an-31 amplifier circuit collection (rev. d)

42
Application Report AN-31 amplifier circuit collection ABSTRACT This application report provides basic circuits of the Texas Instruments amplifier collection. Table of Contents 1 Basic Circuits.......................................................................................................................................................................... 3 2 Signal Generation................................................................................................................................................................. 15 3 Signal Processing.................................................................................................................................................................24 4 References............................................................................................................................................................................ 41 Revision History.......................................................................................................................................................................41 List of Figures Figure 1-1. Inverting Amplifier......................................................................................................................................................3 Figure 1-2. Non-Inverting Amplifier.............................................................................................................................................. 3 Figure 1-3. Difference Amplifier................................................................................................................................................... 4 Figure 1-4. Low-Power Difference Amplifier................................................................................................................................ 4 Figure 1-5. Inverting Summing Amplifier..................................................................................................................................... 5 Figure 1-6. Non-Inverting Summing Amplifier.............................................................................................................................. 5 Figure 1-7. Inverting Amplifier With High Input Impedance......................................................................................................... 6 Figure 1-8. Two-Stage Inverting Amplifier With High Input Impedance....................................................................................... 6 Figure 1-9. AC Coupled Non-Inverting Amplifier......................................................................................................................... 7 Figure 1-10. Practical Differentiator............................................................................................................................................. 7 Figure 1-11. Integrator................................................................................................................................................................. 8 Figure 1-12. Current to Voltage Converter (Transimpedance Amplifier)......................................................................................8 Figure 1-13. Reference Voltage Generator..................................................................................................................................9 Figure 1-14. Neutralizing Input Capacitance to Optimize Response Time.................................................................................. 9 Figure 1-15. Threshold Detector for Photodiodes......................................................................................................................10 Figure 1-16. Double-Ended Limit Detector................................................................................................................................ 10 Figure 1-17. Multiple Aperture Window Discriminator................................................................................................................ 11 Figure 1-18. Offset Voltage Adjustment for Inverting Amplifiers................................................................................................ 12 Figure 1-19. Offset Voltage Adjustment for Non-Inverting Amplifiers........................................................................................ 12 Figure 1-20. Offset Voltage Adjustment for Voltage Followers.................................................................................................. 13 Figure 1-21. Offset Voltage Adjustment for Difference Amplifiers..............................................................................................13 Figure 1-22. Offset Voltage Adjustment for Inverting Amplifiers With Source Resistance......................................................... 14 Figure 2-1. Sine Wave Generator With Low Component Count................................................................................................ 15 Figure 2-2. Sine Wave Generator.............................................................................................................................................. 15 Figure 2-3. Free-Running Multivibrator...................................................................................................................................... 16 Figure 2-4. Function Generator................................................................................................................................................. 16 Figure 2-5. Pulse Width Modulator............................................................................................................................................ 17 Figure 2-6. Improved Howland Current Pump........................................................................................................................... 18 Figure 2-7. Wien Bridge Oscillator With Automatic Gain Control.............................................................................................. 18 Figure 2-8. Positive Output Voltage Reference......................................................................................................................... 19 Figure 2-9. Buffered Positive Voltage Reference....................................................................................................................... 19 Figure 2-10. Negative Output Voltage Reference...................................................................................................................... 20 Figure 2-11. Buffered Negative Voltage Reference................................................................................................................... 20 Figure 2-12. Current Sink.......................................................................................................................................................... 21 Figure 2-13. Current Source...................................................................................................................................................... 21 Figure 2-14. Voltage-to-Current Converter With BJT Output..................................................................................................... 22 Figure 2-15. Voltage-to-Current Converter With Darlington Pair Output................................................................................... 22 Figure 2-16. Voltage-to-Current Converter With MOSFET Output............................................................................................ 23 Figure 3-1. Instrumentation Amplifier.........................................................................................................................................24 www.ti.com Table of Contents SNLA140D – MARCH 2019 – REVISED OCTOBER 2020 Submit Document Feedback AN-31 amplifier circuit collection 1 Copyright © 2020 Texas Instruments Incorporated

Upload: others

Post on 04-Oct-2021

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AN-31 Amplifier Circuit Collection (Rev. D)

Application ReportAN-31 amplifier circuit collection

ABSTRACT

This application report provides basic circuits of the Texas Instruments amplifier collection.

Table of Contents1 Basic Circuits..........................................................................................................................................................................32 Signal Generation................................................................................................................................................................. 153 Signal Processing.................................................................................................................................................................244 References............................................................................................................................................................................ 41Revision History.......................................................................................................................................................................41

List of FiguresFigure 1-1. Inverting Amplifier......................................................................................................................................................3Figure 1-2. Non-Inverting Amplifier..............................................................................................................................................3Figure 1-3. Difference Amplifier................................................................................................................................................... 4Figure 1-4. Low-Power Difference Amplifier................................................................................................................................ 4Figure 1-5. Inverting Summing Amplifier..................................................................................................................................... 5Figure 1-6. Non-Inverting Summing Amplifier..............................................................................................................................5Figure 1-7. Inverting Amplifier With High Input Impedance......................................................................................................... 6Figure 1-8. Two-Stage Inverting Amplifier With High Input Impedance....................................................................................... 6Figure 1-9. AC Coupled Non-Inverting Amplifier......................................................................................................................... 7Figure 1-10. Practical Differentiator............................................................................................................................................. 7Figure 1-11. Integrator................................................................................................................................................................. 8Figure 1-12. Current to Voltage Converter (Transimpedance Amplifier)......................................................................................8Figure 1-13. Reference Voltage Generator..................................................................................................................................9Figure 1-14. Neutralizing Input Capacitance to Optimize Response Time.................................................................................. 9Figure 1-15. Threshold Detector for Photodiodes......................................................................................................................10Figure 1-16. Double-Ended Limit Detector................................................................................................................................ 10Figure 1-17. Multiple Aperture Window Discriminator................................................................................................................11Figure 1-18. Offset Voltage Adjustment for Inverting Amplifiers................................................................................................ 12Figure 1-19. Offset Voltage Adjustment for Non-Inverting Amplifiers........................................................................................ 12Figure 1-20. Offset Voltage Adjustment for Voltage Followers.................................................................................................. 13Figure 1-21. Offset Voltage Adjustment for Difference Amplifiers..............................................................................................13Figure 1-22. Offset Voltage Adjustment for Inverting Amplifiers With Source Resistance.........................................................14Figure 2-1. Sine Wave Generator With Low Component Count................................................................................................15Figure 2-2. Sine Wave Generator..............................................................................................................................................15Figure 2-3. Free-Running Multivibrator......................................................................................................................................16Figure 2-4. Function Generator................................................................................................................................................. 16Figure 2-5. Pulse Width Modulator............................................................................................................................................ 17Figure 2-6. Improved Howland Current Pump........................................................................................................................... 18Figure 2-7. Wien Bridge Oscillator With Automatic Gain Control.............................................................................................. 18Figure 2-8. Positive Output Voltage Reference......................................................................................................................... 19Figure 2-9. Buffered Positive Voltage Reference.......................................................................................................................19Figure 2-10. Negative Output Voltage Reference......................................................................................................................20Figure 2-11. Buffered Negative Voltage Reference................................................................................................................... 20Figure 2-12. Current Sink.......................................................................................................................................................... 21Figure 2-13. Current Source...................................................................................................................................................... 21Figure 2-14. Voltage-to-Current Converter With BJT Output.....................................................................................................22Figure 2-15. Voltage-to-Current Converter With Darlington Pair Output................................................................................... 22Figure 2-16. Voltage-to-Current Converter With MOSFET Output............................................................................................ 23Figure 3-1. Instrumentation Amplifier.........................................................................................................................................24

