university press scholarship online measuring afmcimages...

Post on 19-Jul-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Measuring AFM images

Page 1 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

UniversityPressScholarshipOnline

OxfordScholarshipOnline

AtomicForceMicroscopyPeterEatonandPaulWest

Printpublicationdate:2010PrintISBN-13:9780199570454PublishedtoOxfordScholarshipOnline:May2010DOI:10.1093/acprof:oso/9780199570454.001.0001

MeasuringAFMimages

PeterEaton

PaulWest

DOI:10.1093/acprof:oso/9780199570454.003.0004

AbstractandKeywords

Thischapterprovidesadetailed,step‐by‐stepguidetomeasuringimageswithanAFM.Standardtechniquesforpreparationofawiderangeofsamplesaregiven.Instructionsandtipsoninstrumentalset‐up,opticalalignment,sampleapproachandoptimizationofscanning,makesthisaninvaluablesectionfornewusersandeducators.Forexperiencedusers,theinformationwillhelpthemtounderstandmoredeeplytheprocessofscanningAFMimages,sotheycangetbetter,morereproducibleimages.Additionalsectionscoveroptimizationforhigh‐resolutionmeasurementsandmakingforcespectroscopymeasurements.

Keywords:samplepreparation,guidelines,measurements,imaging

Likealltechniques,AFMrequiressomeskillandpracticetooperatewell,butlearningto

Measuring AFM images

Page 2 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

measureanAFMimageisquiteeasy,andusuallyjusttakesafewhoursofinstructionandpractice.Preparingthesamples,settinguptheinstrumentandscanningtwotothreeimagescantakeonlyhalfanhour.However,ifitisanunknownsamplethatwasneverscannedbyAFMbefore,itcantakesubstantiallymoretimetoacquireusefulimages.InthischapterwediscusstheproceduresthatcanmakemeasuringAFMimageseasier.ThissectiondoesnotreplacetheAFMmanufacturer'susermanual.Detailsspecifictoeachinstrumentcanbefoundinthosedocuments.Instead,hereweshowtheoverallstepsrequiredforscanningarangeofcommonsamples,undertypicalconditions,andhowtooptimizeconditionstogetthebestimages.Thischaptercoversthemostcommonimagingprocedures;itfocusesoncontactmodeandintermittentcontact‐modeAFM(IC‐AFM).Non‐contact‐modeAFMiscurrentlyusedmuchlesswidelythanIC‐AFM,soitisnotexplicitlycoveredhere,buttheimagingprocedureisquitesimilartothatofIC‐AFM.Inadditiontoimagingprocedures,somedetailsonobtainingforce–distancecurvesareincluded,asmanyuserswillalsomeasurethese.Figure4.1showsthemajorstepsinvolvedinmeasuringanimageinanopticallever‐basedAFM.

4.1SamplepreparationforAFMIngeneral,samplepreparationforAFMisverysimple.Forexample,thereisnoneedforthesampletobecoated,electricallygrounded,stained,ortobetransparent,asrequiredforsomeelectronmicroscopictechniques.Somesamples,suchasthinfilms,canrequirenosamplepreparationatall.Othersamples,suchashumancells,orverysmallnanoparticles,mayrequireconsiderablecareinpreparationforthebestresults.The‘rules’forpreparationofsamplesforcontact‐modeAFMcanbesummarizedasfollows:

•Thesamplemustbefixedtoasurface.AFMisasurfacetechnique,soallsamplesrequiresomekindofsubstrate.SomecommonsubstratesforAFMarediscussedbelow.Ifthesampleconsistsof,orincludeslooseparticles,thesemustbeadheredtothesurfacebeforescanning.Ifsomematerialonthesurfaceisnotwellfixeddown,itcanleadtotheAFMtipmovingthematerialaroundonthesamplesurface.Thiscanleadtoa‘sweeping’ofthesurface,eventuallyclearingthesubstrate,withtheparticlesbeingmovedtotheedgeofthescanrange.Thissortofbehaviourisparticularlycommonincontact‐modeAFM,asthetipneverleavesthesurface,anditcanapplyconsiderablelateralforcestothesurface.Evenifthesampleisnot‘swept’inthisway,movingmaterialonthesurfacewillleadtoinconsistentimages,and‘streaking’asthetipencountersparticlesthatarelooseonthesurface.Itisalsocommonforsuchparticlestobetransferredfromthesurfacetothetipundertheseconditions.Thiswill(p.83)

Administrator
Highlight
Administrator
Highlight
Administrator
Highlight

Measuring AFM images

Page 3 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.4.1. ThemajorstepsinvolvedinmeasuringAFMimages.Theoscillationfrequencyonlyneedstobeselectedfornon‐contactorintermittent‐contactAFM.

leadtofurtherinconsistencyintheimages,anditisalsopossibletopermanentlycontaminatethetip,leadingtostrangeartefactsintheimages(seeSection6.1).•Thesamplemustbeclean.Contaminationintheformofparticlesordriedsaltswillmaketheunderlyingstructureveryhardtodiscern.Saltlayersinparticulararehardtodiscernoptically,sothattotheeyesthesampleappearsclean,butthesaltlayerwillpreventimagingofthesamplebyAFMcompletely.MostsamplesimagedinairtypicallyarecoatedwithwhatinAFMisknownasthe‘contaminationlayer’.Thisliquidlayercanbeamixtureofwaterandhydrocarbons.Dependingonthemethodusedtoimagethesample,alightcontaminationlayer(afewnanometres)maynotpreventimagingoftheunderlyingsurface(seeSections3.1and3.2).Athick(>50nm)contaminationlayercancausegreatdifficultinimagingtheunderlyingsample.Anyparticulatecontaminationwillbeimagedalongwiththesample,andcomplicateanalysis.AFMtendstoimageeverythingonthesample,soitisimportanttoremoveasmuchcontaminationaspossible.•Thefeaturesonthesamplesurfacesamplemustbesmallenoughtoscan.AFMisahigh‐resolutiontechnique,andmostinstrumentsaredesignedforsmallsamples.Theverylargestscanrangesareontheorderof150μm×150μminxandy,and28μminz,butamoretypicalconfigurationisamaximumrangeof100μmby100μmorlessinxandy,andzlimitedtolessthan10μm.Thisisthesizeofthelargestscanthat(p.84) canbemade,butmostAFMinstrumentsalsolimitthesizeofthesamplethatcanfitintothesample(sample‐scanninginstrumentsareparticularlylimited).Specificinstrumentswhichallowscanningofverylargesamplesdoexist,however,theywilltypicallyincludeautomatedsample/headmovementtoallowfor

Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight

Measuring AFM images

Page 4 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

scanningofvariousareasacrossalargesample.Suchinstrumentsaretypicallyaimedatindustrialapplications,e.g.scanningofwholesemiconductorwafers.•ThesamplehastoberigidlymountedintotheAFMsamplestage.Asamplethatisnotwellfixeddownwilltendtomovewhilescanning,leadingtodistortionintheimage.Vibrationofthesamplecanalsoaddnoisetotheimage.ThemostcommonsamplemountingforAFMisusingamountingdiskmadeofmagneticstainlesssteel.Thishasthesamplegluedtoit,sometimesusingepoxyadhesive,whichishighlyrigidoncecured,althoughdouble‐sidedadhesivetabsarealsopopularforlessdemandingapplications.Themagneticdiskisplacedinthesampleholder,whichhasamagnetinthecentre.Thisarrangementkeepsthesampleverystable,andgreatlyreducessamplemovementandvibration.Alternativearrangementswhereitisundesirabletouseamagnetunderthesample(e.g.formagneticmodes,orforopticalaccesstothesamplefrombelow),usuallyinvolvesomesortofsprungclipstosecurelyholddownthesample.

