an intuitive presentation of faà di bruno's...

111
An intuitive presentation of Faà di Bruno’s formula A. Mennucci 1 1 Scuola Normale Superiore, Pisa, Convegno L’eredità matematica e civile di Francesco Faà di Bruno Politecnico di Torino 22 settembre 2017 Mennucci (SNS) Faà di Bruno 2017 1 / 47

Upload: others

Post on 08-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

An intuitive presentation of Faà di Bruno’s formula

A. Mennucci 1

1Scuola Normale Superiore, Pisa,

ConvegnoL’eredità matematica e civile di Francesco Faà di Bruno

Politecnico di Torino22 settembre 2017

Mennucci (SNS) Faà di Bruno 2017 1 / 47

Page 2: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Combinatorial form2.1 Example explaining the combinatorial form2.2 Proof of the combinatorial form

Factorial forms3.1 First factorial form3.2 Second factorial form

Endnotes

Page 3: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Combinatorial form

Factorial forms

Endnotes

Page 4: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Suppose that f, g : R→ R are functions admitting n derivatives:Faà di Bruno’s formula enumerates the terms in the expansion of the n-thderivative

dn

dxnf(g(x)) = (f ◦ g)(n)(x) .

(On left hand side we used Leibniz notation for derivatives, on right handside we used Lagrange’s notation — we will mostly use the latter).

Mennucci (SNS) Faà di Bruno 2017 2 / 47

Page 5: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Suppose that f, g : R→ R are functions admitting n derivatives:Faà di Bruno’s formula enumerates the terms in the expansion of the n-thderivative

dn

dxnf(g(x)) = (f ◦ g)(n)(x) .

(On left hand side we used Leibniz notation for derivatives, on right handside we used Lagrange’s notation — we will mostly use the latter).

Mennucci (SNS) Faà di Bruno 2017 2 / 47

Page 6: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

To compute these derivatives we use two precedent results in calculus.• One is the chain rule for derivation of a composition of functions

d

dxf(g(x)) = f ′(g(x)) g′(x) .

As we see this produces a “monomial” that is the product of twofunctions.

• The other one is the rule for products for deriving the product offunctions, that we present for the case of three functionsa, b, c : R→ R:d

dx

(a(x)b(x)c(x)

)= a′(x)b(x)c(x) + a(x)b′(x)c(x) + a(x)b(x)c′(x) .

We see that this formula produces a sum of “monomials”, in each wederive one of the terms of the given product.

(Both formulas appear in works by Leibniz, circa 1680).To compute the n-th derivative we will apply the above rules many many times.We can predict that the resulting expression will be long and complex, since thefirst rule increases the number of terms in a monomial, and the second increasesthe number of monomials

Mennucci (SNS) Faà di Bruno 2017 3 / 47

Page 7: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

To compute these derivatives we use two precedent results in calculus.• One is the chain rule for derivation of a composition of functions

d

dxf(g(x)) = f ′(g(x)) g′(x) .

As we see this produces a “monomial” that is the product of twofunctions.

• The other one is the rule for products for deriving the product offunctions, that we present for the case of three functionsa, b, c : R→ R:d

dx

(a(x)b(x)c(x)

)= a′(x)b(x)c(x) + a(x)b′(x)c(x) + a(x)b(x)c′(x) .

We see that this formula produces a sum of “monomials”, in each wederive one of the terms of the given product.

(Both formulas appear in works by Leibniz, circa 1680).To compute the n-th derivative we will apply the above rules many many times.We can predict that the resulting expression will be long and complex, since thefirst rule increases the number of terms in a monomial, and the second increasesthe number of monomials

Mennucci (SNS) Faà di Bruno 2017 3 / 47

Page 8: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

To compute these derivatives we use two precedent results in calculus.• One is the chain rule for derivation of a composition of functions

d

dxf(g(x)) = f ′(g(x)) g′(x) .

As we see this produces a “monomial” that is the product of twofunctions.

• The other one is the rule for products for deriving the product offunctions, that we present for the case of three functionsa, b, c : R→ R:d

dx

(a(x)b(x)c(x)

)= a′(x)b(x)c(x) + a(x)b′(x)c(x) + a(x)b(x)c′(x) .

We see that this formula produces a sum of “monomials”, in each wederive one of the terms of the given product.

(Both formulas appear in works by Leibniz, circa 1680).To compute the n-th derivative we will apply the above rules many many times.We can predict that the resulting expression will be long and complex, since thefirst rule increases the number of terms in a monomial, and the second increasesthe number of monomials

Mennucci (SNS) Faà di Bruno 2017 3 / 47

Page 9: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

To compute these derivatives we use two precedent results in calculus.• One is the chain rule for derivation of a composition of functions

d

dxf(g(x)) = f ′(g(x)) g′(x) .

As we see this produces a “monomial” that is the product of twofunctions.

• The other one is the rule for products for deriving the product offunctions, that we present for the case of three functionsa, b, c : R→ R:d

dx

(a(x)b(x)c(x)

)= a′(x)b(x)c(x) + a(x)b′(x)c(x) + a(x)b(x)c′(x) .

We see that this formula produces a sum of “monomials”, in each wederive one of the terms of the given product.

(Both formulas appear in works by Leibniz, circa 1680).To compute the n-th derivative we will apply the above rules many many times.We can predict that the resulting expression will be long and complex, since thefirst rule increases the number of terms in a monomial, and the second increasesthe number of monomials

Mennucci (SNS) Faà di Bruno 2017 3 / 47

Page 10: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Cases n = 1, 2, 3

We may start with a simple direct calculation. We compute the derivativesfor n = 1, 2, 3. The first derivative is obtained by the chain rule.

(f ◦ g)′(x) = f ′(g(x))g′(x) .

The second derivative is obtained by performing product differentiationand then chain rule.

(f ◦ g)′′(x) =(f ′(g(x))g′(x)

)′=

product=(f ′(g(x))

)′g′(x) + f ′(g(x))g′′(x) =

chain= f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x) .

Mennucci (SNS) Faà di Bruno 2017 4 / 47

Page 11: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Cases n = 1, 2, 3

We may start with a simple direct calculation. We compute the derivativesfor n = 1, 2, 3. The first derivative is obtained by the chain rule.

(f ◦ g)′(x) = f ′(g(x))g′(x) .

The second derivative is obtained by performing product differentiationand then chain rule.

(f ◦ g)′′(x) =(f ′(g(x))g′(x)

)′=

product=(f ′(g(x))

)′g′(x) + f ′(g(x))g′′(x) =

chain= f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x) .

Mennucci (SNS) Faà di Bruno 2017 4 / 47

Page 12: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Cases n = 1, 2, 3

We may start with a simple direct calculation. We compute the derivativesfor n = 1, 2, 3. The first derivative is obtained by the chain rule.

(f ◦ g)′(x) = f ′(g(x))g′(x) .

The second derivative is obtained by performing product differentiationand then chain rule.

(f ◦ g)′′(x) =(f ′(g(x))g′(x)

)′=

product=(f ′(g(x))

)′g′(x) + f ′(g(x))g′′(x) =

chain= f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x) .

Mennucci (SNS) Faà di Bruno 2017 4 / 47

Page 13: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Let’s see in detail the computation of third derivative. We derive once more thesecond derivative

(f ◦ g)′′(x) = f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x) .

(f ◦ g)′′′(x) =(

f ′′(g(x))g′(x)2)′

+

��

product++collect

productww

(f ′(g(x))g′′(x)

)′=

product��

product

&&(f ′′(g(x))

)′g′(x)2+

chain

��

2f ′′(g(x))g′(x)g′′(x)+

copy

��

(f ′(g(x))

)′g′′(x)+

chain

��

f ′(g(x))g′′′(x) =

copy

��f ′′′(g(x))g′(x) g′(x)2+

copy

��

2f ′′(g(x))g′(x)g′′(x)+

collect��

f ′′(g(x))g′(x)g′′(x)+

collectuu

f ′(g(x))g′′′(x) =

copyvv

f ′′′(g(x))g′(x) g′(x)2+ 3f ′′(g(x))g′(x)g′′(x)+ f ′(g(x))g′′′(x)Note that we have a tree of derivations.

Mennucci (SNS) Faà di Bruno 2017 5 / 47

Page 14: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Let’s see in detail the computation of third derivative. We derive once more thesecond derivative

(f ◦ g)′′(x) = f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x) .