www.ti.com Table of Contents

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 1

Copyright © 2020 Texas Instruments Incorporated

Page 2: AN-31 Amplifier Circuit Collection (Rev. D)

Figure 3-2. Variable Gain Instrumentation Amplifier.................................................................................................................. 25Figure 3-3. Instrumentation Amplifier With ±100-V Common Mode Range...............................................................................25Figure 3-4. Instrumentation Amplifier With ±10-V Common Mode Range.................................................................................26Figure 3-5. High Input Impedance Instrumentation Amplifier.................................................................................................... 26Figure 3-6. Bridge Amplifier With Temperature Sensitivity........................................................................................................ 27Figure 3-7. Precision Diode....................................................................................................................................................... 27Figure 3-8. Precision Clamp...................................................................................................................................................... 27Figure 3-9. Fast Half Wave Rectifier..........................................................................................................................................28Figure 3-10. AC to DC Converter.............................................................................................................................................. 28Figure 3-11. Peak Detector........................................................................................................................................................29Figure 3-12. Absolute Value Amplifier........................................................................................................................................29Figure 3-13. Sample and Hold I.................................................................................................................................................30Figure 3-14. Sample and Hold II................................................................................................................................................30Figure 3-15. Adjustable Q Notch Filter...................................................................................................................................... 31Figure 3-16. Easily Tuned Notch Filter...................................................................................................................................... 32Figure 3-17. Sallen-Key Two-Stage Bandpass Filter.................................................................................................................32Figure 3-18. Two-Stage Capacitance Multiplier.........................................................................................................................33Figure 3-19. Simulated Inductor................................................................................................................................................ 33Figure 3-20. Capacitance Multiplier........................................................................................................................................... 34Figure 3-21. High Pass Sallen-Key Active Filter........................................................................................................................34Figure 3-22. Low Pass Sallen-Key Active Filter.........................................................................................................................35Figure 3-23. Current Monitor..................................................................................................................................................... 35Figure 3-24. Saturating Servo Preamplifier With Rate Feedback..............................................................................................36Figure 3-25. Power Booster.......................................................................................................................................................36Figure 3-26. Fast Zero Crossing Detector................................................................................................................................. 37Figure 3-27. Amplifier for Piezoelectric Transducer...................................................................................................................37Figure 3-28. Temperature Probe................................................................................................................................................38Figure 3-29. Photodiode Amplifier I........................................................................................................................................... 38Figure 3-30. Photodiode Amplifier II.......................................................................................................................................... 39Figure 3-31. High Input Impedance AC Follower.......................................................................................................................39Figure 3-32. Multiplier/Divider....................................................................................................................................................40

TrademarksAll other trademarks are the property of their respective owners.

Trademarks www.ti.com

2 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 3: AN-31 Amplifier Circuit Collection (Rev. D)

1 Basic Circuits

-2.5 V

2.5 V

R1 10k

R2 10k

+

Vin

Vout

-

++

LMx58B/LM2904B

*R 10k

8KQP = F42

41

8EJ

Û 4 1LPEKJ=H PK 2NKPA?P ./358 & ./324

&ARE?AO BNKI 6N=JOEAJP %QNNAJP 5LEGAO

Figure 1-1. Inverting Amplifier

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design bydownloading TINA-TI and the schematic. To learn more about *R and how to protect LM358/LM2904 devicesfrom transient current spikes at the input, see [23].

-2.5 V

2.5 V

R1 1k

R2 1k

Vout

-

++

TLV9062

+

Vin

8KQP = l1 + 4241

p8EJ

Figure 1-2. Non-Inverting Amplifier

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design bydownloading TINA-TI and the schematic.

www.ti.com Basic Circuits

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 3

Copyright © 2020 Texas Instruments Incorporated

Page 4: AN-31 Amplifier Circuit Collection (Rev. D)

-15 V

15 V

R2 2k

-

++

TLV9302

+

V1

R1 1k

+

V2

R3 1k

R4 2k

Vout

8KQP = l 44

43 + 44

p l1 +42

41

p82 F 42

41

81

(KN 41 = 43 =J@ 42 = 44

8KQP =42

41

:82 F 81;

Figure 1-3. Difference Amplifier

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design bydownloading TINA-TI and the schematic.

-1.8 V

1.8 V

R2 20MEG

+

Vin1

R1 10MEG

+

Vin2

R3 10MEG

R4 20MEG

Vout

C2 10p

C1 10p

TLV379

-

++

8KQP = l 44

43 + 44

p l1 +42

41

p82 F 42

41

81

(KN 41 = 43 =J@ 42 = 44

8KQP =42

41

:82 F 81;

B?QPKBB =1

2è%242

Figure 1-4. Low-Power Difference Amplifier

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design bydownloading TINA-TI and the schematic.

