urban heat islands: an optimal control approach › 2015 › 09 › alvarezvazquez-icia… · urban...

Post on 30-May-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Urban heat islands:An optimal control approach

L.J. Alvarez-Vazquez, F.J. Fernandez,

N. Garcıa-Chan, A. Martınez,

M.E. Vazquez-Mendez.

Departamento de Matematica Aplicada II

Universidad de Vigo

Spain

The Urban Heat Island: a metheorological phenomenon

(published on website. 30 June, 2010)http://blog.rtve.es/eltiempo/2010/06/isla-de-calor.html

Connected problems: “Beret polution”

http://elpais.com/diario/2011/10/07/catalunya/1317949650_850215.html (published on website. 7 October, 2011)

Improvement Strategy: Build green zones

http://www.construyeargentina.com/wp-content/uploads/2013/06/green_roof3b.jpg

Objective: Control UHI by building green zones and parks

http://www.fincasfiol.com/wp-content/uploads/2013/09/VERDEVERTICAL_0721.jpg

Numerical Simulation Optimal Control Numerical Results

Table of contents

1 Numerical Simulation: air temperature and velocityMathematical modelNumerical Resolution

2 Optimal Control: location of green zonesMathematical FormulationNumerical Resolution

3 Numerical ResultsNumerical simulation without green zonesOptimal location of two green zones

Numerical Simulation Optimal Control Numerical Results

Table of contents

1 Numerical Simulation: air temperature and velocityMathematical modelNumerical Resolution

2 Optimal Control: location of green zonesMathematical FormulationNumerical Resolution

3 Numerical ResultsNumerical simulation without green zonesOptimal location of two green zones

Numerical Simulation Optimal Control Numerical Results

Table of contents

1 Numerical Simulation: air temperature and velocityMathematical modelNumerical Resolution

2 Optimal Control: location of green zonesMathematical FormulationNumerical Resolution

3 Numerical ResultsNumerical simulation without green zonesOptimal location of two green zones

Numerical Simulation Optimal Control Numerical Results

Domain Ω (3D)

Numerical Simulation Optimal Control Numerical Results

Domain Ω (2D)

Numerical Simulation Optimal Control Numerical Results

State System

Air velocity u(x, t) (m/s) and pressure p(x, t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t+ u.∇u−∇.(Km∇u) +∇p =

θ

θrefg

−cdf

NGZ∑

k=1

LADk1Ωk∥u∥u in Ω× (0, T ),

∇.u = 0 in Ω× (0, T ),u.n = 0 on (Γr ∪ Γw ∪ Γs)× (0, T ),u.n = −u∗ on Γ1 × (0, T ),u.n = 0 on Γ2 × (0, T ),u.n = u∗ on Γ3 × (0, T ),u(0) = u0 in Ω,

Numerical Simulation Optimal Control Numerical Results

State System

Air temperature θ(x, t) (K)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θ

∂t+ u.∇θ −∇.(Kh∇θ) =

NGZ∑

k=1

LADk1Ωk

θkf − θ

rin Ω× (0, T ),

θ = θin on Γ1 × (0, T ),∇θ.n = 0 on (Γ2 ∪ Γ3)× (0, T ),Kh∇θ.n = γ1(T

4rw − θ4) on Γw × (0, T ),

Kh∇θ.n = γ1(T4rr − θ4) on Γr × (0, T ),

Kh∇θ.n =NGZ∑

k=1

(σk1γ1(T

4rp − θ4) + σk

2γ2(θkf

4− θ4)

)1Γgk

+γ1(T4r − θ4)

(1−

NGZ∑

k=1

Γgk

)on Γs × (0, T ),

θ(0) = θ0 in Ω,

Numerical Simulation Optimal Control Numerical Results

State System

Foliage temperature θkf (x, t) (K) at parkland Ωk, k = 1, . . . , NGZ

θkf − θ

r= σk

1γ1(T4rf − θkf

4) + σk

2γ2(θk4− θkf

4) in Ωk × (0, T )

Numerical Simulation Optimal Control Numerical Results

Numerical Resolution of the State System

Time discretization: the method of characteristics

We choose a natural number N ∈ N, define the time step ∆t = TN , and

consider the discrete times tnNn=0 ⊂ [0, T ] given by tn = n∆t, forn = 0, . . . , N. The characteristic method is based on

Dc

Dt=

∂c

∂t+ u.∇c ≃ 1

∆t(cn+1 − cn Xn),

where Xn(x) = X(x, tn+1, tn) is given by

⎧⎨

dX

dτ= u(X(x, t, τ), τ),

X(x, t, t) = x.