(f ◦ g)′′′(x) =(

f ′′(g(x))g′(x)2)′

+

��

product++collect

productww

(f ′(g(x))g′′(x)

)′=

product��

product

&&(f ′′(g(x))

)′g′(x)2+

chain

��

2f ′′(g(x))g′(x)g′′(x)+

copy

��

(f ′(g(x))

)′g′′(x)+

chain

��

f ′(g(x))g′′′(x) =

copy

��f ′′′(g(x))g′(x) g′(x)2+

copy

��

2f ′′(g(x))g′(x)g′′(x)+

collect��

f ′′(g(x))g′(x)g′′(x)+

collectuu

f ′(g(x))g′′′(x) =

copyvv

f ′′′(g(x))g′(x) g′(x)2+ 3f ′′(g(x))g′(x)g′′(x)+ f ′(g(x))g′′′(x)Note that we have a tree of derivations.

Mennucci (SNS) Faà di Bruno 2017 5 / 47

Page 15: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Summarizing the derivatives n = 1, 2, 3, 4 are:

(f ◦ g)′(x) = f ′(g(x))g′(x)(f ◦ g)′′(x) = f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x)(f ◦ g)′′′(x) = f ′′′(g(x))g′(x)3 + 3f ′′(g(x))g′(x)g′′(x) +

+ f ′(g(x))g′′′(x)(f ◦ g)′′′′(x) = f ′′′′(g(x))g′(x)4 + 6f ′′′(g(x))g′′(x)g′(x)2

+ 3f ′′(g(x))g′′(x)2 + 4f ′′(g(x))g′′′(x)g′(x)+ f ′(g(x))g′′′′(x).

We see that the expansion of dn

dxn f(g(x)) is always the sum of manymonomials of the form af (m)(g(x))g′(x)i1 . . . g(n)(x)in with appropriateinteger coefficients a, n,m, i1, . . . in.

Mennucci (SNS) Faà di Bruno 2017 6 / 47

Page 16: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Summarizing the derivatives n = 1, 2, 3, 4 are:

(f ◦ g)′(x) = f ′(g(x))g′(x)(f ◦ g)′′(x) = f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x)(f ◦ g)′′′(x) = f ′′′(g(x))g′(x)3 + 3f ′′(g(x))g′(x)g′′(x) +

+ f ′(g(x))g′′′(x)(f ◦ g)′′′′(x) = f ′′′′(g(x))g′(x)4 + 6f ′′′(g(x))g′′(x)g′(x)2

+ 3f ′′(g(x))g′′(x)2 + 4f ′′(g(x))g′′′(x)g′(x)+ f ′(g(x))g′′′′(x).

We see that the expansion of dn

dxn f(g(x)) is always the sum of manymonomials of the form af (m)(g(x))g′(x)i1 . . . g(n)(x)in with appropriateinteger coefficients a, n,m, i1, . . . in.

Mennucci (SNS) Faà di Bruno 2017 6 / 47

Page 17: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Summarizing the derivatives n = 1, 2, 3, 4 are:

(f ◦ g)′(x) = f ′(g(x))g′(x)(f ◦ g)′′(x) = f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x)(f ◦ g)′′′(x) = f ′′′(g(x))g′(x)3 + 3f ′′(g(x))g′(x)g′′(x) +

+ f ′(g(x))g′′′(x)(f ◦ g)′′′′(x) = f ′′′′(g(x))g′(x)4 + 6f ′′′(g(x))g′′(x)g′(x)2

+ 3f ′′(g(x))g′′(x)2 + 4f ′′(g(x))g′′′(x)g′(x)+ f ′(g(x))g′′′′(x).

We see that the expansion of dn

dxn f(g(x)) is always the sum of manymonomials of the form af (m)(g(x))g′(x)i1 . . . g(n)(x)in with appropriateinteger coefficients a, n,m, i1, . . . in.

Mennucci (SNS) Faà di Bruno 2017 6 / 47

Page 18: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Summarizing the derivatives n = 1, 2, 3, 4 are:

(f ◦ g)′(x) = f ′(g(x))g′(x)(f ◦ g)′′(x) = f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x)(f ◦ g)′′′(x) = f ′′′(g(x))g′(x)3 + 3f ′′(g(x))g′(x)g′′(x) +

+ f ′(g(x))g′′′(x)(f ◦ g)′′′′(x) = f ′′′′(g(x))g′(x)4 + 6f ′′′(g(x))g′′(x)g′(x)2

+ 3f ′′(g(x))g′′(x)2 + 4f ′′(g(x))g′′′(x)g′(x)+ f ′(g(x))g′′′′(x).

We see that the expansion of dn

dxn f(g(x)) is always the sum of manymonomials of the form af (m)(g(x))g′(x)i1 . . . g(n)(x)in with appropriateinteger coefficients a, n,m, i1, . . . in.

Mennucci (SNS) Faà di Bruno 2017 6 / 47

Page 19: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Faà di Bruno’s formula is a closed form formula to enumerate all suchmonomials.The formula comes in many different formats.

• A combinatorial form. This is the simplest to understand, but is alsothe more redundant one, since the monomials are simply repeated(that is, the coefficients are 1).

• Factorial forms, that collect together monomials in the combinatorialform.

Mennucci (SNS) Faà di Bruno 2017 7 / 47

Page 20: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Combinatorial form2.1 Example explaining the combinatorial form2.2 Proof of the combinatorial form

Factorial forms

Endnotes

Page 21: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Factorial

Positive integer numbers are 1, 2, 3, 4, 5, . . ..Given n positive integer, the product of the first n numbers is calledfactorial and is denoted by n! = 1 · 2 · 3 · · ·n.n! is the number of different ways of lining up n different objects.(Conventionally when n = 0 then n! = 1).

Mennucci (SNS) Faà di Bruno 2017 8 / 47

Page 22: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Factorial

Positive integer numbers are 1, 2, 3, 4, 5, . . ..Given n positive integer, the product of the first n numbers is calledfactorial and is denoted by n! = 1 · 2 · 3 · · ·n.n! is the number of different ways of lining up n different objects.(Conventionally when n = 0 then n! = 1).

Mennucci (SNS) Faà di Bruno 2017 8 / 47

Page 23: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Cardinality

Given a set A, then |A| is the number of elements in A. (In mathematicalparlance |A| is the cardinality of A)Example. If A = {1, 44, 4, 133} then |A| = 4. If n is a positive integernumber and A = {1, 2, . . . , n} is the set of the first n numbers then|A| = n.

Mennucci (SNS) Faà di Bruno 2017 9 / 47

Page 24: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Cardinality

Given a set A, then |A| is the number of elements in A. (In mathematicalparlance |A| is the cardinality of A)Example. If A = {1, 44, 4, 133} then |A| = 4. If n is a positive integernumber and A = {1, 2, . . . , n} is the set of the first n numbers then|A| = n.

Mennucci (SNS) Faà di Bruno 2017 9 / 47

Page 25: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Cardinality

Given a set A, then |A| is the number of elements in A. (In mathematicalparlance |A| is the cardinality of A)Example. If A = {1, 44, 4, 133} then |A| = 4. If n is a positive integernumber and A = {1, 2, . . . , n} is the set of the first n numbers then|A| = n.

Mennucci (SNS) Faà di Bruno 2017 9 / 47

Page 26: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Partitions

Consider the set A = {1, 2, . . . , n} of the first n numbers. A partition ofthis set is a family of non empty subsets, each one containing one elementof A, so that no element is left behind.Example. Given A = {1, 2, 3, 4} then {{2}, {4}, {3, 1}} is a partition.We will call Pn the set of all partitions of {1, 2, . . . , n}. It is a set of setsof sets of numbers!Example. There are 5 partitions of {1, 2, 3}, namely

P3 ={{{1, 2, 3}}, {{1, 2}, {3}}, {{1}, {2, 3}},{{1, 3}, {2}}, {{1}, {2}, {3}},

}Note that |P3| = 5.

Mennucci (SNS) Faà di Bruno 2017 10 / 47

Page 27: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Partitions

Consider the set A = {1, 2, . . . , n} of the first n numbers. A partition ofthis set is a family of non empty subsets, each one containing one elementof A, so that no element is left behind.Example. Given A = {1, 2, 3, 4} then {{2}, {4}, {3, 1}} is a partition.We will call Pn the set of all partitions of {1, 2, . . . , n}. It is a set of setsof sets of numbers!Example. There are 5 partitions of {1, 2, 3}, namely

P3 ={{{1, 2, 3}}, {{1, 2}, {3}}, {{1}, {2, 3}},{{1, 3}, {2}}, {{1}, {2}, {3}},

}Note that |P3| = 5.