Specificsamplepreparationtechniques

ThenumberofdifferenttypesofsamplesthatcanbescannedbyAFMprecludesdescribingeachonehere,butitispossibletogivesometipsonpreparingsomeofthemostcommonlyexaminedsampleshere.

Particulatesamples

Micro‐andnanoparticlesofallimaginablegeometriesandmaterialsareverycommonsamplesforAFM,andimagingofaverywiderangeofdifferentparticleshasbeenwidelydescribed[217,278–284].Oftensuchsamplescomeasanaqueousdispersion.Thefirststepistoensurethesampleisascleanaspossible,especiallyiftheparticlesareverysmall(wheretheeffectofcontaminantsisgreaterinrelativeterms).Wherethedispersionisknowntobeveryconcentrateditshouldbethendiluted.Oftentheidealimagewillfeaturedispersedparticles,sothatthedimensionsoftheindividualcolloidscanbemeasured.Ifthesampleistobeimagedinair,thenthesampleissimplydepositedbydroppingaknownvolumeontoaflatsubstrateandallowedtodry.AlthoughAFMcanoperateeitherinairorliquidenvironments,imagingasamplethatstillretainssignificantamountsofwaterinaircanbeproblematic,thereforeimprovedimagingafterdryingsamplesthoroughlyiscommon[285].Oftendryingsmall(<100nm)particlesontoaflatsurfaceisenoughto‘fix’thenadequatelyforAFManalysis,especiallyforexaminationbyeitherIC‐AFMorNC‐AFM.Forcontactmode,especiallyforlargerparticles,suchaproceduremightnotadheretheparticleswellenoughtothesurface.Inthiscase,itmightbenecessarytohavesomechemicalfixingtothesurface,oruseaspecialsubstrate(seebelow)[286].

Twofactorsinthesamplepreparationmethodthatcanhavedramaticeffectsonthequalityofresultsobtainedarethesolventusedtodispersetheparticles,andthesubstrateused.Waterisgenerallythesolventofchoiceforsuchapplications,asitis

Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight

Measuring AFM images

Page 5 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

convenient,(p.85) non‐toxicandthereareawiderangeofmethodsavailabletoproducehighlypurewater.Itisalwaysworthrememberingthatnotallwateristhesame,however,soforsampleswithverysmallz‐heights(e.g.nanoparticles<20nm,proteins,nucleicacids),verypurewaterisrequired,inorderthatthecontaminantsdonotmaskthesample.ExamplesoftheeffectsofdifferingwatergradesareshowninFigure4.2.Ifverycleansolutioncannotbefound,itmaybeadvantageoustofindawaytoadheretheparticlestothesurface,whichcouldbeviasilaneorpolycationmodification[287–289],followedbywashing,althoughthishasthedisadvantageofincreasingsubstrateroughness[290].SubstratesforAFMarediscussedinSection4.1.1.

Ifitisdesiredtoimageadrypowderwithoutdissolvinginaliquid,anumberoftechniqueshavebeendescribedtoimmobilizeparticles.Onetechniqueistoimmobilizelargeparticlesinafilterorsimilarporoussubstrate[291].Thiscanleadtotheparticlesbeingsufficientlyfixedtobeabletoscanthem,andthetopoftheparticlewillbeavailabletoscan,butthefullheightoftheparticleswillnotbemeasurable.Analternativeistoscatterthepowderonanadhesivesurface,suchasaflatsubstratewithathinlayerofglue.Ideallythegluewillbecross‐linked/driedafterthepowderisapplied,toavoidcontaminationoftheAFMtip.Othersystemsthatcanworkwellwithsuchsamplesincludepoly‐l‐lysinecoatedglass,andthinlayersofwax,towhichthesampleisappliedwhilethewaxissoft(atelevatedtemperatures),andwhichsolidifiesoncooling[286].Forverysmallparticles(<20nm),manychemicalmodificationsofthesubstratesurfaceproduceasurfacethatistooroughforquantitativemeasurements.Insuchcases,depositionfromultra‐purewaterontomicaorHOPGisthebesttechnique.Alternatively,somemicatreatmentshavebeendescribedthatincreasetheroughnessonlyslightly[290].

Polymers

Polymersamplescomeinawidevarietyofforms.Solidsamplesmayrequirenopreparationotherthancuttingtosizeandcleaning.PreparationofpolymerfilmsforAFMisalsosimple,andmaybedonebycasting,spincoating,spreading,self‐assembly,dipcoatingetc[146,292,293].Typicallysuchfilmsaredepositedonglassslides,asthereisnorequirementforveryflatsubstrates.

Fig.4.2. Exampleoftheimportanceofcleansolvent:imagesofaveryflatsubstrate(mica)afterdepositionofdropsof‘pure’water,followedbydrying.Left:tapwater.Middle:deionized,filteredwater.Right:commercialultra‐purewater.Allimagesare2μm×2μm,z‐scale4nm.

(p.86) Biomolecules–DNAandproteins

Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight

Measuring AFM images

Page 6 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Oligonucleotides,especiallyDNAareverypopularsamplesforbiologicalAFMstudies.DNAisusuallydepositedonmica[294],althoughHOPGhasalsobeenused[295,296].Thenegativechargeofas‐cleavedmicaisadisadvantageforthisapplication,asDNAIsalsousuallynegativelycharged.Typicallythisisovercomebytreatmentofthemicawithasolutioncontainingdivalentcations,ordepositionorimagingoftheDNAinasolutioncontainingsuchcations(typicallyMgCl2orNiCl2containingbuffers)[297–299].Alternatively,aproceduretobindoligonucleotidestomicawiththeaminosilaneAPTEShasbeenthoroughlydescribed[300].Theprocedureshouldbefollowedcarefullysothatthisdoesnotincreasetheroughnessofthesurface.Aswitholigonucleotides,micaisthemostcommonlyusedsubstrateforproteinabsorption[294,301,302],butHOPGcanalsobeused[303].Again,divalentcationsarecommonlyusedtoencourageproteinbindingtomica,iftheproteinsarenegativelycharged[301,304].Thepresenceofmonovalentcationsinthebuffersolutioncancompetewiththedivalentcations,andpreventtheadhesionofanumberofproteinstomica[305].Othermethodstofixproteinsontomicaincludecovalentbinding,althoughthismaychangetheproteinstructuresomewhat[306],andformembraneproteins,insertionintoalipidlayerisaverysuitablestrategy[307,308].

Cellcultures

CulturedcellsaretypicallygrownonsomesortofsupportsuchasaPetridishorglassmicroscopeslide[309],tobedirectlymountedintotheAFM.Wheretheinstrumentdoesnotsupportsuchlargesubstrates,microscopeslidesmaybesimplycuttosize,orsmallcoverslipsused[310].Cellsmaybefixedanddriedbeforeanalysisorimagedinsitueitherincellculturemedium,orinafilteredbuffersolution.Incombinationwithtemperaturecontrol,suchapreparationcanleadtotheabilitytoimagelivecells[309–311].

Bacteria

BacterialcellsarecommonsamplesforAFM,seeSection7.3.2.Typicallyforimaginginair,bacteriaaretransferredtoacleanbuffer,driedontoasurfaceandextensivelywashed[169,312].Forimaginginliquid,severalprocedurestoadherethecellstothesubstratehavebeendescribed[302,313].Withoutthesetreatments,thecellswillnormallyberemovedbytheprobewhilescanninginliquid.Immobilizationstrategiesincludetheuseofgelatincoatedmicatomechanicallytrapbacteriaonthesurface[6].Thishastheadvantageofnotinducingchemicalchangesinthecells,ascouldbethecaseforbindingthecellstothesubstratewithpoly‐l‐lysineorotherchemicaltreatments[184,314,315].Anothertechniquethatmightreducethechangescausedtothebacteriaisallowingtheformationofabiofilmonthesubstratesurface[184,316].Forthosebacteriawhichdoformbiofilms,thisisthebestwaytoadherethemtoasurfaceforimaginginliquid.Forsphericalcells,physicalimmobilizationinasolidsubstratewithholes(suchasamembraneorlithographicallypatternedsurface)hasbeenreportedtobeverysuccessful,althoughthisisnotappropriateforrod‐shapedbacteria[317].

