amul&’scaledesignandcontrolframeworkfor ...stein/research-nsf-v2g/efri... ·...

1
A Mul&Scale Design and Control Framework for Dynamically Coupled Sustainable and Resilient Infrastructures, with Applica&on to VehicletoGrid Integra&on (EFRI – RESIN, Award Number: 0835995) People PI: Jeffrey Stein [[email protected]] (University of Michigan) CoPIs: Zoran Filipi [fi[email protected]], Gregory Keoleian [[email protected]], Huei Peng [[email protected]] (UM) and Mariesa Crow [[email protected]] (Missouri University of Science and Technology) Par&cipa&ng Inves&gators: Duncan Callaway [[email protected]] (Berkeley), Hosam Fathy [[email protected]] (UM), Carl Simon [[email protected]] (UM), John Sullivan [[email protected]] (UM) and Jing Sun [[email protected]] (UM) Good and frequent communicaRon and interacRon is considered key to our project's success and this occurs primarily at biweekly research meeRngs. At each meeRng a presentaRon is given by of one of the task area researchers. This allows team members see what each task is focused on, what their results mean, how it affects all tasks projects, and the potenRal for task integraRon. Offsite team members aVend via teleconferencing and receive slides via email. Offsite team members can visit U of M as oWen and for as long as they would to because office space has been made available for them. Research Objec&ves Project Descrip&on Enabling Poten&ally Transforma&ve Results Status of Research Managing a Mul&Disciplinary and Mul&Ins&tu&onal Project Vehicle to Grid (V2G) may poten&ally improve resilience by: CreaRng a redundancy of power sources and flow paths. Improving grid integrity to disturbances through energy storage. Decreasing the load through peak shaving and reacRve power. V2G provides sustainability through increased energy storage: Allowing the grid to beVer absorb renewable electricity. RedistribuRng power demand over Rme in both infrastructures. Possibly decreasing use of expensive grid peaking units. Sustainability and Resilience FUEL PUMP PHEV BATTERY Outlet Personal TransportaRon Infrastructure Electric Power Infrastructure Mul&Role Intermediaries (MRIs) An infrastructure’s sustainability and resilience oWen depend on how strongly coupled it is to other infrastructures through the exchange of commodiRes, resources, services, or informaRon. This exchange oWen takes place through MulRRole Intermediaries which may be organizaRons, individuals or intelligent devices. Plugin hybrid electric vehicles are an important MRI because they couple the personal transportaRon infrastructure with the electric power infrastructure. This is the project’s test bed applicaRon. 0 2000 4000 6000 8000 10000 12000 14000 16000 0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 demand, MW hour of day Electricity Demand, Effect of DSM nonPHEV demand total demand, no DSM total demand, w/ DSM 50% total demand w/ DSM 100% No DSM 50% DSM 100% DSM PHEV charging, gCO 2 /mi 43 41 41 Tailpipe GHGs, gCO 2 /mi (Fleet avg) 258 254 254 5.9 Michigan million drivers, 50% of vehicles are PHEVs Monte Carlo SimulaRon for Lyapunov Stability Angle Lyapunov Energy AsymptoRc bounds for the probability of load curtailment for a large populaRon system with controllable loads Time to ramp MRI response up and down, versus probabilisRc bound Probabilis&c Control of Charging PHEV Fleets Demand Side Management (DSM) X% PHEV's disallowed from charging between 2 and 9PM Task 2: Infrastructure Resilience Modeling Task 3: MRI Design OpRmizaRon Task 1: Infrastructure Sustainability Modeling (ABM/LCA) Task 5: Infrastructure Control Task 6: Model IntegraRon/ReducRon Above Figure from: T. Yoshida, M. Takahashi, S. Morikawa, et al. 2006 Liion Ba\ery Electrochemical Health SimulaRon Controlled PHEV charging will beVer uRlize the generaRon assets and renewable resources during light load hours, and help prevent increases in peak load and grid instabiliRes. Total energy [GJ] Losses [GJ] Peak load [pu] Peak hr Uncontrolled 19.9898 0.1284 (0.64%) 0.3350 6:12 PM Min. losses 19.8818 0.0373 (0.19%) 0.2457 3:04 AM Dual Tariff 19.9898 0.1284 (0.64%) 0.5235 8:24 PM Task 4: Intermediary Control

Upload: others

Post on 19-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AMul&’ScaleDesignandControlFrameworkfor ...stein/Research-NSF-V2G/efri... · AMul&’Scale"Design"and"Control"Frameworkfor"" DynamicallyCoupledSustainableandResilientInfrastructures,"

A  Mul&-­‐Scale  Design  and  Control  Framework  for    Dynamically  Coupled  Sustainable  and  Resilient  Infrastructures,  

 with  Applica&on  to  Vehicle-­‐to-­‐Grid  Integra&on  (EFRI  –  RESIN,  Award  Number:  0835995)  