Mennucci (SNS) Faà di Bruno 2017 10 / 47

Page 28: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Partitions

Consider the set A = {1, 2, . . . , n} of the first n numbers. A partition ofthis set is a family of non empty subsets, each one containing one elementof A, so that no element is left behind.Example. Given A = {1, 2, 3, 4} then {{2}, {4}, {3, 1}} is a partition.We will call Pn the set of all partitions of {1, 2, . . . , n}. It is a set of setsof sets of numbers!Example. There are 5 partitions of {1, 2, 3}, namely

P3 ={{{1, 2, 3}}, {{1, 2}, {3}}, {{1}, {2, 3}},{{1, 3}, {2}}, {{1}, {2}, {3}},

}Note that |P3| = 5.

Mennucci (SNS) Faà di Bruno 2017 10 / 47

Page 29: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Partitions

Consider the set A = {1, 2, . . . , n} of the first n numbers. A partition ofthis set is a family of non empty subsets, each one containing one elementof A, so that no element is left behind.Example. Given A = {1, 2, 3, 4} then {{2}, {4}, {3, 1}} is a partition.We will call Pn the set of all partitions of {1, 2, . . . , n}. It is a set of setsof sets of numbers!Example. There are 5 partitions of {1, 2, 3}, namely

P3 ={{{1, 2, 3}}, {{1, 2}, {3}}, {{1}, {2, 3}},{{1, 3}, {2}}, {{1}, {2}, {3}},

}Note that |P3| = 5.

Mennucci (SNS) Faà di Bruno 2017 10 / 47

Page 30: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Combinatorial form

The Faà di Bruno’s formula has a “combinatorial” form:

(f ◦ g)(n)(x) =∑π∈Pn

f (|π|)(g(x))∏B∈π

g(|B|)(x) (1)

where•∑π∈Pn

means we sum what follows varying π between all partitionsPn of {1, ..., n},

•∏B∈π means we multiply what follows varying B between all the

parts of the partition π ; and moreover• |π| is the number of parts in the partition Pn and |B| is the size ofthe part B.

Mennucci (SNS) Faà di Bruno 2017 11 / 47

Page 31: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Combinatorial form

The Faà di Bruno’s formula has a “combinatorial” form:

(f ◦ g)(n)(x) =∑π∈Pn

f (|π|)(g(x))∏B∈π

g(|B|)(x) (1)

where•∑π∈Pn

means we sum what follows varying π between all partitionsPn of {1, ..., n},

•∏B∈π means we multiply what follows varying B between all the

parts of the partition π ; and moreover• |π| is the number of parts in the partition Pn and |B| is the size ofthe part B.

Mennucci (SNS) Faà di Bruno 2017 11 / 47

Page 32: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Combinatorial form

The Faà di Bruno’s formula has a “combinatorial” form:

(f ◦ g)(n)(x) =∑π∈Pn

f (|π|)(g(x))∏B∈π

g(|B|)(x) (1)

where•∑π∈Pn

means we sum what follows varying π between all partitionsPn of {1, ..., n},

•∏B∈π means we multiply what follows varying B between all the

parts of the partition π ; and moreover• |π| is the number of parts in the partition Pn and |B| is the size ofthe part B.

Mennucci (SNS) Faà di Bruno 2017 11 / 47

Page 33: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form

Combinatorial form

The Faà di Bruno’s formula has a “combinatorial” form:

(f ◦ g)(n)(x) =∑π∈Pn

f (|π|)(g(x))∏B∈π

g(|B|)(x) (1)

where•∑π∈Pn

means we sum what follows varying π between all partitionsPn of {1, ..., n},

•∏B∈π means we multiply what follows varying B between all the

parts of the partition π ; and moreover• |π| is the number of parts in the partition Pn and |B| is the size ofthe part B.

Mennucci (SNS) Faà di Bruno 2017 11 / 47

Page 34: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Combinatorial form2.1 Example explaining the combinatorial form2.2 Proof of the combinatorial form

Factorial forms3.1 First factorial form3.2 Second factorial form

Endnotes

Page 35: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

We now present an example to help understand why any possible way ofderiving f(g(x)) for n times is associated to a partition.First we note that any partition may be uniquely represented by orderingthe numbers in each part, and the parts by the minimum element. E.g.(n = 8)

{{5, 7}, {2}, {6}, {3, 1, 8, 4}} → {{1, 3, 4, 8}, {2}, {5, 7}, {6}}{{8}, {3}, {7, 1}, {4}, {2, 5}, {6}} → {{1, 7}, {2, 5}, {3}, {4}, {6}, {8}}

We now derive f(g(x)) for 8 times, following the scheme{{1, 3, 4, 8}, {2}, {5, 7}, {6}} down the tree of derivations.

Mennucci (SNS) Faà di Bruno 2017 12 / 47

Page 36: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

We now present an example to help understand why any possible way ofderiving f(g(x)) for n times is associated to a partition.First we note that any partition may be uniquely represented by orderingthe numbers in each part, and the parts by the minimum element. E.g.(n = 8)

{{5, 7}, {2}, {6}, {3, 1, 8, 4}} → {{1, 3, 4, 8}, {2}, {5, 7}, {6}}{{8}, {3}, {7, 1}, {4}, {2, 5}, {6}} → {{1, 7}, {2, 5}, {3}, {4}, {6}, {8}}

We now derive f(g(x)) for 8 times, following the scheme{{1, 3, 4, 8}, {2}, {5, 7}, {6}} down the tree of derivations.

Mennucci (SNS) Faà di Bruno 2017 12 / 47

Page 37: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

We now present an example to help understand why any possible way ofderiving f(g(x)) for n times is associated to a partition.First we note that any partition may be uniquely represented by orderingthe numbers in each part, and the parts by the minimum element. E.g.(n = 8)

{{5, 7}, {2}, {6}, {3, 1, 8, 4}} → {{1, 3, 4, 8}, {2}, {5, 7}, {6}}{{8}, {3}, {7, 1}, {4}, {2, 5}, {6}} → {{1, 7}, {2, 5}, {3}, {4}, {6}, {8}}

We now derive f(g(x)) for 8 times, following the scheme{{1, 3, 4, 8}, {2}, {5, 7}, {6}} down the tree of derivations.

Mennucci (SNS) Faà di Bruno 2017 12 / 47

Page 38: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

• The first step is obliged:

f(g(x)) → g′(x)f ′(g(x))

and associate it to

{{1, . . .. . .. . .. . ..

Mennucci (SNS) Faà di Bruno 2017 13 / 47

Page 39: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

• We have now two terms, we decide to derive the second:

g′(x)f ′(g(x)) → g′(x)g′(x)f ′′(g(x))

and we associate it to

{{1, . . .{2, . . .. . .. . .

Mennucci (SNS) Faà di Bruno 2017 14 / 47

Page 40: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

• We have now three terms, we decide to derive the first:

g′(x)g′(x)f ′′(g(x)) → g′′(x)g′(x)f ′′(g(x))

and we associate it to

{{1, 3, . . .{2, . . .. . .. . .

Mennucci (SNS) Faà di Bruno 2017 15 / 47

Page 41: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

• We have again three terms, we decide to derive the first again:

g′′(x)g′(x)f ′′(g(x)) → g′′′(x)g′(x)f ′′(g(x))

and we associate it to

{{1, 3, 4, . . .{2, . . .. . .. . .

Mennucci (SNS) Faà di Bruno 2017 16 / 47

Page 42: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

• We have still three terms, we decide to derive the third:

g′′′(x)g′(x)f ′′(g(x)) → g′′′(x)g′(x)g′(x)f ′′′(g(x))

and we associate it to

{{1, 3, 4, . . .{2, . . .{5, . . .. . .

Mennucci (SNS) Faà di Bruno 2017 17 / 47

Page 43: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

• We have now four terms, we decide to derive the fourth:

g′′′(x)g′(x)g′(x)f ′′′(g(x)) → g′′′(x)g′(x)g′(x)g′(x)f (4)(g(x))

and we associate it to

{{1, 3, 4, . . .{2, . . .{5, . . .{6, . . .

Mennucci (SNS) Faà di Bruno 2017 18 / 47

Page 44: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

• We have now five terms, we decide to derive the third:

g′′′(x)g′(x)g′(x)g′(x)f (4)(g(x)) → g′′′(x)g′(x)g′′(x)g′(x)f (4)(g(x))

and we associate it to

{{1, 3, 4, . . .{2, . . .{5, 7, . . .{6, . . .