Nanotubes

Administrator
Highlight

Measuring AFM images

Page 7 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Carbonnanotubes,nanowiresandwhiskersareasubsetofnanoparticles.Theseparticlesarenormallyproducedinlargequantitiesaspowdersoraregrowndirectlyonasubstrate.(p.87) TypicallyoneoftwomethodsisusedforpreparingnanotubesamplesforAFMimaging:catalystgrowthordeposition.Catalystgrowthisthebestmethodforcreatingacleansampleforstudyingtheuniquepropertiesofsingle‐wallnanotubes.WhenpreparingcarbonnanotubesamplesforAFMimagingwithdeposition,itisimportanttouseadispersant.Verydiluteddispersantsuspensionsofcarbonnanotubesarespincoatedonasiliconwaferorotherflatsubstrate,rinsedthoroughlywithwater,andthendriedinair.Anycommercialspin‐coatermaybeused.

Othersolidsamples

Metalsorothersolidsamplesmaybeimagedwithlittleornosamplepreparation.Cleaning(especiallydegreasing)canberequiredforsomesamples,andlargesamplesmayneedtobecuttosize.ThelackofsamplepreparationformostsolidsamplesisagreatadvantageofAFM,andmeansoverallimagingspeedwithsuchsamplescanbehigherthanforelectronmicroscopy.Aswithothermicroscopytechniques,polishingisrequiredinordertoobservemetalgrains[318].

4.1.1SubstratesforAFM

WhenpreparingsamplesforAFM,especiallyparticulatesamples,asubstratemustbechosenonwhichtomountthesamples.Inthecaseofverylargesamples,orveryconcentratedpreparations,thenatureofthesubstratecanbeunimportant,butformanycases,itiscrucialforcorrectsamplepreparationandgoodresults.Thisisparticularlyimportantforhigh‐resolutionwork,andlookingatindividualmoleculesinparticular,forwhichanatomicallyflatsubstrateisusuallyrequired.Forimagingoflargerfeatures,asubstratewithahigherroughnesscanbeadequate.Aswellastheroughness,thechemicalnatureofthesubstratecanbeimportant.Theintrinsicnatureofthesubstrateisimportantindeterminingwhetherparticularsamplesadherewell,andinaddition,ifsubstratetreatmentisrequiredsomesubstratesareeasiertomodifythanothers.Forexample,highlyorientedpyroliticgraphite(HOPG)isacommonlyusedsubstratethatisverysimpletoobtaininatomicflatness.Thisisbecause,alongwithmica,itisalayeredmaterialthatiseasilycleaved.Cleavingsuchmaterialsexposesatomicallyflatfaces,completelyfreeofcontamination.However,chemicalmodificationofHOPGisnotsimple.Ontheotherhand,goldisahighlystablematerialthatisextremelysimpletomodifychemically,butwhileitispossibletoproduceextremelyflatsurfaceswithit,itisconsiderablymoredifficultthanforHOPGormica.Table4.1summarizessomepropertiesofcommonlyusedsubstratesforAFM.

4.2MeasuringAFMimagesincontactmodeAsshowninFigure4.1,aftersamplepreparationandplacingthesampleintheinstrument,thenextstepistoinsertaprobeintotheAFM.Itispossiblethataprobewillalreadybeinserted,butwhenbeginningwithanewsetofexperiments,anewprobeisusuallyinserted.Greatcaremustbetakenwhenhandlingthecantileverchipsastheyareverysmallandverydelicate.Acleanpairoftweezerswithflattipshelps.Usuallytheprobeholderwillhaveaslotforthechipandhavesomesortofsmallspringorcliptohold

Administrator
Highlight
Administrator
Highlight
Administrator
Highlight

Measuring AFM images

Page 8 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

itin(p.88)

Table4.1.PropertiesofsomecommonlyusedsubstratesforAFM.Material Preparation Roughness Commonsamples Notes†

Mica cleaving <Å(atomicallyflat)

All,especiallysinglemolecules[319,320]

Cleavedmaterial,soverystableinstorage.Hydrophilic[294,305]

HOPG cleaving <Å(atomicallyflat)

All,especiallysinglemolecules[295]

Cleavedmaterial,soverystableinstorage.Conductive.Hydrophobic[321]

Silicon None*oronlyoxideremoval

<Åtoafewnm[322]

Lithography,electronicapplications

Oftenthebestchoiceforconductingapplications[251,256,323]

QuartzorGlassslides

None* 1–10nm Largersamplesorfilms,commonlyusedforcells[302]

Notespeciallyflatbuteasytoworkwithandcheap[324]

Gold Flameannealingor

<Åtoafewnm

Chemicallymodifiedsurfaces

Easytochemicallymodify;largeatomicallyflatterraces[325–327]

templatestripping

<Åtoafewnm

Chemicallymodifiedsurfaces

Easytochemicallymodify;likecleavedmaterialshighlystableinstorage[328–330]

(*)Usuallyonlycleaningisrequired.

(†)Useofeachofthesesubstrateshasbeendescribedmanytimes;representativereferencesaregivenhere.

(p.89) place.Toallowformanufacturingdifferencesandtheuseofdifferentlengthcantilevers,thereisusuallysomeroomformanoeuvreinwhereyouplacethechip,usuallyjustafewhundredmicrometres.Itisnotpossibletoputthechipinthesameplaceeachtimebyhand,andevenafewtensofmicrometreswillcompletelychangetheopticalalignmentrequired.Itissensiblethereforetofindapositionthatworksandstickwithit,inthiswaytherealignmentonchangingtheprobewillbeminimal.Someusersfindthatplacingthechipagainsttheedgesoftheslotcangiveincreasedstabilityandmorereproducibilityofthechipposition.Somealternativeinstrumentdesignsuseeitherpre‐mountedcantileversonlarger‘cartridges’,oralignmentgrovesmachinedintothecantileverchipstohelpinplacingthechip,butmostrelyonthemanualinsertionapproachdescribedabove.

4.2.1Opticalalignment

Afterplacingtheprobeintheinstrument,thealignmentoftheopticalleveriscarriedout.Thisisdoneintwostages.Firstly,thelaserspotisadjustedontotheendofthecantilever.Therewillusuallybetwoscrewstoadjustforthis,onetomovethelaserparalleltothecantileveraxis,andtheotherperpendicular.Theexactprocedureforthealignmentcandiffersomewhatfrominstrumenttoinstrument,dependingontheviewthe

Measuring AFM images

Page 9 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

userhasofthecantileverandlaserspotontheopticalinspectionscope.Theusermusttakecarenottolookdirectlyintothelaserbeam,asitcaneasilydamagetheeyes.Visualizationofthelaserspotcanbedonebyplacingapieceofwhitecardorpaperinthepathofthelaser.AgeneralprocedureforalignmentofthelaserbeamisshowninFigure4.3.Figure4.3showstheprocedureforbeam‐shapedcantilever.Forv‐shapedcantilevers,theprocedureisverysimilarbutatsteps4–5thelaserspotispositionedbetweenthecantileverlegs.

Fig.4.3. Laseralignmentprocedure.

