijk, van den Heuvel, Slob, Bodlaender.www.treewidth.com

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 18 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth

tw(G ) = 1 ⇐⇒ G is a tree

tw(G ) ≤ 2 ⇐⇒ G has no K 4 as minor (Series parallelgraphs, cycles, outerplanar, . . . )

tw(Kn) = n − 1

tw(grid(n ×m)) = min{n,m}

Treewidth Bounds

Router AS

Lower Bound 372 82Upper Bound - 473

Dijk, van den Heuvel, Slob, Bodlaender.www.treewidth.com

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 18 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth

tw(G ) = 1 ⇐⇒ G is a tree

tw(G ) ≤ 2 ⇐⇒ G has no K 4 as minor (Series parallelgraphs, cycles, outerplanar, . . . )

tw(Kn) = n − 1

tw(grid(n ×m)) = min{n,m}

Treewidth Bounds

Router AS

Lower Bound 372 82Upper Bound - 473

Dijk, van den Heuvel, Slob, Bodlaender.www.treewidth.com

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 18 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth

tw(G ) = 1 ⇐⇒ G is a tree

tw(G ) ≤ 2 ⇐⇒ G has no K 4 as minor (Series parallelgraphs, cycles, outerplanar, . . . )

tw(Kn) = n − 1

tw(grid(n ×m)) = min{n,m}

Treewidth Bounds

Router AS

Lower Bound 372 82Upper Bound - 473

Dijk, van den Heuvel, Slob, Bodlaender.www.treewidth.com

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 18 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth

tw(G ) = 1 ⇐⇒ G is a tree

tw(G ) ≤ 2 ⇐⇒ G has no K 4 as minor (Series parallelgraphs, cycles, outerplanar, . . . )

tw(Kn) = n − 1

tw(grid(n ×m)) = min{n,m}

Treewidth Bounds

Router AS

Lower Bound 372 82Upper Bound - 473

Dijk, van den Heuvel, Slob, Bodlaender.www.treewidth.com

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 18 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Lower Bound

Theorem

For all tree-decomposition of G exists a vertex who has all itsneighbors in the same bags.

Min Degree: tw(G ) ≥ minv∈V (G) d(v)

Theorem

If H is a minor of G then tw(H) ≤ tw(G ).

Maximum Minimum Degree(MMD): Delete vertex ofminimum degree.Maximum Minimum Degree(MMD+): Contract vertex ofminimum degree.

Theorem [Lucena. SIAM J. Disc. Math., 2003]

tw(G ) ≥ maximum over labels on a MCS.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 19 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Lower Bound

Theorem

For all tree-decomposition of G exists a vertex who has all itsneighbors in the same bags.

Min Degree: tw(G ) ≥ minv∈V (G) d(v)

Theorem

If H is a minor of G then tw(H) ≤ tw(G ).

Maximum Minimum Degree(MMD): Delete vertex ofminimum degree.Maximum Minimum Degree(MMD+): Contract vertex ofminimum degree.

Theorem [Lucena. SIAM J. Disc. Math., 2003]

tw(G ) ≥ maximum over labels on a MCS.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 19 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Lower Bound

Theorem

For all tree-decomposition of G exists a vertex who has all itsneighbors in the same bags.

Min Degree: tw(G ) ≥ minv∈V (G) d(v)

Theorem

If H is a minor of G then tw(H) ≤ tw(G ).

Maximum Minimum Degree(MMD): Delete vertex ofminimum degree.Maximum Minimum Degree(MMD+): Contract vertex ofminimum degree.

Theorem [Lucena. SIAM J. Disc. Math., 2003]

tw(G ) ≥ maximum over labels on a MCS.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 19 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Lower Bound

Theorem

For all tree-decomposition of G exists a vertex who has all itsneighbors in the same bags.

Min Degree: tw(G ) ≥ minv∈V (G) d(v)

Theorem

If H is a minor of G then tw(H) ≤ tw(G ).

Maximum Minimum Degree(MMD): Delete vertex ofminimum degree.Maximum Minimum Degree(MMD+): Contract vertex ofminimum degree.