Mennucci (SNS) Faà di Bruno 2017 19 / 47

Page 45: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

• We have five terms, we decide to derive the first:

g′′′(x)g′(x)g′′(x)g′(x)f (4)(g(x)) → g(4)(x)g′(x)g′′(x)g′(x)f (4)(g(x))

and we associate it to

{{1, 3, 4, 8 . . .{2, . . .{5, 7, . . .{6, . . .

Mennucci (SNS) Faà di Bruno 2017 20 / 47

Page 46: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

We have obtained the monomial

g(4)(x)g′(x)g′′(x)g′(x)f (4)(g(x))

that is associated to the partition

{{1, 3, 4, 8},{2},{5, 7},{6}}

Mennucci (SNS) Faà di Bruno 2017 21 / 47

Page 47: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

Redundancy

We also see that this form is highly redundant. E.g. when n = 4 themonomial g′′(x)g′′(x)f ′′(g(x)) = g′′(x)2f ′′(g(x)) appears 3 times,associated to the partitions{{1, 2}, {3, 4}}{{1, 3}, {2, 4}}{{1, 4}, {2, 3}}

Similarly the monomialg(4)(x)g′(x)g′′(x)g′(x)f (4)(g(x)) = f (4)(g(x))g′(x)2g′′(x)g(4)(x)that we derived in the example before can be obtained by 420 differentpartitions in P8. (We will prove this fact later on).

We will see in next section that factorial forms reduce the redundancy (atthe price of a longer formula....).

Mennucci (SNS) Faà di Bruno 2017 22 / 47

Page 48: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

Redundancy

We also see that this form is highly redundant. E.g. when n = 4 themonomial g′′(x)g′′(x)f ′′(g(x)) = g′′(x)2f ′′(g(x)) appears 3 times,associated to the partitions{{1, 2}, {3, 4}}{{1, 3}, {2, 4}}{{1, 4}, {2, 3}}

Similarly the monomialg(4)(x)g′(x)g′′(x)g′(x)f (4)(g(x)) = f (4)(g(x))g′(x)2g′′(x)g(4)(x)that we derived in the example before can be obtained by 420 differentpartitions in P8. (We will prove this fact later on).

We will see in next section that factorial forms reduce the redundancy (atthe price of a longer formula....).

Mennucci (SNS) Faà di Bruno 2017 22 / 47

Page 49: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Example explaining the combinatorial form

Redundancy

We also see that this form is highly redundant. E.g. when n = 4 themonomial g′′(x)g′′(x)f ′′(g(x)) = g′′(x)2f ′′(g(x)) appears 3 times,associated to the partitions{{1, 2}, {3, 4}}{{1, 3}, {2, 4}}{{1, 4}, {2, 3}}

Similarly the monomialg(4)(x)g′(x)g′′(x)g′(x)f (4)(g(x)) = f (4)(g(x))g′(x)2g′′(x)g(4)(x)that we derived in the example before can be obtained by 420 differentpartitions in P8. (We will prove this fact later on).

We will see in next section that factorial forms reduce the redundancy (atthe price of a longer formula....).

Mennucci (SNS) Faà di Bruno 2017 22 / 47

Page 50: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Combinatorial form2.1 Example explaining the combinatorial form2.2 Proof of the combinatorial form

Factorial forms3.1 First factorial form3.2 Second factorial form

Endnotes

Page 51: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

We now prove formally that the combinatorial form formula holds true,using induction. The case n = 1 is true, since P1 contains only onepartition, namely π = {{1}}, that is associated toddxf(g(x)) = f ′(g(x))g′(x).We now assume that

(f ◦ g)(n)(x) =∑π∈Pn

f (|π|)(g(x))∏B∈π

g(|B|)(x)

is true, and we derive it once more.

Mennucci (SNS) Faà di Bruno 2017 23 / 47

Page 52: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

We now prove formally that the combinatorial form formula holds true,using induction. The case n = 1 is true, since P1 contains only onepartition, namely π = {{1}}, that is associated toddxf(g(x)) = f ′(g(x))g′(x).We now assume that

(f ◦ g)(n)(x) =∑π∈Pn

f (|π|)(g(x))∏B∈π

g(|B|)(x)

is true, and we derive it once more.

Mennucci (SNS) Faà di Bruno 2017 23 / 47

Page 53: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

This produces two terms

(f ◦ g)(n+1)(x) =∑π∈Pn

f (|π|+1)(g(x))g′(x)∏B∈π

g(|B|)(x) +

+∑π∈Pn

f (|π|)(g(x))∑B̂∈π

∏B∈π

g(|B|+δB,B̂)(x)

where δB,B̂ is the Kronecker delta 1

δA,B ={

1, if A = B0, if A 6= B

1http://en.wikipedia.org/wiki/Kronecker_deltaMennucci (SNS) Faà di Bruno 2017 24 / 47

Page 54: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The question now is: how do we generate the partitions in π̃ ∈ Pn+1starting from the partitions in π ∈ Pn.

1 First way is to decide that singleton {n+ 1} is a part in π̃, so thatπ̃ = π ∪ {{n+ 1}}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4}, {2, 3}, {5}} ∈ P5.

2 Second way is to decide that n+ 1 is an element of a part B̃ in π̃,and relate B̃ to a part B̂ in π, by B̃ = B̂ ∪ {n+ 1}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4, 5}, {2, 3}} ∈ P5 when B̂ = {1, 4}, B̃ = {1, 4, 5}π̃ = {{1, 4}, {2, 3, 5}} ∈ P5 when B̂ = {2, 3}, B̃ = {2, 3, 5}

The above method uniquely generates each π̃ ∈ Pn+1 starting from aπ ∈ Pn and, in the second case, choosing B̂ ∈ π.

Mennucci (SNS) Faà di Bruno 2017 25 / 47

Page 55: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The question now is: how do we generate the partitions in π̃ ∈ Pn+1starting from the partitions in π ∈ Pn.

1 First way is to decide that singleton {n+ 1} is a part in π̃, so thatπ̃ = π ∪ {{n+ 1}}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4}, {2, 3}, {5}} ∈ P5.

2 Second way is to decide that n+ 1 is an element of a part B̃ in π̃,and relate B̃ to a part B̂ in π, by B̃ = B̂ ∪ {n+ 1}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4, 5}, {2, 3}} ∈ P5 when B̂ = {1, 4}, B̃ = {1, 4, 5}π̃ = {{1, 4}, {2, 3, 5}} ∈ P5 when B̂ = {2, 3}, B̃ = {2, 3, 5}

The above method uniquely generates each π̃ ∈ Pn+1 starting from aπ ∈ Pn and, in the second case, choosing B̂ ∈ π.

Mennucci (SNS) Faà di Bruno 2017 25 / 47

Page 56: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The question now is: how do we generate the partitions in π̃ ∈ Pn+1starting from the partitions in π ∈ Pn.

1 First way is to decide that singleton {n+ 1} is a part in π̃, so thatπ̃ = π ∪ {{n+ 1}}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4}, {2, 3}, {5}} ∈ P5.

2 Second way is to decide that n+ 1 is an element of a part B̃ in π̃,and relate B̃ to a part B̂ in π, by B̃ = B̂ ∪ {n+ 1}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4, 5}, {2, 3}} ∈ P5 when B̂ = {1, 4}, B̃ = {1, 4, 5}π̃ = {{1, 4}, {2, 3, 5}} ∈ P5 when B̂ = {2, 3}, B̃ = {2, 3, 5}

The above method uniquely generates each π̃ ∈ Pn+1 starting from aπ ∈ Pn and, in the second case, choosing B̂ ∈ π.

Mennucci (SNS) Faà di Bruno 2017 25 / 47

Page 57: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The question now is: how do we generate the partitions in π̃ ∈ Pn+1starting from the partitions in π ∈ Pn.

1 First way is to decide that singleton {n+ 1} is a part in π̃, so thatπ̃ = π ∪ {{n+ 1}}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4}, {2, 3}, {5}} ∈ P5.

2 Second way is to decide that n+ 1 is an element of a part B̃ in π̃,and relate B̃ to a part B̂ in π, by B̃ = B̂ ∪ {n+ 1}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4, 5}, {2, 3}} ∈ P5 when B̂ = {1, 4}, B̃ = {1, 4, 5}π̃ = {{1, 4}, {2, 3, 5}} ∈ P5 when B̂ = {2, 3}, B̃ = {2, 3, 5}

The above method uniquely generates each π̃ ∈ Pn+1 starting from aπ ∈ Pn and, in the second case, choosing B̂ ∈ π.