(p.90) ProperalignmentofthelaserisveryimportantinordertoobtainbestresultsfromtheAFM.Pooralignmentmayreducethesensitivityoftheopticallever,couldintroduceimagingartefactsorpreventimagingaltogether.Forexample,laserlightspillingovertheedgeofthecantilevermayreflectoffthesample,andinterferewiththelaserlightreflectingoffthecantilever,seeSection6.6.2.Thehighestsensitivityisgenerallyobtainedwiththelaserspotcentredoverthepositionofthetip,thatis,veryclosetotheendofthecantilever,andinthecentre(asshowninFigure4.3bypoint7).Onetricktocheckthelaserisnotontheedgeofthecantileveristoobservethebeamprofilewithwhitepaperasdescribedabove;theedgeofthecantileverwillchangetheshapeofthelaserbeamspotonthepaper.

Havingalignedthelaserontothecantilevercorrectly,itmustthenbecorrectlyalignedwiththephotodetector.Todothisthephotodetectoristranslateduntilthelaserspotiscentrallylocatedonthefoursegments,asshowninFigure3.4.SometimesthereisavisualdisplayofthephotodetectorintheAFMsoftware,andsometimesjustanumericdisplayofthesignalsfromthephotodetectorsegments.Inbothcases,theaimisthesame,togetthelaserspottothecentreofthedetector,i.e.toequalizethesignalsfromallfoursegments.Thisisarathersimilarprocesstothelaseralignment,andtheonlycomplicationcomeswhenthespotiscompletelyoffthedetector,inwhichcasetheusermightnotknowwhichwaytoturnthescrews.Ifthisisthecase,theusersimplyturnsthedetectortranslationscrewallthewayinonedirection,andthenallthewayintheotheruntilthealignmentisfound,beingcarefulnottoapplytoomuchpressuretothescrewswhentheendofthemovementisreached.Inaddition,oftenathirdcontrolisinsertedintheopticalpath,whichcontrolsamirrorbetweenthecantileverandthephotodetector.Thiscontroldirectlyrotatesthemirror,andservesasacoarse

Measuring AFM images

Page 10 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

adjustmentforthephotodetectoralignment.ThiscontrolisshowninFigure4.4.Innormalday‐to‐dayoperationoftheAFMinair–forinstance,whenexchangingoneprobewithasimilarone–theadjustmentofthiscontrolisnotrequiredduringtheopticalalignmentprocedure.Therearetwocommonreasonswhythecontrolmightneedtobeadjusted.Themostcommonreasonforneedingtoadjustitisthatwhenchangingfromairtoliquidoperation,therefractionofthelaserattheliquid

Fig.4.4. FullopticalsystemforopticalleverAFMs,showingthevariousadjustmentsrequiredforopticalalignment(indicatedbyarrows).

(p.91) cell'sglasswindow/liquidinterfaceconsiderablyaffectsthealignmentontothephotodetector.Typically,theeffectofthisisthatinoneoftheopticalaxes,thelaserspotwillmovesofarthatthephotodetectortranslationscrewscannotmovethedetectorfarenoughtoaccountforthiseffect.Inthiscase,asmalladjustmentofthemirrorcancorrectfortherefraction,andallowsimplealignment.Becausethemisalignmentbytherefractionaffectstheopticalalignmentofthephotodetectorinonlyoneaxis,itisoftenusefultocarryouttheopticalalignmentinairfirst,andthenaddtheliquid,followedbyadjustmentofthecoarsecontrol,particularlyifviewingthecantileverwhenliquidfillsthecellismoredifficult.Thismakesadjustmentofthecoarsecontrolfarsimpler,asasmallchangetothiscontrolchangesthealignmentdrastically,andsoitcanbetrickytoadjustwithoutaprioralignment.Thesecondsituationinwhichthecoarseadjustmirrormightneedtobeadjustediswhenaverylargerealignmentofthephotodetectorisrequiredbecausethelaserspotisinadramaticallydifferentposition.Thiscanbethecasewhenchangingfromashortprobetoaverylongoneorviceversa.

4.2.2Selectinitialsettingsandprobeapproach

Oncetheprobeandopticalalignmentaredone,thenextstepistoinitiateaprobeapproach.AsdescribedinSection2.2.4thewoodpeckermethodisusuallyusedforasafeapproachtothesample,andtomoveintofeedback.Dependingontheinstrument,theautomatedprobeapproachmaybequitefastorquiteslow.Therelevanceofthisisthataninstrumentthatapproachesveryquicklycanbesettoapproachfromagreatdistance,e.g.1millimetre,withouttakingtoomuchtime.Someinstrumentsapproachextremelyslowly,andwilltakeseveralminutestoapproachadistanceofonly100micrometres.Inthiscase,theprobemustbemovedclosetothesamplemanuallyinordernottowastetoomuchtimewaittngfortheautomaticapproach.Thismustbedonecarefullyinordertoavoiduncontrolledtip–samplecontact.Themethodtodothisvaries,butgenerally

Measuring AFM images

Page 11 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

involvesusingtheinspectionmicroscopetoalternatelyfocusontheprobeandsamplesurfaceinordertojudgetheirdistancefromoneanother.Moreautomatedinstrumentscanperformeventhiscoarseapproachprocedureautomatically.Beforetheautomaticapproach,theinitialscanningparametersshouldbechosen,includingscansize,scanningspeed,gains,andset‐point.Forcontactmode,theset‐pointisameasureofthedeflectionofthecantilever,andthusameasurementofthetip–sampleforce.However,theAFMinstrumentwilltypicallyshowneitherthetruedeflection(innm)northeforce(nN),buttherawsignalfromthephotodetector(inVorA).Thus,itcanbesomewhatdifficulttoknowwhatinitialset‐pointtouse.Itisbesttousethesmallestpossiblevalueasaninitialstep.However,duringapproachtheactualdeflectionmightvarysomewhatduetothermaldrift,long‐rangetip–sampleinteractionforcesorothereffects.Iftheset‐pointistoolow,suchvariationswillgiverisetoa‘falseengage’wheretheinstrumentthinksthecantileverisonthesurface,andthefeedbackisengaged,buttheprobehasnotyetreachedthesurface.Ifsuspected,falseengagecanbecheckedforbyacquiringaforcecurve–ifthecurveisnothinglikeFigure3.2,falseengageislikely.Anotherwaytocheckforafalseengageistowatchtheerrorsignal(deflectionsignal)astheprobeapproachesthesample.A‘true’engageshouldshowa‘jump’totheset‐pointtheuserchose.Slow,gradualmovementtowardstheset‐pointismorelikelytocomefromthermallyinducedbendingofthecantilever.Thus,it'sbesttoselectaset‐pointsomewhatgreaterthanthecantilever(p.92) deflectionvalue,withsomeroomforfurtherdeflectionbeforethecantileverreachesthesurface.Theset‐pointmaybefurtherreducedifnecessaryonceonthesurface.Onceinitialparametersarechosen,andtheprobeisrelativelyclosetothesurface,anautomatedapproachiscarriedout.Notethatincorrectapproachcaneasilydamageatip,anexampleofwhichisgiveninFigure4.5.Someinstrumentsallowadjustmentoftheautomaticapproachparameters,suchasfeedbackvaluesduringapproach,orapproachspeed.Theseshouldbechangedonlywithcaution,asthekindofdamageshowninFigure4.5caneasilyresultfromusingthewrongparameters.