Basic Circuits www.ti.com

4 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 5: AN-31 Amplifier Circuit Collection (Rev. D)

-7.5 V

7.5 V

R4 2k

+

V1

R1 1k

+

V2

R2 1k

*R5 250

Vout

+

V3

R3 1k

-

++

TLV9102

8KQP = F44 l81

41

+82

42

+83

43

p

Û 45 1LPEKJ=H BKN +JLQP $E=O %QNNAJP %=J?AHH=PEKJ

Figure 1-5. Inverting Summing Amplifier

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design bydownloading TINA-TI and the schematic.

-15 V

15 V

R2 10k

Vout

+

V1

R3 10k

+

V2

R4 10k

R1 10k

-

++

OPA2990

8KQP = l1 +42

41

p l81

44

43 + 44

+ 82

43

43 + 44

p

8KQP = l1 +42

41

p l 44

43 + 44

p :81 + 82; EB 43 = 44

Figure 1-6. Non-Inverting Summing Amplifier

See Analog engineer's circuit cookbook: amplifiers for more information. Simulate this design by downloadingTINA-TI and the schematic.

www.ti.com Basic Circuits

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 5

Copyright © 2020 Texas Instruments Incorporated

Page 6: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

2.5 V

R1 10MEG

R2 10MEG

+

Vin

Vout

*R3 5MEG

C1 3p

-

++

TLV379

8KQP = F42

41

8EJ

Û 43 1LPEKJ=H BKN +JLQP $E=O %QNNAJP %=J?AHH=PEKJ

Figure 1-7. Inverting Amplifier With High Input Impedance

Simulate this design by downloading TINA-TI and the schematic.

-2.5 V

2.5 V

-2.5 V

2.5 V

R1 5k

R2 10k

+

Vin

Vout

C1 5p

-

++

TLV9052

-

++

TLV9052

8KQP = F42

41

8EJ

Figure 1-8. Two-Stage Inverting Amplifier With High Input Impedance

Simulate this design by downloading TINA-TI and the schematic.

Basic Circuits www.ti.com

6 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 7: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

2.5 V

R1 100k

R2 1MEG

Vout

+

Vin

C1 1µ

R3 91k

-

++

LM324LV

8KQP = l1 +42

41

p8EJ

43 = 41||42 BKN %/44

B?QPKBB HKS =1

2è × %1 × 43

Figure 1-9. AC Coupled Non-Inverting Amplifier

See Analog engineer's circuit cookbook: amplifiers for more information. Simulate this design by downloadingTINA-TI and the schematic.

-2.5 V

2.5 V

-

++

TLV9062

C1 10nR1 1k

C2 1n

R2 10k

*R3 910

Vout

+

Vin

8KQP = F@8EJ

@P

B? =1

2è42%1

8EJ

BD =1

2è41%1

= 1

2è42%2

B? ' BD ' BQJEPU C=EJ

Û 43 1LPEKJ=H BKN +JLQP $E=O %QNNAJP %=J?AHH=PEKJ

Figure 1-10. Practical Differentiator

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design bydownloading TINA-TI and the schematic.

www.ti.com Basic Circuits

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 7

Copyright © 2020 Texas Instruments Incorporated

Page 8: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

2.5 V

R1 10k

C1 10n

*R2 10k

Vout

+Vin

S1

-

++

U1 LMV358A

R3 100

Open: Integrate

Closed: Reset

8KQP = F 1

41%1

± 8EJ@PP2

P1

B? =1

2è41%1

41 = 42

Û 42 1LPEKJ=H BKN +JLQP $E=O %QNNAJP %=J?AHH=PEKJ

Figure 1-11. Integrator

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design bydownloading TINA-TI and the schematic.

-7.5 V

7.5 V

R1 1k

Vout

-

++

TLV9102I_in

8KQP = +EJ41

Figure 1-12. Current to Voltage Converter (Transimpedance Amplifier)

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design bydownloading TINA-TI and the schematic.

Basic Circuits www.ti.com

8 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 9: AN-31 Amplifier Circuit Collection (Rev. D)

-12 V

12 V

Vout

-

++

LMx58B/LM2904B

R1 10k

R2 3.83k

+

Vin

8KQP =42

41 + 428EJ

Figure 1-13. Reference Voltage Generator

Simulate this design by downloading TINA-TI and the schematic.

-2.5 V

2.5 V

-

++

LM324LV

R1 1k R2 10k

C2 100n

+

Vin

R3 200 C1 2n

Vout

%1 Q41

42

%2

Figure 1-14. Neutralizing Input Capacitance to Optimize Response Time

Simulate this design by downloading TINA-TI and the schematic.

www.ti.com Basic Circuits

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 9

Copyright © 2020 Texas Instruments Incorporated

Page 10: AN-31 Amplifier Circuit Collection (Rev. D)

-1.8 V

1.8 V

-1.8 V

1.8 V

D1

-

++

TLV8542

R1 180k R_Load

Vout

8KQP = 1.88 => &EK@A 1BB

8KQP = F1.88 => &EK@A 1J

41 %KJPNKHO 5AJOEPEREPU PK .ECDP

Figure 1-15. Threshold Detector for Photodiodes

For more information on modeling photodiodes, see [8]. Simulate this design by downloading TINA-TI and theschematic.

1.9V

1.7V

VH

VL

+

Vin TLV8542

-

++

TLV8542

3.3 V

-

++

3.3 V

+B 8EJ > 1.98, PDAJ 8* = 0 =J@ 8. = 3.38

+B 1.98 > 8EJ > 1.78, PDAJ 8* = 3.38 =J@ 8. = 3.38

+B 8EJ < 1.78, PDAJ 8* = 3.38 =J@ 8. = 0

Figure 1-16. Double-Ended Limit Detector

Simulate this design by downloading TINA-TI and the schematic.

