yuriy m. bunkov crtbt - cnrs, grenoble, france magnetic superfluidity (from hpd to q – ball)

Post on 20-Jan-2016

278 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Yuriy M. Bunkov

CRTBT - CNRS, Grenoble, France

Magnetic Superfluidity (from HPD to Q – ball)

1. Spin supercurrent2 20 years of homogeneously precessing domain3. Other coherent magnetic states in 3He4. Q-balls

Spin supercurrent

Fast relaxation in 3He-A

Real explanation. Instability of homogeneous precession (Fomon, Borovik-Romanov, Bunkov, Dmitriev Mukharskiy)

Review

Strange Long Lived Induction Decay Signal

A.S. Borovik-RomanovYu.M. BunkovV.V.DmitrievYu.M.Mukharsky

I.A.Fomin

1984

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). I.A.Fomin, JETP Letters v.40, p.1036, (1984).

HPD discovery

1. Closed geometry of the cell2. Digital memory recorder.

1. 100% Long Lived IDS2. Frequency changes with amplitude

e I(r t)e I(r t)

Mass superflow

ki

Spin supercurrent

H H

Domain with Homogeneous Precession of Magnetization, 1984

H H

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.106, (1984).

Domain with Homogeneous Precession of Magnetization, 1984

Domain with Homogeneous Precession of Magnetization, 1984

H H

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984).

Domain with Homogeneous Precession of Magnetization, 1984

Domain with Homogeneous Precession of Magnetization, 1984

H H

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984).

Domain with Homogeneous Precession of Magnetization, 1984

Domain with Homogeneous Precession of Magnetization, 1984

JMJM = A + B

H H

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984).

Domain with Homogeneous Precession of Magnetization, 1984

Domain with Homogeneous Precession of Magnetization, 1984

H =

d Ed

d Sz

s

s

s

R(n)

L

SH

R(n) L

H

S

Ed

Ed

Yu.M.Bunkov, G.E.Volovik, Homogeneously Precessing Domains in 3He-B, JETP, v.76, p. 794, (1993).

0

0

1 1

SzLz

Dipole + magnetic gradient energy

104°

H

L

104°

R(n,)

S H

Dipole energy

Brinkman – Smith mode

1. Magnetization conservation2. Longitudinal Magnetization conservation

H H

RF

JM

RF

Magnetization transport by Spin Supercurrent

+ Spin vortex phase slippage

Critical current

H H

RF

JM

Josephson effect

RF

Linear and non-linear

HPD

Catastropha

PSPS

Grenoble, 1999Coherent, Magnetically Excited States

Catastrophic relaxation

Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, J.Nyeki, D.A.Sergatskov, Europhysics Letters, v.8, p.645, (1989).

Yu.M.Bunkov, G.E.Volovik, "On the possibility of the Homogeneously Precessing Domain in Bulk 3He-A", Europhys. Lett, v. 21, p. 837 (1993)

Yu.M.Bunkov, G.E.Volovik, " Homogeneously Precessing Domains in 3He-B", JETP, v.76, p. 794, (1993).

Possible new coherent states

V.V.Dmitriev et all. States with fractional magnetization

V.V.Dmitriev et all. Analog state in Fermi liquid at non-hydrodinamic regime

s

s

s

R(n)

L

SH

R(n) L

H

S

Ed

Ed

Yu.M.Bunkov, G.E.Volovik, Homogeneously Precessing Domains in 3He-B, JETP, v.76, p. 794, (1993).

0

0

1 1

SzLz

+ surface energy

L

SS

L

L

S

H

Nonwetting. conditions for coherent quantum precession

Yu.M.Bunkov, O.D.Timofeevskaya, G.E.Volovik Phys. Rev. Lett., v. 73. p. 1817, (1994)

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8

nz

x/

SD HPD

H

x0

L

S

X0

z

L

S

HPD

SD

S

F

LS

s

s

s

R(n)

L

SH

R(n) L

H

S

Ed

Ed

0

0

1 1

SzLz SzLz

0

20

40

60

80

100

120

0 10 20 30 40 50

S

L0

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 50

Surface Instability of Coherent Precession

Yu.M. Bunkov, V.L. Golo, O.D. Timofeevskaya, Czechoslovak Journal of Phys. V. 46, S1, p. 213 (1996).

Position, 0.1 mm

Ang

les

of d

efle

ctio

n, d

egre

e

0

20

40

60

80

100

120

0 10 20 30 40 50

Position, 0.1 mm

Ang

les

of d

efle

ctio

n, d

egre

e

2. Coherenent State, which radiates the Persistent signal

Moscow resultsYu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, S.R.Zakazov, Physica B, v. 194, p. 827, (1994).

Discovery, Lancaster, 1992Yu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, Phys, Rev, Letters, v.69, p3092, (1992).

``Coherent Spin Precession and Texture in 3He-B.''Yu.M. Bunkov, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 231 (1996).

Lancaster experimental conformationYu.M. Bunkov, D.J. Cousins, M.P.Enrico, S.N.Fisher, G.R.Pickett, N.S.Shaw, W.Tych, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 233 (1996).