4.2.3Optimizingscanconditions

OptimizingthescanningparametersforthebestpossibleimagequalityandmostaccurateimagesisprobablythemostimportantstepinAFMdataacquisition.Often‘standard’parametersareusedinitiallyfortheapproach,andsuchnumbersmightbeprovidedbytheinstrument'smanufacturer.However,thesevalueswillrarely,ifever,besuitabletoobtainedgoodimages.Thewiderangeofpossiblesamples,scanningenvironments,andevenprobemanufacturingdifferencesmeansthatdifferentparametersareusedfornearlyeveryscanningsession.Themethodtooptimizetheparametersisaniterativeone.Theparametersarechangedinsteps,oneatatime,untilthetipisproperlyfollowingthesurface,andisgivingatrueimageofthesample.Oncetheoptimalparametersaredetermined,ifthesampleishomogeneous,andtheinstrumentstable,theoptimizedparametersmightbesuitableforvariousimagesonthesamesample.Changingtoasimilarsamplewiththesameprobeusuallymeanssmalladjustmentsarenecessary,againreachedviaaniterativeprocedure.Althoughittakesawhiletofullymasterthisprocedure,followingthemethodoutlinedinthischapterwillallowoptimizationofscanningparametersinafewminutes.

Measuring AFM images

Page 12 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.4.5. Examplesofprobedamageonapproach.Left:SEMimageofsharpprobeandanAFMimagemeasuredwiththesharpprobe.Right:SEMimageofdamagedprobeandanAFMimagemeasuredwiththedamagedprobeonthesamesample.

(p.93) Whenscanningthesamplebegins,itisusefultoseealine‐scan(atwo‐dimensionalplotofthesignaltheinstrumentisrecording).Often,theheightdata,aswellasthez‐errorsignal(incontactmode,thecantileverdeflection)canbeshown,andsometimesbothforwardandreversesignalsareshown.ThefunctionoftheAFMsoftwarethatdisplaysthesesignalsissimilartoanoscilloscope,soitissometimesreferredtoastheoscilloscopewindow.Thiscanbeextremelyusefulforoptimizationofscanning.Asforwardsandbackwardsscanninglinesmeasure(almost)thesamepartsofthesample,evenwhentheslowscanaxisisenabled,thetwoheighttracesshouldcoincide.Largedifferencesbetweenforwardsandbackwardstracesareanimmediateindicationthatsomethingisnotrightwiththescanning.Thereareanumberofpossiblereasonsforforwardsandbackwardstracesnotmatchingbutthemostcommonreasonisthatimagingparameters(gains,set‐point,andscanningspeed)arenotyetoptimized.AnexampleofthesignalsshownbytheoscilloscopewindowisshowninFigure4.6,illustratingtheeffectofdifferentfeedbacksettingsontheresultsobtainedonasimplesample.Forclarity,onlyresultsfromonedirectionareshown.

IftheAFMprobeisscanningoverthesampleinthenormalrastermotion(asshowninFigure2.22),thefeaturesintheoscilloscopewindowwillofcoursekeepchanging.Itcanbeextremelyhelpfultohavetheprobescaninalineoverthesample,withoutmovingintheslowscanaxis.Usually,thesoftwarewillhaveanoptiontodothis,anditisoftenthebestwaytoadjustthescanningparametersastheireffectonthescanningcanbeseendirectlywithoutinterferencefromchangesinsampletopography.Itishighlyrecommendedthattheline‐scanoptionisusedifdifficultyarisesinsettingthegains,etc.Afteroptimization,thentheslowscanaxismovementcanbere‐enabledandtheimagequalitychecked.WhenfirstlearningtooperateanAFM,itishelpfultoscanatestsampleandseetheeffectofthefeedbackparametersontheheight(zvoltage)anddeflectionsignals.Suchasamplehasaverysimple,reproducibletopography(usuallyaseriesofsquarepitsorposts),soitiseasytoseewhenthescanningparametersareperfect.Animageofsuchasample,withtheeffectofvaryingthefeedbackparametersisshownin

Measuring AFM images

Page 13 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Figure4.7.SomeusefulteststructuresarediscussedinAppendixA.

Thegeneralproceduretousetoadjustscanningparametersisasfollows.

1.Increasefeedbackgains(PIDvalues)stepbystep,observingforthestartoffeedbackoscillation(thefine‐structurednoiseseentowardsthebottomofFigure4.7).Typically,theintegralgainisincreasedfirst,andthentheproportionalgainadjustedinapproximatelythesameproportion.2.Whenfeedbackoscillationoccurs,reducethegainsagain,untilitdisappears.Theoptimalvalueisthehighestgainsettingyoucanusewithoutaddingfeedbacknoisetotheimage.3.Whengainsareoptimized,adjusttheset‐point.Ideallywewouldusetheminimumvaluetokeeptheprobeonthesurface,inordertoreduceprobewear.However,sometimesagreaterforceisrequired.4.Thegainsmayneedtobeoptimizedagaintoaccountforchangeinset‐point.5.Adjustscanspeedifdesired.6.Gainsandset‐pointmayneedadjustingoncemoretotakeaccountofchangeinscanningspeed.

(p.94)

Fig.4.6. Theeffectofdifferentfeedbacksettings.Themotionoftheprobeoverasimplesample,resemblingacalibration/testgrid(left),andtheoscilloscopewindowshowingdeflection(z‐error)andheightinformation(right).NotethatfeedbackinAFMisneverinstantaneous,sothebottomexamplestillshowssomeimperfections.

Notethatgain,speed,andset‐pointareallrelated.Atlowscanspeeds,lowgains,andlowset‐point(lowappliedforce)maybeadequate,butfasterspeedstypicallyrequirehighergains,andmightrequirehigherset‐point.

Measuring AFM images

Page 14 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

4.2.4Choosingscansizeandzooming

Ifthesampleisheterogeneous,andcertainfeaturesmustbescanned,normallyithelpstostartwithalargescanofthearea,andthenzoomtothefeatureofinterest(seeFigure4.8).ZoomingdirectlyintofeatureswithAFMworkswellforinstrumentswithscanlinearization(seeChapter2).Withnon‐linearizedscanners,itisbesttozoomin‘gradually’,byzoomingtonothanlessthan50%ofthecurrentimagesizeatatime.Thus,severalzoomsmayberequiredtofindtheregionofinterest.

(p.95)

Fig.4.7. Imageofatest/calibrationsampleshowingtheeffectofchangingthegainsettingsduringscanning.Theheightimageisshownontheleft,andtheshadedheightisontheright,whichshowsthefinedetailsoftheeffectsofthegainsettingsmoreclearly.

Fig.4.8. Exampleofzoomingtofeature.Selectingafeatureofinterestintheleftimagegivestheimageatright.

4.2.5OthersignalsandmeasuringLFMimages

Whenscanningisoptimizedtheusermaychoosewhichsignalimagestosave.Theuserwillalwayswanttosaveaheightimage,whetherfromzscannervoltageorzsensordata,asitistheonlysignalwithafullycalibratedzscale,fromwhichtheusercanmakeheightmeasurements.Theerrorsignal(cantileververticaldeflectionsignal)imagecanbeusefultoappreciatequicklytheshapeofthesample,aswellastospotareaswheretheheightsignalisinvalid(areasoflargeorunchangingerrorsignal).Someresearcherspublishtheerrorsignal;oftenitisasimplewaytodisplayfeaturesatdifferentheightsinthesameimage.Thelateraldeflectionsignalmayormaynotbeuseful.Onmanysamples,thelateraldeflectionsignalwillshownomoredetailsthantheverticaldeflectionsignal.ThisisbecauselateraltwistingofAFMcantileversismuchlesssensitivethanverticalbending[77].However,ifthereisarequirementtorecordthelateraldeflection(forexample,iffrictioncontrastisexpectedinthesample),itissimplyamatterofselectingthesignalto