Numerical Simulation Optimal Control Numerical Results

Numerical Resolution of the State System

Semi-discrete problem

Then, given initial fields u0 and θ0, we are interested in finding, for eachn = 0, . . . , N − 1, the fields un+1, θn+1, pn+1, and θkf,n+1, k = 1, 2,solving the following system of partial differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αun+1 −∇.(Km∇un+1) +∇pn+1 =θn+1

θrefg

−cdf

2∑

k=1

LADk1Ωk∥un+1∥un+1 + α(un Xn) in Ω,

∇.un+1 = 0 in Ω,un+1.n = 0 on Γr ∪ Γw ∪ Γs,un+1.n = −u∗ on Γ1,un+1.n = 0 on Γ2,un+1.n = u∗ on Γ3.

Numerical Simulation Optimal Control Numerical Results

Numerical Resolution of the State System

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αθn+1 −∇.(Kh∇θn+1) =2∑

k=1

LADk1Ωk

θkf,n+1 − θn+1

rn+1+ α(θn Xn)

θn+1 = θin on Γ1

∇θn+1.n = 0 on Γ2 ∪ Γ3,Kh∇θn+1.n = γ1(T

4rw,n+1 − θ4n+1) on Γw,

Kh∇θn+1.n = γ1(T4rr,n+1 − θ4n+1) on Γr,

Kh∇θn+1.n =2∑

k=1

(σk1γ1(T

4rp,n+1 − θ4n+1) + σk

2γ2(θkf,n+1

4− θ4n+1))1Γgk

+γ1(T4ra,n+1 − θ4n+1)(1− 1Γg1

− 1Γg2) on Γs

θkf,n+1 − θn+1

rn+1= σk

1γ1(T4rf ,n+1 − θkf,n+1

4) + σk

2γ2(θkn+1

4− θkf,n+1

4)

Numerical Simulation Optimal Control Numerical Results

Numerical Resolution of the State System

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αθn+1 −∇.(Kh∇θn+1) =2∑

k=1

LADk1Ωk

θkf,n+1 − θn+1

rn+1+ α(θn Xn)

θn+1 = θin on Γ1

∇θn+1.n = 0 on Γ2 ∪ Γ3,Kh∇θn+1.n = γ1(T

4rw,n+1 − θ4n+1) on Γw,

Kh∇θn+1.n = γ1(T4rr,n+1 − θ4n+1) on Γr,

Kh∇θn+1.n =2∑

k=1

(σk1γ1(T

4rp,n+1 − θ4n+1) + σk

2γ2(θkf,n+1

4− θ4n+1))1Γgk

+γ1(T4ra,n+1 − θ4n+1)(1− 1Γg1

− 1Γg2) on Γs

θkf,n+1 − θn+1

rn+1= σk

1γ1(T4rf ,n+1 − θkf,n+1

4) + σk

2γ2(θkn+1

4− θkf,n+1

4)

Numerical Simulation Optimal Control Numerical Results

Numerical Resolution of the State System

Space discretization: the finite element method

We consider a mesh τh of Ω and, associated to this mesh, we define thefollowing finite element spaces:

Wh = v ∈ [C(Ω)]n : v| !T ∈ [P1b(T )]n, ∀T ∈ τh, v · n = 0 on ∂Ω,Mh = q ∈ C(Ω) : q| !T ∈ P1(T ), ∀T ∈ τh,Vh = z ∈ C(Ω) : z| !T ∈ P1(T ), ∀T ∈ τh, z|Γ1

= 0,Xh = z ∈ L2(Ω) : z| !T ∈ P0(T ), ∀T ∈ τh.

Fully discrete problem

For each n = 0, . . . , N − 1, we look for(uh,n+1, ph,n+1, θh,n+1, θ1f,h,n+1, θ

2f,h,n+1) ∈ Wh ×Mh × Vh ×Xh ×Xh,

solution of the variational formulations of the previous semi-discreteproblems −→ Freefem++.