Mennucci (SNS) Faà di Bruno 2017 25 / 47

Page 58: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The question now is: how do we generate the partitions in π̃ ∈ Pn+1starting from the partitions in π ∈ Pn.

1 First way is to decide that singleton {n+ 1} is a part in π̃, so thatπ̃ = π ∪ {{n+ 1}}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4}, {2, 3}, {5}} ∈ P5.

2 Second way is to decide that n+ 1 is an element of a part B̃ in π̃,and relate B̃ to a part B̂ in π, by B̃ = B̂ ∪ {n+ 1}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4, 5}, {2, 3}} ∈ P5 when B̂ = {1, 4}, B̃ = {1, 4, 5}π̃ = {{1, 4}, {2, 3, 5}} ∈ P5 when B̂ = {2, 3}, B̃ = {2, 3, 5}

The above method uniquely generates each π̃ ∈ Pn+1 starting from aπ ∈ Pn and, in the second case, choosing B̂ ∈ π.

Mennucci (SNS) Faà di Bruno 2017 25 / 47

Page 59: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The question now is: how do we generate the partitions in π̃ ∈ Pn+1starting from the partitions in π ∈ Pn.

1 First way is to decide that singleton {n+ 1} is a part in π̃, so thatπ̃ = π ∪ {{n+ 1}}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4}, {2, 3}, {5}} ∈ P5.

2 Second way is to decide that n+ 1 is an element of a part B̃ in π̃,and relate B̃ to a part B̂ in π, by B̃ = B̂ ∪ {n+ 1}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4, 5}, {2, 3}} ∈ P5 when B̂ = {1, 4}, B̃ = {1, 4, 5}π̃ = {{1, 4}, {2, 3, 5}} ∈ P5 when B̂ = {2, 3}, B̃ = {2, 3, 5}

The above method uniquely generates each π̃ ∈ Pn+1 starting from aπ ∈ Pn and, in the second case, choosing B̂ ∈ π.

Mennucci (SNS) Faà di Bruno 2017 25 / 47

Page 60: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The question now is: how do we generate the partitions in π̃ ∈ Pn+1starting from the partitions in π ∈ Pn.

1 First way is to decide that singleton {n+ 1} is a part in π̃, so thatπ̃ = π ∪ {{n+ 1}}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4}, {2, 3}, {5}} ∈ P5.

2 Second way is to decide that n+ 1 is an element of a part B̃ in π̃,and relate B̃ to a part B̂ in π, by B̃ = B̂ ∪ {n+ 1}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4, 5}, {2, 3}} ∈ P5 when B̂ = {1, 4}, B̃ = {1, 4, 5}π̃ = {{1, 4}, {2, 3, 5}} ∈ P5 when B̂ = {2, 3}, B̃ = {2, 3, 5}

The above method uniquely generates each π̃ ∈ Pn+1 starting from aπ ∈ Pn and, in the second case, choosing B̂ ∈ π.

Mennucci (SNS) Faà di Bruno 2017 25 / 47

Page 61: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The question now is: how do we generate the partitions in π̃ ∈ Pn+1starting from the partitions in π ∈ Pn.

1 First way is to decide that singleton {n+ 1} is a part in π̃, so thatπ̃ = π ∪ {{n+ 1}}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4}, {2, 3}, {5}} ∈ P5.

2 Second way is to decide that n+ 1 is an element of a part B̃ in π̃,and relate B̃ to a part B̂ in π, by B̃ = B̂ ∪ {n+ 1}.Example, we start fromπ = {{1, 4}, {2, 3}} ∈ P4 and we buildπ̃ = {{1, 4, 5}, {2, 3}} ∈ P5 when B̂ = {1, 4}, B̃ = {1, 4, 5}π̃ = {{1, 4}, {2, 3, 5}} ∈ P5 when B̂ = {2, 3}, B̃ = {2, 3, 5}

The above method uniquely generates each π̃ ∈ Pn+1 starting from aπ ∈ Pn and, in the second case, choosing B̂ ∈ π.

Mennucci (SNS) Faà di Bruno 2017 25 / 47

Page 62: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The first part of (f ◦ g)(n+1)(x) is associated to the first generativemethod by ∑

π∈Pn

f (|π|+1)(g(x))g′(x)∏B∈π

g(|B|)(x) =

=∑

π̃∈Pn+1,{n+1}∈π̃f (|π̃|)(g(x))

∏B̃∈π̃

g(|B̃|)(x) (2)

indeed all such π̃ satisfy {n+ 1} ∈ π̃ and |π̃| = |π|+ 1, and moreover thecase B̃ = {n+ 1} generates the extra term g′(x) that is in the left handside.

Mennucci (SNS) Faà di Bruno 2017 26 / 47

Page 63: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The first part of (f ◦ g)(n+1)(x) is associated to the first generativemethod by ∑

π∈Pn

f (|π|+1)(g(x))g′(x)∏B∈π

g(|B|)(x) =

=∑

π̃∈Pn+1,{n+1}∈π̃f (|π̃|)(g(x))

∏B̃∈π̃

g(|B̃|)(x) (2)

indeed all such π̃ satisfy {n+ 1} ∈ π̃ and |π̃| = |π|+ 1, and moreover thecase B̃ = {n+ 1} generates the extra term g′(x) that is in the left handside.

Mennucci (SNS) Faà di Bruno 2017 26 / 47

Page 64: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The first part of (f ◦ g)(n+1)(x) is associated to the first generativemethod by ∑

π∈Pn

f (|π|+1)(g(x))g′(x)∏B∈π

g(|B|)(x) =

=∑

π̃∈Pn+1,{n+1}∈π̃f (|π̃|)(g(x))

∏B̃∈π̃

g(|B̃|)(x) (2)

indeed all such π̃ satisfy {n+ 1} ∈ π̃ and |π̃| = |π|+ 1, and moreover thecase B̃ = {n+ 1} generates the extra term g′(x) that is in the left handside.

Mennucci (SNS) Faà di Bruno 2017 26 / 47

Page 65: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The first part of (f ◦ g)(n+1)(x) is associated to the first generativemethod by ∑

π∈Pn

f (|π|+1)(g(x))g′(x)∏B∈π

g(|B|)(x) =

=∑

π̃∈Pn+1,{n+1}∈π̃f (|π̃|)(g(x))

∏B̃∈π̃

g(|B̃|)(x) (2)

indeed all such π̃ satisfy {n+ 1} ∈ π̃ and |π̃| = |π|+ 1, and moreover thecase B̃ = {n+ 1} generates the extra term g′(x) that is in the left handside.

Mennucci (SNS) Faà di Bruno 2017 26 / 47

Page 66: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The second part of (f ◦ g)(n+1)(x) is associated to the second generativemethod by ∑

π∈Pn

f (|π|)(g(x))∑B̂∈π

∏B∈π

g(|B|+δB,B̂)(x) =

=∑

π̃∈Pn+1,{n+1}6∈π̃f (|π̃|)(g(x))

∏B̃∈π̃

g(|B̃|)(x) (3)

indeed• all such π̃ satisfy {n+ 1} 6∈ π̃ and |π̃| = |π|, and moreover• there are as many π̃ associated to π as there are B̂ ∈ π and ,• when B̂ = B, we have δB,B̂ = 1 and |B̃| = |B|+ 1, whereas

• when B̂ 6= B, we have δB,B̂ = 0 and |B̃| = |B|.

Mennucci (SNS) Faà di Bruno 2017 27 / 47

Page 67: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The second part of (f ◦ g)(n+1)(x) is associated to the second generativemethod by ∑

π∈Pn

f (|π|)(g(x))∑B̂∈π

∏B∈π

g(|B|+δB,B̂)(x) =

=∑

π̃∈Pn+1,{n+1}6∈π̃f (|π̃|)(g(x))

∏B̃∈π̃

g(|B̃|)(x) (3)

indeed• all such π̃ satisfy {n+ 1} 6∈ π̃ and |π̃| = |π|, and moreover• there are as many π̃ associated to π as there are B̂ ∈ π and ,• when B̂ = B, we have δB,B̂ = 1 and |B̃| = |B|+ 1, whereas

• when B̂ 6= B, we have δB,B̂ = 0 and |B̃| = |B|.