Measuring AFM images

Page 15 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

besaved.Unliketheotherchannels,forwhichforwardsandbackwardssignalsshouldbeequivalent,itcanbeworthwhilerecordingbothforwardandbackwardslateraldeflection(p.96) signals.Thisisbecause,asshowninSection3.1.1,comparisonofforwardandbackwardslateralforcesignalscanhelptodistinguishtopographicalfromfrictionaleffectsontheLFMsignal.Itisalwaysworthrememberingthattip–samplefrictionandthuslateraldeflectionwilldepend,amongotherfactors,onthenormalforceappliedbythetiptothesample,i.e.greaterset‐pointswillgivegreatercontrastintheLFM.SomeexamplesofLFMmeasurementsareshowninChapter7(Section7.1.4),illustratingthedifferencebetweenforwardandbackwardsLFMsignals.IftheuserwishestoobtainquantitativefrictionmeasurementsfromLFM,thereareanumberofcalibrationissueswhichmustbeaddressed[331,332].WhilecalibrationofnormalforcesisanissuewhichpotentiallyimpactsonallAFMmeasurements,calibrationoflateralforcesisonlyimportantforquantitativeLFM.Despitethis,alargeamountofworkhasbeen,andstillisbeingdoneinordertounderstandhowsuchacalibrationcanbemade[331–336].Thisisbecausethetipshapeandradius,thecantilevertwistingforceconstant,andtheopticalleversensitivitymustallbecalibratedintoordertofullyunderstandtheLFMsignal.Also,unlikenormaldeflectionthereisnosimple‘built‐in’methodtoinducealateraldeflectionofthecantileverintheinstrument,makingtheopticallevercalibrationmorecomplicated.

Oneofthefirstmethodstobeproposedforlateralforcecalibration,andprobablythemostwidelyusedwasdescribedbyOgletreeetal.in1996[77].TheOgletreemethod(alsoknownasthe‘wedge’method)hasaconsiderableadvantageoversomeothersinthatitsimultaneouslycalibratesthecantilevertwistingconstantandopticalleversensitivity.Themethodinvolvesusingcalibrationsampleswithknownslopestoinduceafixedlateralforceatthetip–sampleinterface.Bycomparinglateralforcesignalsindifferentdirectionsandatdifferentnormalforces(deflectionset‐points),alateralcalibrationfactorwhichenablesmeasuringthetip–samplefrictionforceinnewtonspervoltcanbeobtained.Thismethod,alongwithimprovedversionsusingsimplermaterialshasbeenwidelydiscussedintheliterature[331,333,337].Othermethodstocalibratethelateralfrictionconstantincludepushingthecantileveragainstapiezoelectricsensor[335],measuringstaticfriction[336],quantitativecomparisonwithasimilarleverthat'spressedagainstaside‐wallwhilethebendingmeasured[331],numericalmethods[61]andothers[338,339].

4.3MeasuringAFMimagesinoscillatingmodesMeasuringimagesinoscillatingmodesisingeneralverysimilartomeasuringimagesincontactmode,withjustafewdifferences.Firstlyanon‐contact/intermittent‐contactprobeisused,usuallywithamuchhigherspringconstant,andhigherresonantfrequency.OnepracticalconsiderationhereisthatIC‐AFMprobesareevenmorefragileandeasytobreakthancontactprobes.Acontactprobecansometimessurviveacrashintothesample,astheyareveryflexible,butintermittent‐contactprobesnearlyalwaysbreakwhenthishappenssoevenmorecaremustbetakenwiththem.

Theopticalalignmentprocedureisidenticalforthetwotechniques.However,oncetheintermittent‐contactprobeisloadedandaligned,theoperatingfrequencymustbe

Measuring AFM images

Page 16 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

selected.Thisissometimesdoneviaanautomatedroutine,butoftenitismanual.Automatedroutineswillusuallyrequirethattheuserenteranupperandlowerboundaryforthepossibleresonancefrequency,andwillthenassumethattherewillbeonepeakwithinthat(p.97) frequency.Theautomatedroutinescannotcopeundercertainconditions,soitisimportantthattheuserknowshowtomanuallyselectthefrequency.Thisisdoneviaa‘cantilevertuning’windowintheAFMsoftware.Thisprogramsweepstheoscillationfrequencyofthedrivingpiezoupanddownoverafixedfrequencyrangeanddisplaystheamplitudeofoscillationateachpoint.Theusershouldhavesomeideaofthenaturalfrequencyofthecantilever,sothestartandendoftherangetotestininputtedtothiswindow.Thisinformationissuppliedbythecantilevermanufacturer,andtypicallycoversquiteabroadrange(e.g.200–400kHz).Withinthisrange,thecantilever'soscillationshouldbevisibleasasingle,strongpeak.Thepresenceofmultipleormisshapenpeaksinthefrequencyspectrumisanindicationthatsomethingiswrong.Theprobecouldbedamagedornotfixedcorrectlyintheprobeholder.Oncethepeakislocated,typicallytheusershouldzoomintotherelevantpartofthefrequencyspectrumtovisualizethepeakmoreclearly.AnexampleoftheviewofacantilevertuningwindowisshowninFigure4.9.

Itcanbeseenthattheinstrumentoftenshowsnotonlyoscillationamplitudeversusfrequency,butalsooscillationphaseversusfrequency.Asshownhere,thephasechanges180°–being90°outofphaseattheamplitudemaximum,thegreatestslopeinthephasecurvecoincidingwiththemaximumintheamplitudecurve.ThemeaningoftheseplotsisalsoillustratedinFigure4.9.Theresonantfrequencyrepresentsthepointatwhichtheamplitudeismaximum,whilethephaseoftheoscillationofthecantilevermatchestheappliedphase(θ=0°).Theactualoperatingfrequencyisatthemaximumoftheamplitude,buttheuserusuallychoosesafrequencyalittlewayoffthemaximum(onthe

Measuring AFM images

Page 17 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.4.9. Exampleofrealamplitudeandphaseversusfrequencyplotsusedincantilevertuning.Theverticallinesrepresenttheoperatingfrequency,chosenbytheuser.Insetcartoonsshowthemeaningoftheamplitudeandphaseplots.Top:thecantilever'soscillationamplitudeismaximizedattheresonantfrequency.Bottom:belowresonantfrequency,themeasuredcantileveroscillationfollowstheappliedoscillation(phase,θ=0°),atresonanceitlagstheappliedforce(θ=90°),andaboveresonantfrequencytheappliedoscillationlagsmeasuredoscillationfurther(θ=180°).

(p.98) low‐frequencysize),totakeaccountofthefrequencyshiftasthetipapproachesthesample.Selectingthewrongfrequency(suchasoneatahigherfrequencythantheamplitudemaximum)mayallowimaging,butwillusuallygiveverypoorimagesandpossiblyimageartefacts.Havingselectedtheoperatingfrequency,theamplitudeofthedrivingpiezooscillationisadjustedtogivethedesiredoscillationamplitudeofthecantilever.Theoscillationamplitude,likethecantileverdeflection,isnormallyshownonlyintermsofthephotodetectoroutput(e.g.rmsamplitudeinvolts),sothedesiredsignalvariesfromoneinstrumenttoanother,butasdiscussedinChapter3,amplitudesinintermittent‐contactAFMcanvaryfrom1to100nm[108].InmostAFMsystems,anamplitudeset‐pointisthenchosen.ForcontactAFM,theset‐pointisadeflectionvalue,whichmeansthatincreasingtheset‐pointleadstogreaterforcesbetweenthetipandthesample.However,forintermittent‐contactmode,feedbackisbasedonadecreaseinamplitude,soalowerset‐pointmeansagreatertip–sampleinteractionforce.Forexample,ifthefreeoscillationamplitude,A0is1.0V,theusermightchoose0.9Vasaconservativeset‐point,meaningthefreeamplitudewillbeallowedtodecreaseby10%duringapproachatwhichpointthesystemwillgointofeedback.Thus,avalueoflowerthan0.9Vwouldmeanagreaterforceofinteraction,andviceversa.Now,unlikecontact‐modeprobes,IC‐AFMprobesarehighlystiff,andsotheyarelesspronetothermalnoiseandbending,andthusoscillationamplitudeishighlystable.Thisshouldmeanthatfalse‐engageislessofaproblem.However,long‐rangeforcesbetweentipandsampledousuallyaffecttheoscillationslightlywhenoperatinginair.So,theusermustonceagainbecarefultoavoidfalse‐engage,sothatitmightbenecessarytousealowerset‐pointthan90%.Itisuseful,again,toobservetheerrorsignal(theamplitude)asthetipapproachesthesample,tohelpdiagnosefalseengage.Oncetheoscillationfrequencyandamplitudeset‐pointarechosen,anapproachmaybemade.Duetothechangeinresonantfrequency