[1] F.J. Fernandez, et al. Optimal location of green zones in metropoli-tan areas to control the urban heat island. J. Comput. Appl.Math., in press (2015)

Numerical Simulation Optimal Control Numerical Results

Numerical Resolution of the State System

Space discretization: the finite element method

We consider a mesh τh of Ω and, associated to this mesh, we define thefollowing finite element spaces:

Wh = v ∈ [C(Ω)]n : v| !T ∈ [P1b(T )]n, ∀T ∈ τh, v · n = 0 on ∂Ω,Mh = q ∈ C(Ω) : q| !T ∈ P1(T ), ∀T ∈ τh,Vh = z ∈ C(Ω) : z| !T ∈ P1(T ), ∀T ∈ τh, z|Γ1

= 0,Xh = z ∈ L2(Ω) : z| !T ∈ P0(T ), ∀T ∈ τh.

Fully discrete problem

For each n = 0, . . . , N − 1, we look for(uh,n+1, ph,n+1, θh,n+1, θ1f,h,n+1, θ

2f,h,n+1) ∈ Wh ×Mh × Vh ×Xh ×Xh,

solution of the variational formulations of the previous semi-discreteproblems −→ Freefem++.

[1] F.J. Fernandez, et al. Optimal location of green zones in metropoli-tan areas to control the urban heat island. J. Comput. Appl.Math., in press (2015)

Numerical Simulation Optimal Control Numerical Results

Numerical Resolution of the State System

Space discretization: the finite element method

We consider a mesh τh of Ω and, associated to this mesh, we define thefollowing finite element spaces:

Wh = v ∈ [C(Ω)]n : v| !T ∈ [P1b(T )]n, ∀T ∈ τh, v · n = 0 on ∂Ω,Mh = q ∈ C(Ω) : q| !T ∈ P1(T ), ∀T ∈ τh,Vh = z ∈ C(Ω) : z| !T ∈ P1(T ), ∀T ∈ τh, z|Γ1

= 0,Xh = z ∈ L2(Ω) : z| !T ∈ P0(T ), ∀T ∈ τh.

Fully discrete problem

For each n = 0, . . . , N − 1, we look for(uh,n+1, ph,n+1, θh,n+1, θ1f,h,n+1, θ

2f,h,n+1) ∈ Wh ×Mh × Vh ×Xh ×Xh,

solution of the variational formulations of the previous semi-discreteproblems −→ Freefem++.

[1] F.J. Fernandez, et al. Optimal location of green zones in metropoli-tan areas to control the urban heat island. J. Comput. Appl.Math., in press (2015)

Numerical Simulation Optimal Control Numerical Results

Control 2D

Control variable

We asumme that Ωk = Γgk × [0, Zk], where Zk is known. If Ω ⊂ R2,then

Γgk = [p1, p1 + lk]

We take NGZ = 2 and suppose that l1 + l2 = L is given. Thenl2 = L− l1 and the control variable is

b = (p1, p2, l1) ∈ R3

Numerical Simulation Optimal Control Numerical Results

Control 2D

Control variable

We asumme that Ωk = Γgk × [0, Zk], where Zk is known. If Ω ⊂ R2,then

Γgk = [p1, p1 + lk]

We take NGZ = 2 and suppose that l1 + l2 = L is given. Thenl2 = L− l1 and the control variable is

b = (p1, p2, l1) ∈ R3

Numerical Simulation Optimal Control Numerical Results

Control 3D

Control variable

We asumme that Ωk = Γgk × [0, Zk], where Zk is known. If Ω ⊂ R3 andΓgk is a rectangle, then Γgk = [pk1 , p

k1 + lk1 ]× [pk2 , p

k2 + lk2 ]

We take NGZ = 2 and suppose thatNGZ∑

k=1

lk1 lk2 = L is given. Then

l22 = (L− l11l12)/l

21 and the control variable is

b = (p11, p12, p

21, p

22, l

11, l

12, l

21) ∈ R7

Numerical Simulation Optimal Control Numerical Results

Optimal Control

Objective function

J(b) =

∫ T

0

(Γs\(Γg1∪Γg2 ))×[a,b]θ(x, t) dx dt

T (b− a)µ (Γs \ (Γg1 ∪ Γg2))

Numerical Simulation Optimal Control Numerical Results

Optimal Control

Admissible set

Uad = b ∈ R4(n−1)−1 : ∀k = 1, 2, Γgk ⊂ Γsjk, for any jk ∈ 1, . . . ,M,

with Γsj1∩ Γsj2

= ∅ and µmin ≤ µ(Γgk) ≤ µmax.