Basic Circuits www.ti.com

10 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 11: AN-31 Amplifier Circuit Collection (Rev. D)

5 V

3.4V

3.2V

5 V

5 V

1.9V

1.7V

5 V

V1

V2

+

Vin

V3

V4

-

+oSW1

-

++

TLV9064

-

++

TLV9064

-

++

TLV9064

-

++

TLV9064

-

+oSW2

-

+oSW3

8EJ > 3.48 \ 81 = 1,82 = 1,83 = 1,84 = 1

3.48 > 8EJ > 3.28 \ 81 = 0,82 = 1,83 = 1,84 = 1

3.28 > 8EJ > 1.98 \ 81 = 0,82 = 0,83 = 1,84 = 1

1.98 > 8EJ > 1.78 \ 81 = 0,82 = 0,83 = 0,84 = 1

1.78 > 8EJ \ 81 = 0,82 = 0,83 = 0,84 = 0

V1 High: SW1 Closed

V1 Low: SW1 Open

V2 High: SW2 Closed

V2 Low: SW2 Open

V3 High: SW3 Closed

V3 Low: SW3 Open

Figure 1-17. Multiple Aperture Window Discriminator

Simulate this design by downloading TINA-TI and the schematic.

www.ti.com Basic Circuits

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 11

Copyright © 2020 Texas Instruments Incorporated

Page 12: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

2.5 V

2.5 V

-2.5 V

R3 10k

VoutR1 50k

R2 200

-

++

LM2904LV/LM358LV

R4 10k

P1 50k

+

Vin

1BBOAP 4=JCA = 8OQLLHU l42

41

p

8KQP = lF43

44

p8EJ

41 ( 42

Figure 1-18. Offset Voltage Adjustment for Inverting Amplifiers

Simulate this design by downloading TINA-TI and the schematic.

-2.5 V

2.5 V

2.5 V

-2.5 V

R3 10k

Vout

R1 50k

R2 200

-

++

LM2904LV/LM358LV

R4 10k

P1 50k

+

Vin

1BBOAP 4=JCA = 8OQLLHU l42

41

p

8KQP = l1 +43

42 + 44

p8EJ

41 ( 42 =J@ 44 ( 42

Figure 1-19. Offset Voltage Adjustment for Non-Inverting Amplifiers

Simulate this design by downloading TINA-TI and the schematic.

Basic Circuits www.ti.com

12 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 13: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

2.5 V

2.5 V

-2.5 V

R2 1k

Vout

R1 500kP1 100k -

++

LM324LV

+

Vin

1BBOAP 4=JCA = 8OQLLHU l42

41

p

8KQP N 8EJ

41 ( 42

Figure 1-20. Offset Voltage Adjustment for Voltage Followers

Simulate this design by downloading TINA-TI and the schematic.

2.5 V

-2.5 V

-2.5 V

2.5 V

Vout

R4 19.3k

R3 10k

R1 10k

R2 20k

-

++

LM324LV

R5 700

R6 100k

P1 50k

+

V1

+

V2

42 = 44 + 45

41 = 43

1BBOAP 4=JCA = 8OQLLHU l 45

45 + 46

p l 43

43 + 44

p

8KQP = l42

41

p :82 F 81;

45 ' 1BBOAP 'MQER=HAJP 4AOEOP=J?A

Figure 1-21. Offset Voltage Adjustment for Difference Amplifiers

Simulate this design by downloading TINA-TI and the schematic.

www.ti.com Basic Circuits

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 13

Copyright © 2020 Texas Instruments Incorporated

Page 14: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

2.5 V

2.5 V

-2.5 V

R3 10k

Vout

R4 1k

P2 100k

-

++

LMV358A

R1 1MEG

+

Vin

43||44 Q 10GÀ

1BBOAP 4=JCA = 8OQLLHU l43||44

41

p

8KQP = lF43

44

p8EJ

Figure 1-22. Offset Voltage Adjustment for Inverting Amplifiers With Source Resistance

Simulate this design by downloading TINA-TI and the schematic.

Basic Circuits www.ti.com

14 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 15: AN-31 Amplifier Circuit Collection (Rev. D)

2 Signal Generation

GND

R2 150k

R1 1k

R3 2.71k

C1 10n

R4 2.71k

C2 10n

R5 2.71k

C3 10n

Vout

-

++

TLV9062

2.5 V

-2.5 V

42

41

( 8

.AP 4 = 43 , 44 , 45 =J@ % = %1 , %2 , %3

BKO?EHH=PEKJ N 2è4%

tan(60°)

Figure 2-1. Sine Wave Generator With Low Component Count

For more information on this configuration, also known as a phase-shift oscillator, see [9] and [10]. Simulate thisdesign by downloading TINA-TI and the schematic.

GND

R2 150k

R1 16.5k

R3 2.71k

C1 10n

R4 2.71k

C2 10n

R5 2.71k

C3 10n

Vout

-

++

TLV9064

TLV9064

TLV9064

TLV9064

-2.5 V

-2.5 V

-2.5 V

-2.5 V

2.5 V

2.5 V

2.5 V

2.5 V

-

++

-

++

-

++

8 Q42

41

Q 10

.AP 4 = 43 , 44 , 45 =J@ % = %1 , %2 , %3

BKO?EHH=PEKJ = 2è4%

tan(60°)

Figure 2-2. Sine Wave Generator

For more information on this configuration, also known as a buffered phase-shift oscillator, see [9] and [10].Simulate this design by downloading TINA-TI and the schematic.

www.ti.com Signal Generation

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 15

Copyright © 2020 Texas Instruments Incorporated

Page 16: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

2.5 V

R1 200k

Vout

R3 160k

R2 910k

C1 10n

-

++

TLV9062

BKO?EHH=PEKJ = 1

241%1HJ @1 + 242

43

A

Figure 2-3. Free-Running Multivibrator

Simulate this design by downloading TINA-TI and the schematic.

-2.5 V

2.5 V

-2.5 V

2.5 V

R1 10k R2 90k

R3 50k R4 50k

R5 40k

C1 1n

Triangle Wave

Square Wave

-

++

TLV9062

TLV9062

-

++

#ILHEPQ@APNE=JCHA = 8?? 45

41 + 42

BKO?EHH=PEKJ = 2

è%1:43 + 44; BKN 43 + 44 > 100GÀ

Figure 2-4. Function Generator

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

Signal Generation www.ti.com

16 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 17: AN-31 Amplifier Circuit Collection (Rev. D)

5 V

2.5V

5 V

5 V

5 V

2.5V

2.5V

R3 10k

R4 10k

+

Vin

OPA365

R1 10k

R2 10k C2 100n

C1 100p

3

2

74

6

8

TLV3501

Vsin

Vout

Vtri

OPA365

R7 5.9k

C3 100p

3

2

74

6

8

TLV3501

V1

R6 10k R5 8.45k

-

++

-

++

-

++

-

++

41 = 42 = 43 = 44

8PNE > �8E�

45

46

=�8PNE �

�81� BKN 81 = 8NAB

BKO?EHH=PEKJ = 46

4 × 47 × 45 × %3

%1 > 1

2è × 44 × BKO?EHH=PEKJ

%2 = 1

2è × BJKEOA BEHPAN × :41||42;

Figure 2-5. Pulse Width Modulator

See Analog engineer's circuit cookbook: amplifiers for more information. Simulate this design by downloadingTINA-TI and the schematic.

www.ti.com Signal Generation

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 17

Copyright © 2020 Texas Instruments Incorporated

Page 18: AN-31 Amplifier Circuit Collection (Rev. D)

-15 V

15 V

-

++

OPA192

R1 200k

R2 200k

R3 100k

R4 100k

R5 1k

+

Vin

R_load 1k

Iout

+KQP = F438EJ

4145

43 = 44 + 45

41 = 42

Figure 2-6. Improved Howland Current Pump

For an in-depth dive into this configuration, see our [11]. Simulate this design by downloading TINA-TI and theschematic.