Measuring AFM images

Page 18 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

astheprobeapproachesthesample,itissometimeshelpfultowithdrawtheprobealittleafterasuccessfulapproach,andre‐optimizetheoperatingfrequency.

Havingapproachedsuccessfully,scanningandoptimizationofgainsareverysimilartocontactmode.SotheproceduredescribedinSection4.2.3canbeused.Thefirst‐timeuserisremindedthattheimagingmechanismforIC‐AFMiscompletelydifferentfromthatofcontact‐modeAFM(seeChapter3).ThismeansthatoptimalimagingparameterswillusuallybecompletelydifferentforcontactandIC‐AFM,evenonthesamesample,andusingsimilarprobes.OneaspecttobeawareofisthattheresponseoftheprobetolargetopographicchangesisratherslowinIC‐AFMcomparedtocontactmode,meaningscanningmayneedtobecarriedoutmoreslowly.Ifthetipdoesnotproperlytrackthesurface,eitherthespeedmaybedecreased,thegainsincreased,ortheamplitudeset‐pointdecreased.AnexampleoftheeffectofscanningtooquicklyisshowninChapter6.Notethatunlikeincontactmode,it'snotreallypossibletomakeforce–distancecurvesinIC‐AFMmode.Onereasonforthisisthatthecantileverissostiffthattryingtodothiswouldapplyaverylargepressuretothetipoftheprobe,anddamageit.However,oftenAFMsystemsdoallowtheusertoobtainamplitude–distancecurves.AnexampleshowingtheutilityofthisisshowninFigure4.10.Amplitude–distancecurveshavealsofounduseinmeasuringlong‐distanceforcesonthetip,forexampleinMFM[340].

AsdescribedbyGarciaetal.[341,342],thissortofcurvecanserveausefuldiagnosticpurpose.AsshowninFigure4.10,itispossibletoobservenon‐idealcurves,i.e.curveswherethereismorethanonepossibletip–sampledistanceataparticularamplitude(p.99)

Fig.4.10. Left:amplitude–distancecurveshowingjumpingfromahighamplitudestate(H)toalowamplitudestate.Right:effectofthisjumpingonanimage.Thedashedlinesintheleft‐handfigurecorrespondtotheset‐pointsusedinthethreeregionsintherightimages.Withaset‐pointnearthediscontinuityinamplitude–distance,unstableimagingwilloccur.Reproducedwithpermissionfrom341.Copyright2000bytheAmericanPhysicalSociety.

set‐point.Thissortofsituationwillleadtoinstabilityinimaging.Theoriginoftheinstabilityintheimageontherightwouldbeunclearwithouttheamplitude–distancecurve.Ifsuchafeatureisobservedbytheuser,heshouldchangetheamplitudeset‐pointtoavaluewithauniquesolution,shownbytheupperandlowersegmentsintheimageinFigure4.10.Thisexampleillustratesthatsometimesscanningparameterscanbeadjustedinoneoftwodirectionsinordertoimproveimaging.Inthecaseshownabove,thebestsolution

Measuring AFM images

Page 19 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

mightbetoincreasetheset‐point,ratherthandecreaseit,asitwillresultinlowertipwear.

Asdescribedpreviously,inIC‐AFMtherearenormallyfourtypesofsignalthatmaybesavedasimages.Therearesignalsoffourtypes–theheight(zpiezovoltagesignal,andzsensor,ifavailable),amplitude(errorsignal),andphasesignals.Inaddition,eachchannelmaybeobtainedinoneoftwodirections,orinboth.Itisuptotheuserwhichimagestorecordandsave.Theheightsignalsarethemostimportant,astheyaretheonlysignalswithameaningfulzscale,andtheonlysignalsfromwhichwecanmakeusefultopographicalmeasurements.Itisnotreallynecessarytocollectsignalsinbothdirections,soonlyoneheightsignal(typicallythezsensordata,ifit'savailable,otherwisethezpiezovoltage)isnormallycollected.Theamplitudesignalcanhelpinvisualizingtheshapeofthesample,andinspottingfeaturesforlatermeasurementintheheightimages.Thephaseimagecanserveasimilarpurpose,andinadditiongivesinformationaboutheterogeneityofthesample(seeSection3.2.3.2formorediscussiononthis).Thus,thephaseimagecanbehighlyusefuloncertainsamples.Itisrarethatbothforwardandbackwardimagesareneeded,sotypicallythreeimageswillbecollected,height,amplitudeandphase,eitherinforwardorbackwarddirections.Ifthisisthecase,itisimportanttheuserrememberstocollectallimagesinthesamedirection,asforwardandbackwardimagesmaynotbeperfectlyalignedwitheachother.Ifthephaseimageis(p.100) ofparticularuseinanapplication(e.g.fordiscriminationofphasesinapolymer),itcanbeusefultooptimizethephasesignal.Todothis,theamplitudeset‐pointisusuallyvaried,asahighset‐pointwillgenerallygivelittlecontrastinthephasesignal,whiletoolowaset‐pointcandamageorcontaminatethetip,whichwillalsonegativelyaffectthephasesignal.

4.3.1Intermittent‐contactmodeinliquidImaginginIC‐AFMinliquidisdifferentfromimagingincontactmodeinliquid.Normalacousticexcitationofthecantileverinliquidleadstoanumberofpeaksinthefrequencyspectrum,insteadofthesinglesharppeaktypicallyobservedinair.Theactualcantileverresonanceisalsoshiftedtolowerfrequencyandisbroadened(hasreducedQ),comparedtotheresponseinair[128].Finally,dampingalsoreducestheamplitudeoftheoscillation,meaningthathigherdrivingamplitudeswillberequired.Theadditionalpeaksarisefromexcitationoftheliquidintheliquidcell,whichfurtherexcitethecantilever[126,127].Theshapeofthecantilever'soscillationresponseinliquidwilldependontheleveritself,thegeometryofthefluidcell,andthedistanceoftheleverfromthesample[128,343].Inconsequencetheusercanbeconfusedaboutwhichoperatingfrequencytouse,especiallyasthecantilevermanufacturerwillonlyspecifythevalueoff0inair.However,manyofthesepeaks,notnecessarilynearcantileverresonances,canbeusedtoimagethesampleinIC‐AFM,althoughsomewillworkbetterthanothers[344].Typically,bestresultswillbeobtainedusingthe‘true’resonance,i.e.thatobtainedbydirectexcitationoftheprobe.Determiningthefrequencyofthispeakissometimesamatteroftrialanderror.Iftheuserdoesnotknowthetypicalfrequencyforaparticularcantilevertype,thenitisbesttochooseapeaktwotothreetimeslowerinfrequencyintheairpeakwhichhasarelativelysharpresponse.Trytoimageatthechosenfrequency;

