amphiphilic zn(ii) phthalocyanines the optical …the optical characterization of metal-mediated...

7
The optical characterization of metal-mediated aggregation behaviour of amphiphilic Zn(II) phthalocyanines P. Batat† a , M. Bayar b , B. Pur b , E. Çoker a , V. Ahsen b , F. Yuksel† b and A. L. Demirel† a Supporting Information Figure S1. MALDI-TOF mass spectrum of compound 3. Figure S2. MALDI-TOF mass spectrum of compound 4. Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Upload: others

Post on 27-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: amphiphilic Zn(II) phthalocyanines The optical …The optical characterization of metal-mediated aggregation behaviour of amphiphilic Zn(II) phthalocyanines P. Batat†a, M. Bayarb,

The optical characterization of metal-mediated aggregation behaviour of amphiphilic Zn(II) phthalocyanines P. Batat†a, M. Bayarb, B. Purb, E. Çokera, V. Ahsenb, F. Yuksel†b and A. L. Demirel†a

Supporting Information

Figure S1. MALDI-TOF mass spectrum of compound 3.

Figure S2. MALDI-TOF mass spectrum of compound 4.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.This journal is © the Owner Societies 2016

Page 2: amphiphilic Zn(II) phthalocyanines The optical …The optical characterization of metal-mediated aggregation behaviour of amphiphilic Zn(II) phthalocyanines P. Batat†a, M. Bayarb,

3800 3600 3400 3200 3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800Wavenumber (cm-1)

84

86

88

90

92

94

96

98

100

%Tr

ansm

ittan

ce

741778

870943

10661084

128813581378

14071459

14861591

28532924

2955

3090Figure S3. The FT-IR spectra of symmetric ZnPc (3)

3800 3600 3400 3200 3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800Wavenumber (cm-1)

40

45

50

55

60

65

70

75

80

85

90

95

%Tr

ansm

ittan

ce688

725740

788872

943972

10601080

113612431285

133613751404

145514841592

1663

28542924

2954

3073

Figure S4. The FT-IR spectra of asymmetric ZnPc (4)

Page 3: amphiphilic Zn(II) phthalocyanines The optical …The optical characterization of metal-mediated aggregation behaviour of amphiphilic Zn(II) phthalocyanines P. Batat†a, M. Bayarb,

Compound 3:FT-IR max/cm-1: 3090 (CHar), 2955-2853 (CHal), 1591, 1486, 1459, 1407, 1378, 1358, 1288, 1128, 1108, 1084,1066, 943, 870, 778, 741.

Compound 4: FT-IR max/cm-1: 3073 (CHar), 2954-2854 (CHal), 1663 (C=N), 1592, 1484, 1455, 1404, 1375, 1336, 1285, 1243, 1136, 1097, 1080, 1060, 972, 943, 883, 872, 788, 740, 725, 697, 688.

Figure S5. 1HNMR spectrum of compound 4.

Figure S6. 13CNMR spectrum of compound 4.

Page 4: amphiphilic Zn(II) phthalocyanines The optical …The optical characterization of metal-mediated aggregation behaviour of amphiphilic Zn(II) phthalocyanines P. Batat†a, M. Bayarb,

Figure S7. UV-Vis spectra of 4 (c =1x10-6 M ) in different solvents (THF-tetrahydrofuran, CHCl3-Chloroform, DMF- Dimethylformamide).

300 400 500 600 700 8000.00

0.05

0.10

0.15

0.20

Abso

rban

ce

Wavelength (nm)

CHCl3 CHCl3+MeOH(1) CHCl3+MeOH(2) CHCl3+MeOH(3) CHCl3+MeOH(4) CHCl3+MeOH(5)

Figure S8. Changes in absorbance of 4 (initially c = 1x10-6 M) in non-coordinating solvent CHCl3 by adding coordinating solvent MeOH (50µl in each step).

Page 5: amphiphilic Zn(II) phthalocyanines The optical …The optical characterization of metal-mediated aggregation behaviour of amphiphilic Zn(II) phthalocyanines P. Batat†a, M. Bayarb,

300 400 500 600 700 8000.00

0.05

0.10

0.15

0.20Ab

sorb

ance

Wavelength (nm)

CHCl3 CHCl3+pyridine (1) CHCl3+pyridine (2) CHCl3+pyridine (3) CHCl3+pyridine (4) CHCl3+pyridine (5)

Figure S9. Changes in absorbance of 4 (initially c=1x10-6 M ) in non-coordinating solvent CHCl3 by adding coordinating solvent pyridine (50µl in each step).

Figure S10. The change in absorbance of asymmetric Pc (4) with concentration in THF.

Page 6: amphiphilic Zn(II) phthalocyanines The optical …The optical characterization of metal-mediated aggregation behaviour of amphiphilic Zn(II) phthalocyanines P. Batat†a, M. Bayarb,

a) b)

Figure S11. Photographs of a) 3 in THF, c = 3.32 x 10-6 M (left cuvette), 3 complexed with Ag (I) (right cuvette), b) 4 in THF, c = 1.12 x 10-6 M (left cuvette), 4 complexed with Ag (I) (right cuvette).

Figure S12. a) Ag+ induced H-aggregation (face to face) of Pcs (Green squares: Pc molecules, black points: Ag+ ions), b) Top view of H-aggregates, c) Top view of J-aggregates.

Page 7: amphiphilic Zn(II) phthalocyanines The optical …The optical characterization of metal-mediated aggregation behaviour of amphiphilic Zn(II) phthalocyanines P. Batat†a, M. Bayarb,

Figure S13. The absorption spectra of symmetric ZnPc (3) LB films on glass substrates decomposed to Lorentzian fits representing different aggregates. (left: film deposited from pure water subphase (H-aggregates at 666 nm, monomeric aggregates at 728 nm, J-aggregates at 786 nm); right: film deposited from Ag+ containing subphase (H-aggregates at 666 nm, monomeric aggregates at 728 nm, J-aggregates at 795 nm)).

Figure S14. The absorption spectra of asymmetric ZnPc (4) LB films on glass substrates decomposed to Lorentzian fits representing different aggregates. (left: film deposited from pure water subphase (H-aggregates at 677 nm, monomeric aggregates at 717 nm, J-aggregates at 758 nm); right: film deposited from Ag+ containing subphase (H-aggregates at 657 nm, monomeric aggregates at 717 nm, J-aggregates at 814 nm)).