Moscow

Lancaster

Q-ball - Spherically symmetric non-topological soliton with conserved global charge Q

Proposed by S.Coleman (1985) in frame of relativistic field theory as a semi-classical model of elementary particles formation

Current interest due to Q-balls dark matter model

E(mQ)< E(Q)m

In relativistic field theory

(r t) exp(- it)(r)

Q = d3x[i(dtdt]

E d3x[ I I2 II2 U(II)]

Q (r) = S - Sz(r)

dEddSz

= = Hdd(S,L)

S+ (r) = S (r) e it

In 3He-B

Lz

Sz

0

10

1

1

Q (r) = S - Sz(r)

dEddSz

= = Hdd(S,L)

S+ (r) = S (r) e it

In 3He-B

Ed

x

90°

S

L

S

x

90°

L

x

90°

S

L

HL

S

Follow Voislav Golo algorithm(15 equations)

Spatial case

Yu.M.Bunkov, V.L.Golo, J Low Temp Phys, to be published

+ E grad + E surf

0

20

40

60

80

100

0 10 20 30 40 50

Position, 0.1 mm

Ang

les

of d

efle

ctio

n, d

egre

e

0

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 50

Position, 0.1 mm

Ang

les

of d

efle

ctio

n, d

egre

e

0

20

40

60

80

100

0 10 20 30 40 50

Position, 0.1 mm

Ang

les

of d

efle

ctio

n, d

egre

e

0

0,5

1

1,5

2

2,5

0 50 100 150 200 250

Time, (arb.units)

Larmore freq.

Max NMR shift

HL

S

3D Q-ball

HL

S

Q ball on topological defect

0

20

40

60

80

100

0 10 20 30 40 50Position in the cell

S

L H H

Computer simulationGrenoble 2004

H

Lz

LH

z

Calculations of a spatial deflection of spin and orbit on basis of Poisson brackets and Takagi relaxation

Follow Voislav Golo algorithm

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9500RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9400RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9300RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9200RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Grenoble, 2004

Ang

les

of d

efle

ctio

n, d

egre

e

Position, 0.1 mm

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Grenoble, 2004

Ang

les

of d

efle

ctio

n, d

egre

e

Position, 0.1 mm

1% HPD

HL

S

Non-linear Stationary Spin Waves in Flared out texture

NMR of Rotated superfluid 3He-B O.T.Ikkala, G.E.Volovik, P.Y.Hakonen,

Yu.M.Bunkov, S.T.Islander, G.A.Haradze, JETP Letters v.35, p.416 (1982).

L

First observation of Spin Waves in Orbital Texture

D.D.Osheroff, Physica B, 90, 20 (1977).

An

gle

L-H

Before rotation During rotation After rotation

H

Grenoble experiments with Non-linear Stationary Spin Waves

0.25 Tc

A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, p. 51, (1998).

Following Landau and Lifchitz we consider an anharmonic oscillator with a third order of nonlinearity

Non-linear Stationary Spin-waves – or Q ball, if you like!

A.S. Chen,Yu. M. Bunkov, H. Godfrin, R. Schanen and F. Scheffler J. of Low Temp. Phys. 113, 693 (1998).

H H

H

=H+ Hz

Quantum billiard

Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999)

Grenoble, 1999Off-resonante NMR excitation

D.J.Cousins, S.N.Fisher, A.I.Gregory, G.R.Pickett, N.S.Shaw, Phys. Rev. Lett, 82, 4484, (1999)

Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999)

s

pd

rf

rf

Qb

dd

Identity of Non-linear SSW and Persistent Signals

Grenoble, 1997. A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, p. 51, (1998).

Conclusions

5. Many interesting results by Lancaster Group Spatial Manipulation of the Persistent Precessing Spin Domain in Superfluid 3He-B By: D. I. Bradley; D. O. Clubb; S. N. Fisher; A. M. Guénault; C. J. Matthews; G. R.Pickett;P.Skyba J. Low Temp.Phys, 134, 351, (2004 ) and references there

6. Off-resonance excitation, original properties of Q - ball type soliton solutions

4. PS radiates by SSW mode condensed in the minima of texture potential At low temperatures Orbital momentum participate in Magnetization precession

3. Q ball - like structures forms and can be found experimentally in superfluid 3He as a localized modes of SSW. They can be attracted by topological defects. 3He is a very good experimental system for studying Q -balls.

1. First Excited Coherent Quantum State of 3He, discovered in 1984, has very reach magnetic extension of superfluid properties: The Spin supercurrent, Josephson phenomena, phase slippage, spin vortices, magnetis coherent states etc. was found

2. The catastrophic relaxation is now completely explained

Order parameter in superfluid 3He-B

R(n)L

S

HHL

S

Min. d-d energy Vd = 104°

R(n)

k

d

L=1, Lk = 0S=1, Sd = 0

96

98

100

102

104

106

108

110

112

0 10 20 30 40 50

Oscillations

Position in the cell, mm

S

L

n

L=R(n) S

top related