Measuring AFM images

Page 20 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

ifthisdoesnotwork,tryanother,andsoon.Oncethedirectexcitationpeakfrequencyisfound,itisnormalthatapeakofsimilarfrequencywillexistforsimilarcantilevers.Asthefrequencyofthecantileverresonancesinliquidcanbehighlydependentonthedistancebetweentheleverandthesample,itisbesttoadjusttheoperatingfrequencywhentheprobeisveryclosetothesample[345].Commonlylow‐frequency(contactmode)cantileversareusedforIC‐AFMinliquid,assamplesaretypicallyverysoftwhenhydrated,andthusthere'sgreatpotentialforsampledamagebyIC‐AFMinliquid[346].TherearemanyexamplesintheliteratureofimaginginliquidusingIC‐AFMaswellasstudiesofoscillationofAFMleversinliquid,usingawidevarietyofprobes,whichcanalsohelpindeterminingthebestoscillationfrequencytouse[344,347–350].Itisworthpointingoutthat,asmentionedinpreviouschapters,alternativedrivemechanismsexistwhichdonotacousticallyexcitethecantilever,e.g.magneticdrivingofthelever[124,218].Suchdirect‐drivearrangementsavoidthedifficultiesinchoosingapeaktouse–onlythe‘true’oscillationfrequencywillresonate.However,thesearrangementsmakelittle,ifanydifferencetoimagequality[125].

4.4High‐resolutionimagingObtainingAFMimagesatrelativelylowresolution(scansizes>1μm,resolutionof>50nm)isquiteeasy,buttoobtainveryhigh‐resolutionimages(resolutiononthe(p.101)orderof5nmorless)canbeconsiderablymoredemanding.Toobtainveryhighresolutionalargenumberoffactorsmustbeoptimized.

Theprobetipmustbecleanandparticularlysharp.Evenamongstprobesratedasextrasharp,alargevariationinactualtipradiusislikelytobefoundasdiscussedinChapter2.Fordemandingapplications,severaltipscouldbetried,oratip‐checksamplecanbeused.Whenallelsefails,attemptingtoscanawell‐knownsample(especiallyoneoftheprobesharpnesscharacterizationsamples)canoftenhelptodiagnoseproblems.Typically,ifgreatresultsonsuchatip‐checkersamplecannotbeobtained,theywon'tbefoundfromthesampleofinteresteither.AlistofsamplessuitabletocharacterizeAFMprobesisincludedinAppendixA.

Thesamplemustbewellfixedtothesubstrate,whichshouldnotbemoving.Theinstrumentmustbeatthermalequilibrium,andwithoutdrift.Sampledriftisfairlyeasytospot,andanillustrativeexampleisgiveninSection6.6.4.Sometimesthemethodusedtofixthesampleitssubstratecanbeatfault,andamorerigidmounting(suchasgluingwithanepoxyadhesive)canhelp.Thermaldriftcharacteristicscansometimesbehelpedbyremovingsourcesofillumination,whichcanheatthesampleenvironment.Often,thermaldriftisreducedwithtime,soleavingtheinstrumentsetup,withthelaseraligned,thetipclosetothesample,orinfeedbackwithit,andtheoscillation(ifused)atthecorrectfrequency,for30minutestoanhour,canreducedriftconsiderably.

Sourcesofexternalnoiseandthevibrationisolationmustbeoptimized.Whenscanningveryflatsamplesatveryhighresolution,noiseintheimagethatwaspreviouslyinvisiblecanoftenbeseenintheimage.Inthiscase,theusermustsimplyremoveallpossiblesourcesofnoise,suchaslightsorelectronicequipmentthatarenotrequired,andensurethevibrationisolationisfullyfunctional,anduncompromised(e.g.byamechanical

Measuring AFM images

Page 21 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

connectionfromthestagetoanun‐isolatedsurface).

Finally,scanningparametersmustbeoptimized.Forverysmallscansitispossibletoscanveryquickly,asusuallythefeedbacksystemdoesnothavegreatchangesinz‐heighttocopewith.Inaddition,itisusuallynecessarytoscanveryquicklytoovercomeevensmallamountsofsampledriftwhenimagingverysmallareas.Forexample,toobtain‘atomiclattice’resolution,withascansizeofca.10nm,itiscommontoscanatabout60linespersecond.Forhigh‐resolutionimages,theperfectfeedbackisoftenfoundbymakingmanytinychangestothegainstoreachtheidealimagingconditions.

4.5ForcecurvesForce–distancecurvesaremeasuredbymonitoringthedeflectionofthecantileverasitapproaches,touches,andwithdrawsfromthesample.Bydefault,therefore,theyaremeasuredincontactmode.Parameterstobeselectedbytheuserwillincludethexandypositionsatwhichthecurveistoberecorded,datadensity,movementspeed(acquisitionrate),maximumalloweddeflection(force),lengthofthecurveandmore.Iftheareaofinterestislocatedinaparticularregion,itcanbeusefultoimagethesamplebeforemeasuringcurves.However,undersomecircumstances,suchaswhenthecantileverisverystiff,orhasbeenmodifiedwithalayerofmolecules,itisnotconvenienttodoimagingandforcespectroscopyatthesametime,especiallyimagingincontactmodewhichcandamageasensitivelayeronthetip.SoAFMsoftwareoftenhasaseparatemode(p.102) formeasuringforcecurves,whichmayalsoallowimagingincontactmode.SomeinstrumentsevenallowakindofhybridIC‐AFM/forcespectroscopy,whereimagingcanbeperformedinIC‐AFM,andwhentheareaofinterestislocated,theinstrumentlocatesthesurfaceusingamplitudemodulation,andonlystopsthetiposcillationduringacquisitionofacurve.Thiscanreducetipdamagebeforetipacquisition.Attemptingtomeasureforcecurvesinselectedregionsofasamplewithnanometreresolutioncanbechallenging,partlyduetosampledrift,butalsoduetopositioningdifficultiesandlinearizedscannerscanhelpgreatly.Analternativetocarryingoutforcespectroscopyinonelocationistoperformtheexperimentinagridpatternoverthesamplesurface,thusenablingagridofforcecurveswhichcanbeprocessedintoamapofadhesionforcesorsamplestiffness.It'sworthnotingthatat1Hzperforcecurveacquisitionof1Hz,a256×256pixelmapwouldtakemanyhourstoacquire,sosuchmapsareusuallyobtainedatlowresolutions.

Regardlessofthemannerinwhichsuchacurveisrecorded,theresultisaplotofdeflectionversusdistance,whichtheuserusuallywantstoconverttoforceversusdistance.Thefirststepistoconvertthedeflection(V)intotheactualdistancethetipmoved(m),thenusingthespringconstant(N/m),andthiscanbeconvertedtoforce(N).Thenormaldeflectionsensitivityiseasilyobtainedbymeasuringtheslopeofadeflectionsignalversusverticalpiezodisplacementplotonastiff,hardsurface[142].Thesurfacechosenisoftenanextremelystiffonesuchassapphireorstainlesssteel,butitisonlyimportantthatitisconsiderablystifferthanthetip;measurementswithflexiblecantileverscoulduseanyreasonablystiffsurfaceforthis.Theusermustobtainsuchadeflection‐calibrationcurvetoaccompanyeachsetofdatawithoutrealignmentofthe

Measuring AFM images

Page 22 of 22

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

laseronthecantilever;theexactalignmentoftheopticalsystemdirectlyaffectsthiscalibration[351].Oncethisisobtained,thecurvemaybeconvertedtoforce–distancewiththenormalspringconstant.SeeSection2.5forproceduresforcalibrationofnormalspringconstants.

top related