-5 V

5 V

Vout Vout

R1 620

T1 2N4416

R2 5.1k

R3 4.7k

R4 10k

R5 2k

R6 2k

-

++

OPA2990

C1 10n

C2 10n

Vout

D1 1N4150

BKO?EHH=PEKJ =1

2è%145

5AP )=EJ = 3.1

)=EJ =43 + 44

44

45 = 46

%1 = %2

Figure 2-7. Wien Bridge Oscillator With Automatic Gain Control

Simulate this design by downloading TINA-TI and the schematic.

Signal Generation www.ti.com

18 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 19: AN-31 Amplifier Circuit Collection (Rev. D)

15 V

-

++

OPA202

Vout

R2 1k

R3 10k

R4 1k

R1 1k

Z1 1N2804

7.588 Q 8KQP Q 13.938

41 ?KJPNKHO 8KQP ,I=T

42,44, & 8VAJAN ?KJPNKH 8KQP ,IEJ

Figure 2-8. Positive Output Voltage Reference

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

15 V

15 V

Vout

R1 10k

R2 1k

R3 10k

R4 1k

Z1 1N2804 -

++

TLV9102

500I8 Q 8KQP Q 5.58

&A?NA=OEJC 42 & 44 EJ?NA=OAO 8KQP N=JCA

8VAJAN =@FQOPO 8KQP N=JCA

Figure 2-9. Buffered Positive Voltage Reference

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

www.ti.com Signal Generation

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 19

Copyright © 2020 Texas Instruments Incorporated

Page 20: AN-31 Amplifier Circuit Collection (Rev. D)

-15 V

OPA202

Vout

R2 5k

R3 100k

R4 5k

R1 1k

Z1 1N2804

-

++

F13.98 Q 8KQP Q F7.68

&A?NA=OEJC 42 =J@ 44 EJ?NA=OAO 8KQP N=JCA

8VAJAN =@FQOPO 8KQP N=JCA

Figure 2-10. Negative Output Voltage Reference

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

-15 V

-15 V

Vout

R4 1k

R3 10k

R2 1k

Z1 1N2804-

++

TLV9102

R1 1k

F5.58 Q 8KQP Q F500I8

&A?NA=OEJC 42 & 44 EJ?NA=OAO 8KQP N=JCA

8VAJAN =@FQOPO 8KQP N=JCA

Figure 2-11. Buffered Negative Voltage Reference

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

Signal Generation www.ti.com

20 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 21: AN-31 Amplifier Circuit Collection (Rev. D)

15 V

15 V

Q2 2N2219

Q1 2N3460

R2 10k

-

++

LMx58B/LM2904B

R1 10k

AM1

R_Load

+

Vin

+K = 8EJ

41

8EJ R 08

'JOQNA 41 ( 4.K=@

Figure 2-12. Current Sink

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

-15 V

-15 VQ2 2N2219

Q1 2N3460

R1 25

R2 10k

Iout

R_Load

+

Vin

-

++

OPA2990

+KQP = 8KQP

41

8EJ < 0

Figure 2-13. Current Source

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

www.ti.com Signal Generation

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 21

Copyright © 2020 Texas Instruments Incorporated

Page 22: AN-31 Amplifier Circuit Collection (Rev. D)

36 V

-

++

OPA172R1 120k

R2 5k+

Vin

Cf 40p

Rf 50k

Riso 100

Rs 40m

T1 2N5686

36 V

Rload

Iout

+KQP = 8EJ42

4O:41 + 42;

4O = 8EJ ,I=T

+KQP ,I=T

Figure 2-14. Voltage-to-Current Converter With BJT Output

Simulate this design by downloading TINA-TI and the schematic.36 V

36 V

Rf 10k

Rs 50m

Rload

T1 2N5686R2 5k

R1 95k

-

++

OPA170

Cf 1n

T2 2N3442

+

Vin

Riso 100

Iout

+KQP = 8EJ42

4O:41 + 42;

4O = 8EJ ,I=T

+KQP ,I=T

Figure 2-15. Voltage-to-Current Converter With Darlington Pair Output

Simulate this design by downloading TINA-TI and the schematic.

Signal Generation www.ti.com

22 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 23: AN-31 Amplifier Circuit Collection (Rev. D)

5 V

5 V

Rs 20

Riso 100

R_load

T1 SI2304D

Iout

RF 1k

+

Vin

C1 1n

-

++

TLV9062

+KQP = 8EJ

4O

4O = 8EJ ,I=T

+KQP ,I=T

Figure 2-16. Voltage-to-Current Converter With MOSFET Output

Simulate this design by downloading TINA-TI and the schematic.

www.ti.com Signal Generation

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 23

Copyright © 2020 Texas Instruments Incorporated

Page 24: AN-31 Amplifier Circuit Collection (Rev. D)

3 Signal Processing

15 V

-15 V15 V

-15 V

15 V

-15 V

+

Vin+

+

Vin--

++

TLV9302

TLV9302

OPA2990

R1 1k

R2 1k

R3 100k

R4 100k

Vout

-

++

-

++

8KQP =43

41

:8EJ+ F 8EJF;

43

41

=44

42

Figure 3-1. Instrumentation Amplifier

Simulate this design by downloading TINA-TI and the schematic.