Mennucci (SNS) Faà di Bruno 2017 27 / 47

Page 68: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The second part of (f ◦ g)(n+1)(x) is associated to the second generativemethod by ∑

π∈Pn

f (|π|)(g(x))∑B̂∈π

∏B∈π

g(|B|+δB,B̂)(x) =

=∑

π̃∈Pn+1,{n+1}6∈π̃f (|π̃|)(g(x))

∏B̃∈π̃

g(|B̃|)(x) (3)

indeed• all such π̃ satisfy {n+ 1} 6∈ π̃ and |π̃| = |π|, and moreover• there are as many π̃ associated to π as there are B̂ ∈ π and ,• when B̂ = B, we have δB,B̂ = 1 and |B̃| = |B|+ 1, whereas

• when B̂ 6= B, we have δB,B̂ = 0 and |B̃| = |B|.

Mennucci (SNS) Faà di Bruno 2017 27 / 47

Page 69: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The second part of (f ◦ g)(n+1)(x) is associated to the second generativemethod by ∑

π∈Pn

f (|π|)(g(x))∑B̂∈π

∏B∈π

g(|B|+δB,B̂)(x) =

=∑

π̃∈Pn+1,{n+1}6∈π̃f (|π̃|)(g(x))

∏B̃∈π̃

g(|B̃|)(x) (3)

indeed• all such π̃ satisfy {n+ 1} 6∈ π̃ and |π̃| = |π|, and moreover• there are as many π̃ associated to π as there are B̂ ∈ π and ,• when B̂ = B, we have δB,B̂ = 1 and |B̃| = |B|+ 1, whereas

• when B̂ 6= B, we have δB,B̂ = 0 and |B̃| = |B|.

Mennucci (SNS) Faà di Bruno 2017 27 / 47

Page 70: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

The second part of (f ◦ g)(n+1)(x) is associated to the second generativemethod by ∑

π∈Pn

f (|π|)(g(x))∑B̂∈π

∏B∈π

g(|B|+δB,B̂)(x) =

=∑

π̃∈Pn+1,{n+1}6∈π̃f (|π̃|)(g(x))

∏B̃∈π̃

g(|B̃|)(x) (3)

indeed• all such π̃ satisfy {n+ 1} 6∈ π̃ and |π̃| = |π|, and moreover• there are as many π̃ associated to π as there are B̂ ∈ π and ,• when B̂ = B, we have δB,B̂ = 1 and |B̃| = |B|+ 1, whereas

• when B̂ 6= B, we have δB,B̂ = 0 and |B̃| = |B|.

Mennucci (SNS) Faà di Bruno 2017 27 / 47

Page 71: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Combinatorial form Proof of the combinatorial form

Summing up the identities (2) and (3) we conclude that indeed

(f ◦ g)(n+1)(x) =∑

π̃∈Pn+1,{n+1}∈π̃f (|π̃|)(g(x))

∏B̃∈π̃

g(|B̃|)(x) +

+∑

π̃∈Pn+1,{n+1}6∈π̃f (|π̃|)(g(x))

∏B̃∈π̃

g(|B̃|)(x) =

=∑

π̃∈Pn+1

f (|π̃|)(g(x))∏B̃∈π̃

g(|B̃|)(x)

that is the formula for n+ 1.

Mennucci (SNS) Faà di Bruno 2017 28 / 47

Page 72: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Combinatorial form

Factorial forms3.1 First factorial form3.2 Second factorial form

Endnotes

Page 73: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms

The factorial forms collect together monomials in the combinatorial form;the formula is more complex, but it is also more useful.

Mennucci (SNS) Faà di Bruno 2017 29 / 47

Page 74: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Combinatorial form2.1 Example explaining the combinatorial form2.2 Proof of the combinatorial form

Factorial forms3.1 First factorial form3.2 Second factorial form

Endnotes

Page 75: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Factorial form

The monomials in the combinatorial form (1) may be collected, to give

dn

dxnf(g(x)) =

∑ n!m1! 1!m1 m2! 2!m2 · · · mn!n!mn

·

·f (m1+···+mn)(g(x))n∏j=1

(g(j)(x)

)mj (4)

where the sum is over all n-tuples of nonnegative integers (m1, . . . ,mn)satisfying the constraint

1 ·m1 + 2 ·m2 + 3 ·m3 + · · ·+ n ·mn = n.

Mennucci (SNS) Faà di Bruno 2017 30 / 47

Page 76: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

The monomials

f (m1+···+mn)(g(x)) ·n∏j=1

(g(j)(x)

)mj

that appear in the formula (4) may be written as

f (m1+···+mn)(g(x))(g′(x)

)m1 (g′′(x))m2 · · ·

(g(n)(x)

)mn

(5)

We clearly see that every derivative of g appears once, with varyingexponential; then monomials are not repeated in this formula.

Mennucci (SNS) Faà di Bruno 2017 31 / 47

Page 77: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Hence the termn!

m1! 1!m1 m2! 2!m2 · · · mn!n!mn

is the integer coefficient of the monomial.

Mennucci (SNS) Faà di Bruno 2017 32 / 47

Page 78: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Sometimes, to give it a memorable pattern, the formula (4) is written inthis way :

dn

dxnf(g(x)) =

∑ n!m1!m2! · · · mn! ·f

(m1+···+mn)(g(x))·n∏j=1

(g(j)(x)j!

)mj

.

This was original formula presented by Francesco Faà di Bruno in 1855 inAnnali di Scienze Matematiche e Fisiche.How can we reconnect this formula (4) with the previous combinatorialversion (1)?

Mennucci (SNS) Faà di Bruno 2017 33 / 47

Page 79: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Sometimes, to give it a memorable pattern, the formula (4) is written inthis way :

dn

dxnf(g(x)) =

∑ n!m1!m2! · · · mn! ·f

(m1+···+mn)(g(x))·n∏j=1

(g(j)(x)j!

)mj

.

This was original formula presented by Francesco Faà di Bruno in 1855 inAnnali di Scienze Matematiche e Fisiche.How can we reconnect this formula (4) with the previous combinatorialversion (1)?

Mennucci (SNS) Faà di Bruno 2017 33 / 47

Page 80: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Partition signature

Consider a partition π ∈ Pn. We define the integer mj as number of partsin A ∈ π such that |A| = j. We will say that the numbers m1,m2, . . .mn

are the signature of the partition π.

Obviously for each partition, we have |π| = (m1 + · · ·+mn);moreover 1 ·m1 + 2 ·m2 + 3 ·m3 + · · ·+ n ·mn = n since π is a partitionof {1, . . . , n}.A partition with the signature m1,m2, . . .mn generates the monomial

f (m1+···+mn)(g(x)) ·n∏j=1

(g(j)(x)

)mj =

= f (m1+···+mn)(g(x))(g′(x)

)m1 (g′′(x))m2 · · ·

(g(n)(x)

)mn

.

seen in (5).

Mennucci (SNS) Faà di Bruno 2017 34 / 47

Page 81: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Partition signature

Consider a partition π ∈ Pn. We define the integer mj as number of partsin A ∈ π such that |A| = j. We will say that the numbers m1,m2, . . .mn

are the signature of the partition π.

Obviously for each partition, we have |π| = (m1 + · · ·+mn);moreover 1 ·m1 + 2 ·m2 + 3 ·m3 + · · ·+ n ·mn = n since π is a partitionof {1, . . . , n}.A partition with the signature m1,m2, . . .mn generates the monomial

f (m1+···+mn)(g(x)) ·n∏j=1

(g(j)(x)

)mj =

= f (m1+···+mn)(g(x))(g′(x)

)m1 (g′′(x))m2 · · ·

(g(n)(x)

)mn

.

seen in (5).

Mennucci (SNS) Faà di Bruno 2017 34 / 47

Page 82: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Partition signature

Consider a partition π ∈ Pn. We define the integer mj as number of partsin A ∈ π such that |A| = j. We will say that the numbers m1,m2, . . .mn

are the signature of the partition π.

Obviously for each partition, we have |π| = (m1 + · · ·+mn);moreover 1 ·m1 + 2 ·m2 + 3 ·m3 + · · ·+ n ·mn = n since π is a partitionof {1, . . . , n}.A partition with the signature m1,m2, . . .mn generates the monomial

f (m1+···+mn)(g(x)) ·n∏j=1

(g(j)(x)

)mj =

= f (m1+···+mn)(g(x))(g′(x)

)m1 (g′′(x))m2 · · ·

(g(n)(x)

)mn

.

seen in (5).