Numerical Simulation Optimal Control Numerical Results

Optimal Control

Optimal Control Problem

minb ∈ Uad

J(b)

Numerical Simulation Optimal Control Numerical Results

Numerical Resolution of the Optimal Control Problem

The discrete control problem

minb∈Uad

J∆th (b) =

N∑

n=1

Ω(1− 1Γg1

− 1Γg2)1[a,b]θh,n(x)dx

N

(∫

Ω(1− 1Γg1

− 1Γg2)1[a,b] dx

)−1

Equivalent Formulation: The MINLP Problem

(MINLP)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

minb,y

f(b,y)

s.t. h(b,y) ≤ 0Ay ≤ cy ∈ 0, 1p

where p = 2M , y ∈ R2M , b ∈ R4(n−1)−1, f : R4(n−1)−1+2M → R,

h : R4(n−1)−1+2M → Rm1 , A ∈ Mm2×2M and c ∈ Rm2

Numerical Simulation Optimal Control Numerical Results

Numerical Resolution of the Optimal Control Problem

The discrete control problem

minb∈Uad

J∆th (b) =

N∑

n=1

Ω(1− 1Γg1

− 1Γg2)1[a,b]θh,n(x)dx

N

(∫

Ω(1− 1Γg1

− 1Γg2)1[a,b] dx

)−1

Equivalent Formulation: The MINLP Problem

(MINLP)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

minb,y

f(b,y)

s.t. h(b,y) ≤ 0Ay ≤ cy ∈ 0, 1p

where p = 2M , y ∈ R2M , b ∈ R4(n−1)−1, f : R4(n−1)−1+2M → R,

h : R4(n−1)−1+2M → Rm1 , A ∈ Mm2×2M and c ∈ Rm2

Numerical Simulation Optimal Control Numerical Results

Numerical Resolution of the State System

Numerical procedure

(MINLP)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

minb,y

f(b,y)

s.t. h(b,y) ≤ 0Ay ≤ cy ∈ 0, 1p

We define Y =y ∈ 0, 1p : Ay ≤ c

. For each y∗ ∈ Y we

denote by b∗ ∈ R4(n−1)−1 the numerical solution of

(NLP)

minb

f(b,y∗)

s.t. h(b,y∗) ≤ 0−→ IPOPT code

(MINLP) is solved by solving the following problem

(IP) miny∗∈Y

f(b∗,y∗) −→ Exhaustive search

[1] F.J. Fernandez, et al. Optimal location of green zones in metropoli-tan areas to control the urban heat island. J. Comput. Appl.Math., in press (2015)

Numerical Simulation Optimal Control Numerical Results

Numerical Resolution of the State System

Numerical procedure

(MINLP)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

minb,y

f(b,y)

s.t. h(b,y) ≤ 0Ay ≤ cy ∈ 0, 1p

We define Y =y ∈ 0, 1p : Ay ≤ c

. For each y∗ ∈ Y we

denote by b∗ ∈ R4(n−1)−1 the numerical solution of

(NLP)

minb

f(b,y∗)

s.t. h(b,y∗) ≤ 0−→ IPOPT code

(MINLP) is solved by solving the following problem

(IP) miny∗∈Y

f(b∗,y∗) −→ Exhaustive search

[1] F.J. Fernandez, et al. Optimal location of green zones in metropoli-tan areas to control the urban heat island. J. Comput. Appl.Math., in press (2015)

Numerical Simulation Optimal Control Numerical Results

Numerical simulation without green zones

Data

Trw = 352.60K, Trr = Tra = 368.28K, Trp = 358.90K,Trf = 309.71K

Rsw,net(1− am) +Rlw,dow − ϵm σB T 4r = 0

Results

Numerical Simulation Optimal Control Numerical Results

Numerical simulation without green zones

Data

Trw = 352.60K, Trr = Tra = 368.28K, Trp = 358.90K,Trf = 309.71K

Rsw,net(1− am) +Rlw,dow − ϵm σB T 4r = 0

Results

Numerical Simulation Optimal Control Numerical Results

Optimal location of two green zones

Data

Z1 = Z2 = 6m

L = 8m, µmin = 1m, and µmax = 5m

LAD1(z) = LAD2(z)

Numerical Simulation Optimal Control Numerical Results

Results

Optimal location of two green zones

Without green zones

Numerical Simulation Optimal Control Numerical Results

Results

Optimal location of two green zones

Without green zones

Numerical Simulation Optimal Control Numerical Results

Work in progress

3D approach

Preliminary numerical results

Numerical Simulation Optimal Control Numerical Results

Work in progress

3D approach

Preliminary numerical results

top related