Signal Processing www.ti.com

24 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 25: AN-31 Amplifier Circuit Collection (Rev. D)

15 V

-15 V15 V

-15 V

15 V

-15 V

15 V

-15 V

+

Vin+

+

Vin--

++

TLV9302

TLV9302

-

++

OPA2990

R1 10k

R2 10k

R3 10k

R4 10k

Vout

-

++

OPA2990

R5 1MEGC1 5p

-

++

8KQP =10

F44643

41

:8EJ+ F 8EJF;

43

41

=44

42

R6 10k

Figure 3-2. Variable Gain Instrumentation Amplifier

Simulate this design by downloading TINA-TI and the schematic.

-15 V

15 V

-15 V

15 V

-

++

OPA2990

+

Vin+

Vout

R1 50k *R2 5k

R3 5k

C1 3p

-

++

OPA2990

+

Vin-

R7 50k *R5 5k

R6 50k

C2 3p

R4 5k

42 = 43 = 44 = 45

41 = 46 = 1043

8KQP = l47

46

p8EJ

Û 42 =J@ 45 1LPEKJ=H BKN +JLQP $E=O %QNNAJP %=J?AHH=PEKJ

Figure 3-3. Instrumentation Amplifier With ±100-V Common Mode Range

Simulate this design by downloading TINA-TI and the schematic.

www.ti.com Signal Processing

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 25

Copyright © 2020 Texas Instruments Incorporated

Page 26: AN-31 Amplifier Circuit Collection (Rev. D)

15 V

-15 V15 V

-15 V

15 V

-15 V

R1 5k

R4 5k

OPA2189

OPA2189

OPA2990

R3 10k

R2 10k

R5 10k

R6 100k

R7 100k

Vout

-

++

-

++

-

++

+

Vin-

+

Vin+

41 = 44

42 = 45

46 = 47

8KQP = 46

42

l1 +241

43

p8EJ

Figure 3-4. Instrumentation Amplifier With ±10-V Common Mode Range

Simulate this design by downloading TINA-TI and the schematic.

-5 V -5 V

5 V 5 V

-

++

TLV9102 TLV9102

R1 99k R2 1k R3 1k R4 99k

Vout

+

Vin+

+

Vin-

-

++

41 = 44 & 42 = 43

8KQP = l1 +41

42

p8EJ

Figure 3-5. High Input Impedance Instrumentation Amplifier

Simulate this design by downloading TINA-TI and the schematic.

Signal Processing www.ti.com

26 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 27: AN-31 Amplifier Circuit Collection (Rev. D)

15 V

-15 V

R1 1K

R2 1K

Vout

-

++

LMx58B/LM2904B

PT

C

PTC2

PTC

PTC1

+

Vin

41

426%1

= 42

426%2

8KQP = 8EJ l1F 41

426%1

p

Figure 3-6. Bridge Amplifier With Temperature Sensitivity

Simulate this design by downloading TINA-TI and the schematic.

-2.5 V

2.5 V

+

Vin

Vout

D1 1N914

R_load 1k

-

++

TLV9002

8KQP = 8EJ EB 8EJ > 0

Figure 3-7. Precision Diode

For more information on this configuration, see [12]. Simulate this design by downloading TINA-TI and theschematic.

2.5 V

-2.5 V

Vout

Vref

R1 1k

+

VinD1 1N914

-

++

TLV9062

8KQP = 8EJ EB 8EJ < 8NAB

Figure 3-8. Precision Clamp

For more information on this configuration, see [12]. Simulate this design by downloading TINA-TI and theschematic.

www.ti.com Signal Processing

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 27

Copyright © 2020 Texas Instruments Incorporated

Page 28: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

2.5 V

D1 1N914

D2 1N914

-

++

TLV9052

R1 20k

R2 20k

*R4 15k

C1 3p

Vout

+

Vin

8KQP = �8EJ �

Û 44 1LPEKJ=H BKN +JLQP $E=O %QNNAJP %=J?AHH=PEKJ

Figure 3-9. Fast Half Wave Rectifier

For more information on this configuration, see [12]. See Analog engineer's circuit cookbook: amplifiers for moreinformation. Simulate this design by downloading TINA-TI and the schematic.

-15 V

15 V

-15 V

15 V

R1 20k

R2 20k

*R4 15k

+

Vin

C4 10p

R3 10k

*R5 6.2k

R7 22.2kVout

D2 1N914

D1 1N914

R6 18k C2 1u

-

++

OPA2990

-

++

U2 OPA2990

8KQP = 8EJ ,=RC

0 < 8EJ < 8?? F 8&1

'JOQNA 1L #ILO 4AI=EJ EJ .EJA=N 4=JCA

Û 44 =J@ 45 1LPEKJ=H BKN +JLQP $E=O %QNNAJP %=J?AHH=PEKJ

Figure 3-10. AC to DC Converter

For more information on this configuration, see [12]. Simulate this design by downloading TINA-TI and theschematic.

Signal Processing www.ti.com

28 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 29: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

-2.5 V

2.5 V

2.5 V

-

++

TLV9062

TLV9062

D3 1N914

D2 1N914

R2 10k

C2 10n

R1 1MEG

D1 1N914

R3 20k

Vout

+

Vin

-

++

8KQP = 8LA=G

Figure 3-11. Peak Detector

Simulate this design by downloading TINA-TI and the schematic.

2.5 V

-2.5 V

2.5 V

-2.5 V

R1 636 R2 636

R3 636

Vout

C1 100pD1 1N1199

D2 1N1199-

++

U1 TLV9002

-

++

U2 TLV9002

+

Vin

8KQP = �8EJ �

42 = 41

)$972

4=

1

2è41%1

Figure 3-12. Absolute Value Amplifier

For more information on this circuit, see [13]. Simulate this design by downloading TINA-TI and the schematic.

www.ti.com Signal Processing

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 29

Copyright © 2020 Texas Instruments Incorporated

Page 30: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

2.5 V

-2.5 V

R1 10k

C1 100n

+

Sample

+

Vin

Vout

-

++

TLV9052T1 2N6782

PO=ILHA ß %1

&NKKL 4=PA ß1

%1

Figure 3-13. Sample and Hold I

For more information on this circuit, see [14]. Simulate this design by downloading TINA-TI and the schematic.

-2.5 V

2.5 V

-2.5 V

-2.5 V

+

VinVout

-

++

TLV9052

C1 100n

R1 10k

+

Sample

T1 2N6782

T2 2N6782

PO=ILHA ß %1

&NKKL 4=PA ß1

%1

Figure 3-14. Sample and Hold II

For more information on this circuit, see [14]. Simulate this design by downloading TINA-TI and the schematic.