Mennucci (SNS) Faà di Bruno 2017 34 / 47

Page 83: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Partition signature

Consider a partition π ∈ Pn. We define the integer mj as number of partsin A ∈ π such that |A| = j. We will say that the numbers m1,m2, . . .mn

are the signature of the partition π.

Obviously for each partition, we have |π| = (m1 + · · ·+mn);moreover 1 ·m1 + 2 ·m2 + 3 ·m3 + · · ·+ n ·mn = n since π is a partitionof {1, . . . , n}.A partition with the signature m1,m2, . . .mn generates the monomial

f (m1+···+mn)(g(x)) ·n∏j=1

(g(j)(x)

)mj =

= f (m1+···+mn)(g(x))(g′(x)

)m1 (g′′(x))m2 · · ·

(g(n)(x)

)mn

.

seen in (5).

Mennucci (SNS) Faà di Bruno 2017 34 / 47

Page 84: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Example signature

We once again follow up on the first example.In the first example we computed one term of the 8-th derivative off(g(x)) according to the partition π = {{1, 3, 4, 8}, {2}, {5, 7}, {6}},and we obtained the monomial

f (4)(g(x))g′(x)2g′′(x)g(4)(x) .

in this π we havem1 = 2 singletons, namely {2}, {6}m2 = 1 pair, namely {5, 7}m3 = 0 triples,m4 = 1 quadruples, namely {1, 3, 4, 8},and then m5 = . . . = m8 = 0.

Mennucci (SNS) Faà di Bruno 2017 35 / 47

Page 85: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Example signature

We once again follow up on the first example.In the first example we computed one term of the 8-th derivative off(g(x)) according to the partition π = {{1, 3, 4, 8}, {2}, {5, 7}, {6}},and we obtained the monomial

f (4)(g(x))g′(x)2g′′(x)g(4)(x) .

in this π we havem1 = 2 singletons, namely {2}, {6}m2 = 1 pair, namely {5, 7}m3 = 0 triples,m4 = 1 quadruples, namely {1, 3, 4, 8},and then m5 = . . . = m8 = 0.

Mennucci (SNS) Faà di Bruno 2017 35 / 47

Page 86: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Example signature

We once again follow up on the first example.In the first example we computed one term of the 8-th derivative off(g(x)) according to the partition π = {{1, 3, 4, 8}, {2}, {5, 7}, {6}},and we obtained the monomial

f (4)(g(x))g′(x)2g′′(x)g(4)(x) .

in this π we havem1 = 2 singletons, namely {2}, {6}m2 = 1 pair, namely {5, 7}m3 = 0 triples,m4 = 1 quadruples, namely {1, 3, 4, 8},and then m5 = . . . = m8 = 0.

Mennucci (SNS) Faà di Bruno 2017 35 / 47

Page 87: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Example signature

We once again follow up on the first example.In the first example we computed one term of the 8-th derivative off(g(x)) according to the partition π = {{1, 3, 4, 8}, {2}, {5, 7}, {6}},and we obtained the monomial

f (4)(g(x))g′(x)2g′′(x)g(4)(x) .

in this π we havem1 = 2 singletons, namely {2}, {6}m2 = 1 pair, namely {5, 7}m3 = 0 triples,m4 = 1 quadruples, namely {1, 3, 4, 8},and then m5 = . . . = m8 = 0.

Mennucci (SNS) Faà di Bruno 2017 35 / 47

Page 88: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Example signature

We once again follow up on the first example.In the first example we computed one term of the 8-th derivative off(g(x)) according to the partition π = {{1, 3, 4, 8}, {2}, {5, 7}, {6}},and we obtained the monomial

f (4)(g(x))g′(x)2g′′(x)g(4)(x) .

in this π we havem1 = 2 singletons, namely {2}, {6}m2 = 1 pair, namely {5, 7}m3 = 0 triples,m4 = 1 quadruples, namely {1, 3, 4, 8},and then m5 = . . . = m8 = 0.

Mennucci (SNS) Faà di Bruno 2017 35 / 47

Page 89: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Example signature

We once again follow up on the first example.In the first example we computed one term of the 8-th derivative off(g(x)) according to the partition π = {{1, 3, 4, 8}, {2}, {5, 7}, {6}},and we obtained the monomial

f (4)(g(x))g′(x)2g′′(x)g(4)(x) .

in this π we havem1 = 2 singletons, namely {2}, {6}m2 = 1 pair, namely {5, 7}m3 = 0 triples,m4 = 1 quadruples, namely {1, 3, 4, 8},and then m5 = . . . = m8 = 0.

Mennucci (SNS) Faà di Bruno 2017 35 / 47

Page 90: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Building a partitionLet us now fix a signature.How can we build any partition with this same signature?We use the signature from the example m1 = 2, m2 = 1, m3 = 0,m4 = 1, m5 = . . . = m8 = 0 to show the mechanics.We prepare the skeleton

{ { }, { }, { , }, { , , , } }

Then we order the first n = 8 numbers and we insert this ordering in theskeleton.

6, 2 5 7 8 4 1 3↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

{ {6}, {2}, {5, 7}, {8, 4, 1, 3} }

This operation may be done in n! = 8! different ways.

Mennucci (SNS) Faà di Bruno 2017 36 / 47

Page 91: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Building a partitionLet us now fix a signature.How can we build any partition with this same signature?We use the signature from the example m1 = 2, m2 = 1, m3 = 0,m4 = 1, m5 = . . . = m8 = 0 to show the mechanics.We prepare the skeleton

{ { }, { }, { , }, { , , , } }

Then we order the first n = 8 numbers and we insert this ordering in theskeleton.

6, 2 5 7 8 4 1 3↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

{ {6}, {2}, {5, 7}, {8, 4, 1, 3} }

This operation may be done in n! = 8! different ways.

Mennucci (SNS) Faà di Bruno 2017 36 / 47

Page 92: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

This partition is not uniquely built.We can indeed interchange partitions with the same number of elements.

{ {6}, {2}, {5, 7}, {8, 4, 1, 3} }

{ {2}, {6}, {5, 7}, {8, 4, 1, 3} }

This can be done in m1!m2! . . .mn! different ways.

Mennucci (SNS) Faà di Bruno 2017 37 / 47

Page 93: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

We can moreover interchange numbers in the same partition.

{ {6}, {2}, {5, 7}, {8, 4, 1, 3} }

{ {6}, {2}, {5, 7}, {3, 4, 1, 8} }

This can be done in1!m1 2!m2 · · · n!mn

different ways. (Indeed for example in a triple the numbers can bereordered in 3! = 6 different ways; if there are m3 triples then there is atotal of (3!)m3 reorderings inside the triples).

Mennucci (SNS) Faà di Bruno 2017 38 / 47

Page 94: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Proof

This line of reasoning in the example proves that the Faà di Bruno’sformula (4) follows from the combinatorial form (1).We saw that, given a signature m1,m2, . . .mm, we can fill the skeleton inn! ways, but we obtain the same partition multiple times,hence we dividen! by

m1!m2! . . .mn! · 1!m1 2!m2 · · · n!mn .

We so proved that there are exactly

n!m1! 1!m1 m2! 2!m2 · · · mn!n!mn

partitions π ∈ Pn with signature

m1,m2, . . .mm .

Mennucci (SNS) Faà di Bruno 2017 39 / 47

Page 95: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

All partitions with the same signature generate the same monomial

f (m1+···+mn)(g(x))(g′(x)

)m1 (g′′(x))m2 · · ·

(g(n)(x)

)mn

.

Eventually if we callect together all the monomials in the combinatorialforms, the integer coefficient of the above monomial will be exactly

n!m1! 1!m1 m2! 2!m2 · · · mn!n!mn

Mennucci (SNS) Faà di Bruno 2017 40 / 47

Page 96: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Coefficient in the example

The signature in the example is m1 = 2, m2 = 1, m3 = 0, m4 = 1,m5 = . . . = m8 = 0.So there are

n!m1! 1!m1 m2! 2!m2 · · ·mn!n!mn

= 8!2! 1!2 1! 2!1 0! 3!0 1! 4!1 = 420

different partitions in P8 that generate the monomialf (4)(g(x))g′(x)2g′′(x)g(4)(x).This means that the coefficient of the monomial is 420.We now appreciate the Faà di Bruno’s formula, that provides thecoefficient in monomials in a “computable form”.