Theorem [Lucena. SIAM J. Disc. Math., 2003]

tw(G ) ≥ maximum over labels on a MCS.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 19 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Lower Bound

Theorem

For all tree-decomposition of G exists a vertex who has all itsneighbors in the same bags.

Min Degree: tw(G ) ≥ minv∈V (G) d(v)

Theorem

If H is a minor of G then tw(H) ≤ tw(G ).

Maximum Minimum Degree(MMD): Delete vertex ofminimum degree.

Maximum Minimum Degree(MMD+): Contract vertex ofminimum degree.

Theorem [Lucena. SIAM J. Disc. Math., 2003]

tw(G ) ≥ maximum over labels on a MCS.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 19 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Lower Bound

Theorem

For all tree-decomposition of G exists a vertex who has all itsneighbors in the same bags.

Min Degree: tw(G ) ≥ minv∈V (G) d(v)

Theorem

If H is a minor of G then tw(H) ≤ tw(G ).

Maximum Minimum Degree(MMD): Delete vertex ofminimum degree.Maximum Minimum Degree(MMD+): Contract vertex ofminimum degree.

Theorem [Lucena. SIAM J. Disc. Math., 2003]

tw(G ) ≥ maximum over labels on a MCS.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 19 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Lower Bound

Theorem

For all tree-decomposition of G exists a vertex who has all itsneighbors in the same bags.

Min Degree: tw(G ) ≥ minv∈V (G) d(v)

Theorem

If H is a minor of G then tw(H) ≤ tw(G ).

Maximum Minimum Degree(MMD): Delete vertex ofminimum degree.Maximum Minimum Degree(MMD+): Contract vertex ofminimum degree.

Theorem [Lucena. SIAM J. Disc. Math., 2003]

tw(G ) ≥ maximum over labels on a MCS.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 19 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Lower Bound

Router AS

MMD 3 2MCS 34 26

MMD+Min-d 218 63MMD+Least-c 372 82

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 20 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)Make NG i−1(v) a cliqueG i = G i−1 − v

end forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

g

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)Make NG i−1(v) a cliqueG i = G i−1 − v

end forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

g

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)

Make NG i−1(v) a cliqueG i = G i−1 − v

end forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

g

a

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)Make NG i−1(v) a clique

G i = G i−1 − vend forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

g

a

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)Make NG i−1(v) a cliqueG i = G i−1 − v

end forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

g

b

a

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)Make NG i−1(v) a cliqueG i = G i−1 − v

end forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

gc

a

b

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)Make NG i−1(v) a cliqueG i = G i−1 − v

end forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

g

e

a

b

c

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)Make NG i−1(v) a cliqueG i = G i−1 − v

end forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

g

da

b

c

e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)Make NG i−1(v) a cliqueG i = G i−1 − v

end forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

g

fa

b

c

e

d

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)Make NG i−1(v) a cliqueG i = G i−1 − v

end forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

gg

a

b

c

e

d f

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)Make NG i−1(v) a cliqueG i = G i−1 − v

end forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

g

a

b

c

e

d f

g

a

b

c

d

e

f

g

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Elimination ordering

Given an elimination orderingπ(1), π(2), . . . , π(n) of nodes.

Fill-in graph G+π

G 0 = Gfor i = 1 to n do

v = π(i)Make NG i−1(v) a cliqueG i = G i−1 − v

end forG+π =

⋃n−1i=0 G i

An elimination order is perfect ifG+π = G .

π : a b c e d f g

a

b

c

d

e

f

g

a

b

c

e

d f

g

a

b

c

d

e

f

g

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 21 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Triangulated Graph

Theorem [70’]

Let G be a graph. The following are equivalent.

G is chordal.

G has a perfect elimination order.

G is the intersection graph of subtrees of a tree, i.e., G has atree decomposition such that each bag is a clique.

Corollary

tw(G ) is the minimum over all

minimal

triangulations of G of themaximum clique minus one.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 22 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Triangulated Graph

Theorem [70’]

Let G be a graph. The following are equivalent.

G is chordal.

G has a perfect elimination order.

G is the intersection graph of subtrees of a tree, i.e., G has atree decomposition such that each bag is a clique.