Signal Processing www.ti.com

30 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 31: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

2.5 V

-2.5 V

2.5 V

-

++ LM2904LV/

LM358LV

-

++

LM2904LV/LM358LV

R1 10MEG R2 10MEG

C3 540p

R3 5MEG

Vout

C1 270p

C2 270p

R4 50k

+

Vin

BK = 1

2è41%1

41 = 42 = 243

2%1 = 2%2 = %3

0.25 < 3JAPSKNG < 10

+J?NA=OEJC 2KPAJPEKIAPAN 5APPEJC +J?NA=OAO 3JAPSKNG

Figure 3-15. Adjustable Q Notch Filter

For more information on this configuration, see [15] and [16]. Simulate this design by downloading TINA-TI andthe schematic.

www.ti.com Signal Processing

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 31

Copyright © 2020 Texas Instruments Incorporated

Page 32: AN-31 Amplifier Circuit Collection (Rev. D)

-15 V

-15 V

15 V

15 V

-

++

LMx58B/LM2904B

R1 4k

R2 4k

R3 4k

C1 500p

R4 10k

-

++

LMx58B/LM2904B

R5 10k

C2 1n

+

Vin

Vout

BK = 1

2è44¥%1%2

44 = 45

41 = 43

44 =41

2

Figure 3-16. Easily Tuned Notch Filter

For more information on this configuration, see [15] and [16]. Simulate this design by downloading TINA-TI andthe schematic.

2.5 V

-2.5 V

2.5 V

-2.5 V

-

++

TLV9052

C1 10n

R2 110k

R1 110k

Vout

-

++

TLV9052

C3 10n

R4 110k

R3 110k

C4 10n

+

Vin

C2 10n

BK = 1

2è¥4142%1%2

Figure 3-17. Sallen-Key Two-Stage Bandpass Filter

For more information on this configuration, see [17]. Simulate this design by downloading TINA-TI and theschematic.

Signal Processing www.ti.com

32 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 33: AN-31 Amplifier Circuit Collection (Rev. D)

2.5 V

-2.5 V -2.5 V

2.5 V

C1 100n

R1 1k

R3 2k

C2 10p

R2 10k

-

++

TLV9062

-

++

TLV9062

Cout

%KQP = l1 + 4241

p%1

Figure 3-18. Two-Stage Capacitance Multiplier

Simulate this design by downloading TINA-TI and the schematic.

2.5 V

-2.5 V

R2 100

C1 10u

R1 100k

Lout

-

++

TLV9062

.KQP = 4142%1

<KQP = 42 + Fñ4142%1

Figure 3-19. Simulated Inductor

For more information on this configuration, see [19]. Simulate this design by downloading TINA-TI and theschematic.

www.ti.com Signal Processing

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 33

Copyright © 2020 Texas Instruments Incorporated

Page 34: AN-31 Amplifier Circuit Collection (Rev. D)

-2.5 V

2.5 V

R1 100

R2 100

R3 10

C1 1n

Cout

-

++

TLV9062

%KQP N 41

43

%1

%1 R 100 × %EJ =ILHEBEAN

4OKQN?A ( 43

Figure 3-20. Capacitance Multiplier

Simulate this design by downloading TINA-TI and the schematic.

2.5 V

-2.5 V

-

++

TLV9052

C1 20n C2 10n

R1 110k

R2 110k

+

Vin

Vout

42 = I41

%2 = J%1

B? =1

2è4%¾IJ

3 =¾IJ

I + 1

%DKKOA I =J@ J BKN @AOENA@ B? =J@ 3

Figure 3-21. High Pass Sallen-Key Active Filter

For more information on this configuration, see [17]. Simulate this design by downloading TINA-TI and theschematic.

Signal Processing www.ti.com

34 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 35: AN-31 Amplifier Circuit Collection (Rev. D)

2.5 V

-2.5 V

-

++

TLV9052

+

Vin

VoutR1 24k

C1 940p

R2 24k

C2 470p

41 = I42

%1 = J%2

B? =1

2è4%¾IJ

3 =¾IJ

I + 1

%DKKOA I =J@ J BKN @AOENA@ B? =J@ 3

Figure 3-22. Low Pass Sallen-Key Active Filter

For more information on this configuration, see [17] and [18]. Simulate this design by downloading TINA-TI andthe schematic.

R3 1k

R1 10R2 100

R_Load

Vout

I_Load

Q1 IRF9510

-

++

OPA2990

+

Vin

8KQP =4143

42

+.

Figure 3-23. Current Monitor

Simulate this design by downloading TINA-TI and the schematic.

www.ti.com Signal Processing

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 35

Copyright © 2020 Texas Instruments Incorporated

Page 36: AN-31 Amplifier Circuit Collection (Rev. D)

15 V

-15 V

R3 100k

R2 1.6k

R1 270

C1 50u

Z1 1N2804

Z2 1N2804

Vout

-

++

TLV9302

D1 � D2�

8KQP =0.18

µ# BNKI &1,&2

.EJA=N 4=JCA PDNKQCD 60µ#

Figure 3-24. Saturating Servo Preamplifier With Rate Feedback

For more information on modeling photodiodes, see [8]. More information on this configuration can be found in[20]. Simulate this design by downloading TINA-TI and the schematic.

15 V

-15 V

T1 2N2905

T2 2N2219

R1 470

R2 470

+

Vin

Vout

-

++

OPA2990

R_Load

Iout

8KQP = 8EJ

31 =J@ 32 +J?NA=OA +KQP

Figure 3-25. Power Booster

Simulate this design by downloading TINA-TI and the schematic.

Signal Processing www.ti.com

36 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 37: AN-31 Amplifier Circuit Collection (Rev. D)

Vin

-2.5V

R1 1k

R2 1k

D2 1N914 Z1 1N2804

R3 5.1k

D1 1N914

-

++

TLV9062

Vout

-2.5 V

2.5 V

6EIA PK &APA?P (=HHEJC,<ANK %NKOOEJC 4A@Q?A@ >U ~65%

8ANOQO 7OEJC #ILHEBEAN =O %KIL=N=PKN

Figure 3-26. Fast Zero Crossing Detector

Simulate this design by downloading TINA-TI and the schematic.