Mennucci (SNS) Faà di Bruno 2017 41 / 47

Page 97: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Coefficient in the example

The signature in the example is m1 = 2, m2 = 1, m3 = 0, m4 = 1,m5 = . . . = m8 = 0.So there are

n!m1! 1!m1 m2! 2!m2 · · ·mn!n!mn

= 8!2! 1!2 1! 2!1 0! 3!0 1! 4!1 = 420

different partitions in P8 that generate the monomialf (4)(g(x))g′(x)2g′′(x)g(4)(x).This means that the coefficient of the monomial is 420.We now appreciate the Faà di Bruno’s formula, that provides thecoefficient in monomials in a “computable form”.

Mennucci (SNS) Faà di Bruno 2017 41 / 47

Page 98: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms First factorial form

Coefficient in the example

The signature in the example is m1 = 2, m2 = 1, m3 = 0, m4 = 1,m5 = . . . = m8 = 0.So there are

n!m1! 1!m1 m2! 2!m2 · · ·mn!n!mn

= 8!2! 1!2 1! 2!1 0! 3!0 1! 4!1 = 420

different partitions in P8 that generate the monomialf (4)(g(x))g′(x)2g′′(x)g(4)(x).This means that the coefficient of the monomial is 420.We now appreciate the Faà di Bruno’s formula, that provides thecoefficient in monomials in a “computable form”.

Mennucci (SNS) Faà di Bruno 2017 41 / 47

Page 99: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Combinatorial form2.1 Example explaining the combinatorial form2.2 Proof of the combinatorial form

Factorial forms3.1 First factorial form3.2 Second factorial form

Endnotes

Page 100: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms Second factorial form

Second factorial form

The monomials in the combinatorial form may be partially collected, togive

dn

dxnf(g(x)) =

n∑m=1

f (m)(g(x))m!

∑(n

j1, j2, . . . , jm

)m∏i=1

g(ji)(x)

where the second sum is over all m-tuples of positive integers (j1, . . . , jm)satisfying the constraint

j1 + · · ·+ jm = n.

Mennucci (SNS) Faà di Bruno 2017 42 / 47

Page 101: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms Second factorial form

Proof

This formula is obtained from the combinatorial formula by two collectingoperations.First we collect together all partitions π with |π| = m; then we fix a vectorof positive integer numbers j1, . . . jm satisfying j1 + · · ·+ jm = n; wewrite π = {B1, . . . Bm} we count how many partitions there are with|B1| = j1 . . . |Bm| = jm.This is a well known combinatorial problem 2 solved by the multinomialcoefficient (

n

j1, j2, . . . , jm

)= n!j1! j2! · · · jm! .

We eventually divide it by m! to disregard the ordering of the parts.

2http://en.wikipedia.org/wiki/Multinomial_coefficientMennucci (SNS) Faà di Bruno 2017 43 / 47

Page 102: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms Second factorial form

Proof

This formula is obtained from the combinatorial formula by two collectingoperations.First we collect together all partitions π with |π| = m; then we fix a vectorof positive integer numbers j1, . . . jm satisfying j1 + · · ·+ jm = n; wewrite π = {B1, . . . Bm} we count how many partitions there are with|B1| = j1 . . . |Bm| = jm.This is a well known combinatorial problem 2 solved by the multinomialcoefficient (

n

j1, j2, . . . , jm

)= n!j1! j2! · · · jm! .

We eventually divide it by m! to disregard the ordering of the parts.

2http://en.wikipedia.org/wiki/Multinomial_coefficientMennucci (SNS) Faà di Bruno 2017 43 / 47

Page 103: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms Second factorial form

Proof

This formula is obtained from the combinatorial formula by two collectingoperations.First we collect together all partitions π with |π| = m; then we fix a vectorof positive integer numbers j1, . . . jm satisfying j1 + · · ·+ jm = n; wewrite π = {B1, . . . Bm} we count how many partitions there are with|B1| = j1 . . . |Bm| = jm.This is a well known combinatorial problem 2 solved by the multinomialcoefficient (

n

j1, j2, . . . , jm

)= n!j1! j2! · · · jm! .

We eventually divide it by m! to disregard the ordering of the parts.

2http://en.wikipedia.org/wiki/Multinomial_coefficientMennucci (SNS) Faà di Bruno 2017 43 / 47

Page 104: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms Second factorial form

Proof

This formula is obtained from the combinatorial formula by two collectingoperations.First we collect together all partitions π with |π| = m; then we fix a vectorof positive integer numbers j1, . . . jm satisfying j1 + · · ·+ jm = n; wewrite π = {B1, . . . Bm} we count how many partitions there are with|B1| = j1 . . . |Bm| = jm.This is a well known combinatorial problem 2 solved by the multinomialcoefficient (

n

j1, j2, . . . , jm

)= n!j1! j2! · · · jm! .

We eventually divide it by m! to disregard the ordering of the parts.

2http://en.wikipedia.org/wiki/Multinomial_coefficientMennucci (SNS) Faà di Bruno 2017 43 / 47

Page 105: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms Second factorial form

Proof

This formula is obtained from the combinatorial formula by two collectingoperations.First we collect together all partitions π with |π| = m; then we fix a vectorof positive integer numbers j1, . . . jm satisfying j1 + · · ·+ jm = n; wewrite π = {B1, . . . Bm} we count how many partitions there are with|B1| = j1 . . . |Bm| = jm.This is a well known combinatorial problem 2 solved by the multinomialcoefficient (

n

j1, j2, . . . , jm

)= n!j1! j2! · · · jm! .

We eventually divide it by m! to disregard the ordering of the parts.

2http://en.wikipedia.org/wiki/Multinomial_coefficientMennucci (SNS) Faà di Bruno 2017 43 / 47

Page 106: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms Second factorial form

Proof

This formula is obtained from the combinatorial formula by two collectingoperations.First we collect together all partitions π with |π| = m; then we fix a vectorof positive integer numbers j1, . . . jm satisfying j1 + · · ·+ jm = n; wewrite π = {B1, . . . Bm} we count how many partitions there are with|B1| = j1 . . . |Bm| = jm.This is a well known combinatorial problem 2 solved by the multinomialcoefficient (

n

j1, j2, . . . , jm

)= n!j1! j2! · · · jm! .

We eventually divide it by m! to disregard the ordering of the parts.

2http://en.wikipedia.org/wiki/Multinomial_coefficientMennucci (SNS) Faà di Bruno 2017 43 / 47

Page 107: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Factorial forms Second factorial form

Coefficient in the example

The monomial in the example wasf (4)(g(x))g′(x)g′(x)g′′(x)g(4)(x). This isobtained by setting n = 8,m = 4 andconsidering all the quadruples j1, j2, j3, j4where the numbers 1, 1, 2, 4 appear (note thatj1 + j2 + j3 + j4 = n = 8). There are 12such quadruples, as seen on the right; hencethe monomial is generated 12 times in theformula. There follows that the coefficient of themonomial is

12 1m!

(n

j1, j2, . . . , jm

)= 12 1

4!8!

1! 1! 2! 4! = 420 .

j1 j2 j3 j41 1 2 41 2 1 42 1 1 41 2 4 12 1 4 12 4 1 11 1 4 21 4 1 24 1 1 21 4 2 14 1 2 14 2 1 1

Mennucci (SNS) Faà di Bruno 2017 44 / 47

Page 108: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Introduction

Combinatorial form

Factorial forms

Endnotes

Page 109: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Endnotes

These notes are available in English and in Italian, both in the slide format(that you are reading) and in the article format .

Mennucci (SNS) Faà di Bruno 2017 45 / 47

Page 110: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Endnotes

Credits

The author thanks the Politecnico di Torino for the invitation to speak inthe workshop L’eredità matematica e civile di Francesco Faà di Bruno,2017.http://calvino.polito.it/~nicola/convegnofaa/faadibruno

Some formulas and ideas were copy/pasted fromhttp://en.wikipedia.org/wiki/Faa_di_Bruno_formula

Mennucci (SNS) Faà di Bruno 2017 46 / 47

Page 111: An intuitive presentation of Faà di Bruno's formulacalvino.polito.it/~nicola/convegnofaa/abstracts/mennucci...AnintuitivepresentationofFaàdiBruno’sformula A.Mennucci1 1Scuola Normale

Endnotes

License

This document may be redistributed under the Creative CommonsAttribution ShareAlike 3.0 Unported License.

Mennucci (SNS) Faà di Bruno 2017 47 / 47