Corollary

tw(G ) is the minimum over all

minimal

triangulations of G of themaximum clique minus one.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 22 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Triangulated Graph

Theorem [70’]

Let G be a graph. The following are equivalent.

G is chordal.

G has a perfect elimination order.

G is the intersection graph of subtrees of a tree, i.e., G has atree decomposition such that each bag is a clique.

Corollary

tw(G ) is the minimum over all minimal triangulations of G of themaximum clique minus one.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 22 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Triangulated Graph

Theorem [70’]

Let G be a graph. The following are equivalent.

G is chordal.

G has a perfect elimination order.

G is the intersection graph of subtrees of a tree, i.e., G has atree decomposition such that each bag is a clique.

Corollary

tl(G ) is the minimum over all minimal triangulations of G of thediameter (on G ) of a bag.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 22 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Upper Bound

Upper Bound Heuristic

1 Generate a permutation π.

2 Construct G+π .

3 Compute tw(G+π ).

MCS

LexBFS

Minimum Degree : Takevertex with minimumdegree.

Minimum Fill-In : Takevertex that generate lessnew edges.

...

π : c a e b d f g

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 23 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Upper Bound

Upper Bound Heuristic

1 Generate a permutation π.

2 Construct G+π .

3 Compute tw(G+π ).

MCS

LexBFS

Minimum Degree : Takevertex with minimumdegree.

Minimum Fill-In : Takevertex that generate lessnew edges.

...

π : c a e b d f g

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 23 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Upper Bound

Upper Bound Heuristic

1 Generate a permutation π.

2 Construct G+π .

3 Compute tw(G+π ).

MCS

LexBFS

Minimum Degree : Takevertex with minimumdegree.

Minimum Fill-In : Takevertex that generate lessnew edges.

...

π : c a e b d f g

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 23 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Upper Bound

Upper Bound Heuristic

1 Generate a permutation π.

2 Construct G+π .

3 Compute tw(G+π ).

MCS

LexBFS

Minimum Degree : Takevertex with minimumdegree.

Minimum Fill-In : Takevertex that generate lessnew edges.

...

π : c a e b d f g

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 23 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Upper Bound

Upper Bound Heuristic

1 Generate a permutation π.

2 Construct G+π .

3 Compute tw(G+π ).

MCS

LexBFS

Minimum Degree : Takevertex with minimumdegree.

Minimum Fill-In : Takevertex that generate lessnew edges.

...

π : c a e b d f g

a

b

c

d

e

f

g

a c d

a b dd f g

b e

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 23 / 27

Introduction Data Source Treelength Treewidth Conclusions Lower Bound Upper Bound

Treewidth: Upper Bound

Router AS

LexBFS - 912MCS-M - 912MCS - 473

Minimum Degree -Minimum Fill-Inn -

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 24 / 27

Introduction Data Source Treelength Treewidth Conclusions

Outline

1 IntroductionTree Decomposition

2 Data Source

3 Treelength

4 TreewidthLower BoundUpper Bound

5 Conclusions

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 25 / 27

Introduction Data Source Treelength Treewidth Conclusions

Future Work

Compute other parameters.

Better Bounds by

Graph decomposition.Graph Prepossessing.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 26 / 27

Introduction Data Source Treelength Treewidth Conclusions

Future Work

Compute other parameters.

Better Bounds by

Graph decomposition.Graph Prepossessing.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 26 / 27

Introduction Data Source Treelength Treewidth Conclusions

Future Work

Compute other parameters.

Better Bounds by

Graph decomposition.

Graph Prepossessing.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 26 / 27

Introduction Data Source Treelength Treewidth Conclusions

Future Work

Compute other parameters.

Better Bounds by

Graph decomposition.Graph Prepossessing.

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 26 / 27

Introduction Data Source Treelength Treewidth Conclusions

Summary

Router AS

|V | 192244 27289|E | 609066 55771

Average degree 6.34 4.09Max. degree 1071 2616

Diameter 19 8

TreelengthUB 10 5LB 3 2

TreewidthLB 372 82UB - 472

Fabien de Montgolfier, Mauricio Soto, Laurent Viennot Treewidth and Treelength of Internet 27 / 27

top related