People  PI:  Jeffrey  Stein  [[email protected]]  (University  of  Michigan)  Co-­‐PIs:  Zoran  Filipi  [[email protected]],  Gregory  Keoleian  [[email protected]],  Huei  Peng  [[email protected]]  (U-­‐M)  and  Mariesa  Crow  [[email protected]]  (Missouri  University  of  Science  and  Technology)    Par&cipa&ng  Inves&gators:  Duncan  Callaway  [[email protected]]  (Berkeley),    Hosam  Fathy  [[email protected]]  (U-­‐M),  Carl  Simon  [[email protected]]  (U-­‐M),  John  Sullivan  [[email protected]]  (U-­‐M)  and  Jing  Sun  [[email protected]]  (U-­‐M)  

Good  and  frequent  communicaRon  and  interacRon  is  considered  key  to  our   project's   success   and   this   occurs   primarily   at   biweekly   research  meeRngs.    At  each  meeRng  a  presentaRon  is  given  by  of  one  of  the  task  area   researchers.     This   allows   team  members   see   what   each   task   is  focused   on,  what   their   results  mean,   how   it   affects   all   tasks   projects,  and  the  potenRal  for  task  integraRon.    Offsite  team  members  aVend  via  teleconferencing   and   receive   slides   via   email.     Offsite   team  members  can  visit  U  of  M  as  oWen  and  for  as  long  as  they  would  to  because  office  space  has  been  made  available  for  them.  

Research  Objec&ves   Project  Descrip&on  

Enabling  Poten&ally  Transforma&ve  Results  Status  of  Research  

Managing  a  Mul&-­‐Disciplinary  and  Mul&-­‐Ins&tu&onal  Project  

Vehicle  to  Grid  (V2G)  may  poten&ally  improve  resilience  by:      -­‐CreaRng  a  redundancy  of  power  sources  and  flow  paths.      -­‐Improving  grid  integrity  to  disturbances  through  energy  storage.      -­‐Decreasing  the  load  through  peak  shaving  and  reacRve  power.  

V2G  provides  sustainability  through  increased  energy  storage:      -­‐Allowing  the  grid  to  beVer  absorb  renewable  electricity.      -­‐RedistribuRng  power  demand  over  Rme  in  both  infrastructures.      -­‐Possibly  decreasing  use  of  expensive  grid  peaking  units.  

Sustainability  and  Resilience  

FUEL  PUMP  

PHEV  

BATTERY  Outlet  

Personal  TransportaRon  Infrastructure  

Electric  Power  Infrastructure  

Mul&-­‐Role  Intermediaries  (MRIs)  An   infrastructure’s   sustainability   and  resilience  oWen  depend  on  how  strongly  coupled   it   is   to   other   infrastructures  through   the   exchange   of   commodiRes,  resources,  services,  or  informaRon.  This  exchange   oWen   takes   place   through  MulR-­‐Role  Intermediaries  which  may  be  organizaRons,   individuals   or   intelligent  devices.  

Plug-­‐in   hybrid   electric   vehicles   are   an  important  MRI  because  they  couple  the  personal   transportaRon   infrastructure  with   the   electric   power   infrastructure.    This  is  the  project’s  test  bed  applicaRon.  

0  2000  4000  6000  8000  

10000  12000  14000  16000  

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  

deman

d,  M

W  

hour  of  day  

Electricity  Demand,  Effect  of  DSM  

non-­‐PHEV  demand  

total  demand,  no  DSM  

total  demand,  w/  DSM  50%  

total  demand  w/  DSM  100%  

No  DSM  

50%  DSM  

100%  DSM  

PHEV  charging,  gCO2/mi   43   41   41  

Tailpipe  GHGs,  gCO2/mi    (Fleet  avg)   258   254   254  

5.9  Michigan  million  drivers,  50%  of  vehicles  are  PHEVs  

Monte  Carlo  SimulaRon  for  Lyapunov  Stability  

Angle  

Lyapunov  Energy  

AsymptoRc  bounds  for  the  probability  of  load  curtailment  for  a  large  populaRon  system  with  controllable  loads  

Time  to  ramp  MRI  response  up  and  down,  versus  probabilisRc  bound  

Probabilis&c  Control  of  Charging  PHEV  Fleets  

Demand  Side  Management  (DSM)  -­‐  X%  PHEV's  disallowed  from  charging  between  2  and  9PM  

Task  2:  Infrastructure  Resilience  Modeling  

Task  3:  MRI  Design  OpRmizaRon  

Task  1:  Infrastructure  Sustainability  Modeling  (ABM/LCA)  

Task  5:  Infrastructure  Control   Task  6:  Model  IntegraRon/ReducRon  

Above  Figure  from:  T.  Yoshida,  M.  Takahashi,  S.  Morikawa,  et  al.  2006  

Li-­‐ion  Ba\ery  Electrochemical  Health  SimulaRon  

Controlled   PHEV   charging  will   beVer   uRlize   the  generaRon   assets   and  renewable   resources   during  light   load   hours,   and   help  prevent   increases   in   peak  load  and  grid  instabiliRes.        

Total  energy  [GJ] Losses  [GJ] Peak  load  [pu] Peak  hr

Uncontrolled 19.9898 0.1284  (0.64%) 0.3350 6:12  PM

Min.  losses 19.8818 0.0373  (0.19%) 0.2457 3:04  AM

Dual  Tariff 19.9898 0.1284  (0.64%) 0.5235 8:24  PM

Task  4:  Intermediary  Control