2.5 V

-2.5 V

-

++

TLV9052

VoutI_in Cp 1n

Rin 50

CF 10n

RF 5MEG

Qin

Piezoelectric Transducer

)=EJ =8KQP

3EJ=1

%(

B.2( =1

2è4(%(

B*2( =1

2è4EJ%EJ

Figure 3-27. Amplifier for Piezoelectric Transducer

For more information on this configuration, see [21] and [22]. Simulate this design by downloading TINA-TI andthe schematic.

www.ti.com Signal Processing

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 37

Copyright © 2020 Texas Instruments Incorporated

Page 38: AN-31 Amplifier Circuit Collection (Rev. D)

15 V

-15 V

-15V

-

++

LMx58B/LM2904B

R1 1k

R2 12k

*R3 250k

2N2484 R4 931

R5 24.3K

^R6 41.2k

Vout

8KQP = 103.9I8/°% � 383I8

Û 8=HQA %=J $A %D=JCA@ BKN 08 =P 0°%

^8=HQA %=J $A %D=JCA@ BKN 100I8/°%

Figure 3-28. Temperature Probe

Simulate this design by downloading TINA-TI and the schematic.

V-

2.5V

-2.5 V

Rf 1MEG

Vout

Cf 1.6p

-

++

TLV9062D1 �

8KQP = 4B+&

Figure 3-29. Photodiode Amplifier I

For more information on modeling photodiodes, see [8]. See Analog engineer's circuit cookbook: amplifiers or [2]for more information on this circuit. Simulate this design by downloading TINA-TI and the schematic.

Signal Processing www.ti.com

38 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 39: AN-31 Amplifier Circuit Collection (Rev. D)

2.5 V

-2.5 V

Rf 5MEG

Vout

-

++

TLV9062

R1 5MEG

Cf 1.6p

D1 �

8KQP = 58/ä# ×4B

41

Figure 3-30. Photodiode Amplifier II

For more information on modeling photodiodes, see [8]. See Analog engineer's circuit cookbook: amplifiers formore information on this circuit. Simulate this design by downloading TINA-TI and the schematic.

-2.5 V

2.5 V

R1 10k

R2 100k

C2 10n

C1 10n Vout

+

Vin

-

++

LM2904LV/

LM358LV

8KQP = :41 + 42;%1O + %1%24142O

2

1 + :41 + 42;%1O + %1%24142O28EJ

Figure 3-31. High Input Impedance AC Follower

Simulate this design by downloading TINA-TI and the schematic.

www.ti.com Signal Processing

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 39

Copyright © 2020 Texas Instruments Incorporated

Page 40: AN-31 Amplifier Circuit Collection (Rev. D)

-15 V

E3

E1

E2

-15 V-15 V

-15 V -15 V

15 V 15 V

15 V 15 V

R1 1k

Q1 2N1893

Z1 1N2804

R5 1k R6 1k

P1 10

Q2 2N1893

R2 1k

Q4 2N1893Q3 2N1893

R3 1k

R4 1k

Eout

-

++

OPA2990

-

++

OPA2990

-

++

OPA2990

-

++

OPA2990

'KQP ='1'2

'3

41 = 42 = 43 = 44

Figure 3-32. Multiplier/Divider

Simulate this design by downloading TINA-TI and the schematic.

Signal Processing www.ti.com

40 AN-31 amplifier circuit collection SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

Page 41: AN-31 Amplifier Circuit Collection (Rev. D)

4 References1. To learn more about the design of many of these and other amplifier configurations, consult our Analog

engineer's circuit cookbook on amplifiers.2. Alternatively, more information on several of these circuits can be found in our app note entitled, AN-20 an

applications guide for op amps.3. To learn more about the characteristics of amplifiers, common techniques used in amplifier circuit design, and

a variety of other amplifier topics, consult our Texas Instruments Precision Labs video series on amplifiers.4. For specific questions regarding your design, reach out to our engineers via e2e, our online forum.5. For a handy reference guide for your analog designs, check out the Analog Engineer's Pocket Reference

Guide available for free in pdf form.6. Use our Analog Engineer's Calculator to help crunch design equations.7. Check out our Amplifier's Product Page to quickly sort through our products and find the amplifier(s) that best

fit your needs.8. For more information on modeling photodiodes including the model used in this design, see the 1 MHz,

single-supply, photodiode amplifier reference design.9. For more information on sine-wave oscillators, check out TI's app note on the Sine-wave oscillator.10.Alternatively, see our note on the Design of op amp sine wave generators.11.For more on the Howland Current Pump, see AN-1515 a comprehensive study of the Howland current pump.12.For more information on the Precision Diode, Precision Clamp, Half Wave Rectifier, and AC to DC Converter

circuits, see our LB-8 precision AC/DC converters application note.13.More information on the Absolute Value Amplifier can be found in our app note on Precision absolute value

circuits.14.To learn more about Sample-and-Hold configurations, see our application note on the Specifications and

architectures of sample-and-hold amplifiers.15.For more information on Q Notch Filters, see our LB-5 high Q Notch filter on the subject.16.Further analysis of notch filters can be found in our app note on High-speed notch filters.17.For more information on Sallen-Key filter design, see our Analysis of the Sallen-Key architecture application

note on the subject.18.For more information on Low Pass Sallen-Key filter design, see our Active low-pass filter design application

note.19.More information on simulated inductors can be found in our application note entitled, An audio circuit

collection, part 3.20.More information on a variety of circuits can be found in our AN-4 monolithic op amp—the universal linear

component application note.21.To learn more about the theory behind, design of, and simulation of piezoeletric transducers and their

amplifiers, see this Signal conditioning piezoelectric sensors application note.22.Additional information on piezoelectric transducers can be found in our analog applications journal entry,

Signal conditioning for piezoelectric sensors, on the subject.23.For more information on the LM324/LM358 device family and how to properly connect unused inputs, see

Application design guidelines for LM324/LM358 devices.

Revision HistoryNOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (March 2019) to Revision D (October 2020) Page• Changed TINA-TI hyperlinks throughout document........................................................................................... 3• Changed Figure 2-3 Free-Running Multivibrator equation............................................................................... 15

www.ti.com References

SNLA140D – MARCH 2019 – REVISED OCTOBER 2020Submit Document Feedback

AN-31 amplifier circuit collection 41

Copyright © 2020 Texas Instruments Incorporated

Page 42: AN-31 Amplifier Circuit Collection (Rev. D)

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2020, Texas Instruments Incorporated