an inventory of filled lands september 1972 advisory committee

20
coo/i PLEASE RETURN TO! NORTHWEST COASTAL INFORMATION CENT Q.S.U. MARINE SCIENCE CENTER NEWPORT. OREGON 97365 503-B67-3011 AN INVENTORY OF FILLED LANDS IN THE ALSEA RIVER September 1972 ADVISORY COMMITTEE TO THE STATE LAND BOARD Representative Anthony Meeker, Chairman Senator Gordon W. McKay, Vice Chairman Senator Betty Browne Senator George Eivers Representative Paul Hanneman Representative Rod McKenzie Representative Richard Magruder Mr. Patrick Gilroy Mr. Cecil L. Edwards, Executive Assistant Prepared by the Advisory Committee's Engineering Staff under the direction of Stanley F. Hamilton, P.E. Staff Engineer Oregon Division of State Lands This report was funded by the Advisory Committee to the State Land Board and a grant from the U.S. Department of Labor's Emergency Employment Act of 1971

Upload: others

Post on 11-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

coo/i

PLEASE RETURN TO!NORTHWEST COASTAL INFORMATION CENT

Q.S.U. MARINE SCIENCE CENTERNEWPORT. OREGON 97365

503-B67-3011

AN INVENTORY OF FILLED LANDS

IN THE

ALSEA RIVER

September 1972

ADVISORY COMMITTEE TO THE STATE LAND BOARD

Representative Anthony Meeker, ChairmanSenator Gordon W. McKay, Vice ChairmanSenator Betty BrowneSenator George EiversRepresentative Paul HannemanRepresentative Rod McKenzieRepresentative Richard MagruderMr. Patrick Gilroy

Mr. Cecil L. Edwards, Executive Assistant

Prepared by the Advisory Committee'sEngineering Staff under thedirection of

Stanley F. Hamilton, P.E.Staff EngineerOregon Division of State Lands

This report was funded by the Advisory Committee tothe State Land Board and a grant from the U.S.Department of Labor's Emergency Employment Act of 1971

The Alsea River, a very picturesque area of thecentral Oregon Coast discharges directly into the PacificOcean at Waldport, a small coastal town lying 18 milessouth of Newport, Oregon. The river and its tributar-ies drain an area of 473 square miles!! in Lincoln, Bentonand Lane counties.

The total area of the Alsea R i ver is 2227 acresl/of which 1338 acres are tidelands2/ and 889 acres ofsubmerged land. At the present time, 70 acres of tide-land 4ve been deeded to private owners by the State LandBoard!! and, according to the 1912 Railroad Survey, 1257acres of tidelands wpce granted to the Corvallis andEastern Railroad Co._/ The navigable length of the AlseaRiver is 13.0 miles with the head of tidewater being 5.0miles above Taylor Landing Bridge. The only tributaryof significant size is Drift Creek with a navigablelength of 1.5 miles above its mouth and thc,head oftidewater being 5.5 miles above its mouth.E!

The economy of the Alsea River area is centeredaround forestry, agriculture and recreation. Industrialuse in the bay is limited to log towing. Alsea Bay isan excellent sport fishing bay for salmon and cutthroattrout. Lint Slough on Alsea Bay is an Oregon Game Com-mission saline salmon rearing experimental station.

The purpose of this study was to determine the loca-tion, extent, history of ownership, owner of recordand use of filled lands on the Alsea River. Filledlands or "new lands" and related terms are defined byOregon Statute Law which in many cases paraphrasesEnglish Common Law. A few of the more important defini-tions pertaining to filled lands are shown below.

274.905 Definitions for ORS 274.905 to 274.940.

As used in ORS 274.905 to 274.940, unless thecontext requires otherwise:

(1) "New lands" means those lands, as distinguishedfrom bridges, wharves, quays and similar structures, pro-truding above the line of ordinary high water, whetheror not connected with the adjoining or opposite uplandor riparian lands on the same side of the thread of thestream, which have been created upon submersible or sub-merged lands by artificial fill or deposit.

(2) "Public body" means the State of Oregon orany port organized under the laws of this state or anydock commission of any city of this state.

ORS 274.005. (7) "Submerged lands," except asprovided in ORS 274.705, means lands lying below theline of ordinary low water of all navigable waterswithin the boundaries of this state as heretoforeestablished, whether such waters are tidal or nontidal.

(8) "Submersible lands," except as provided inORS 274.705, means lands lying between the line ofordinary high water and the line of ordinary low waterof all navigable waters and all islands, shore landsor other such lands held by or granted to this stateby virtue of her sovereignty, wherever applicable,within the boundaries of this state as heretofore orhereafter established, whether such waters or landsare tidal or nontidal.

Selected terms pertaining to tidelands and tidalboundaries are defined in Appendix A.

A brief summary of the procedure used to obtaininformation about the landfills in Siuslaw River isshown below:

1) Obtain copies of all US Army Corps of Engineers(U.S.C.E.) permits for landfills or related projects instudy area. Compile and tabulate data.

2) Obtain aerial photographs covering entire studyarea from US Army Corps of Engineers, Oregon StateHighway Dept.

3) Prepare a comparison overlay showing earliestand latest shorelines. Tentatively locate landfillson overlay using permit data, aerial photographs, andlarge changes in shoreline as shown by the overlay.The list of charts used is shown at the end of thisreport.

4) Visit estuary to verify location of landfills.Document size, location, and use of fills.

5) Visit County Courthouse to obtain ownership andassessment data if available.

6) Compile and complete report.

Information collected during this study which pertainsto landfill ownership has been summarized in Table I.Detailed sketches of each landfill are shown in AppendixB, and a plate showing the location and relative size of

each landfill is located at the end of this text. (Theshaded areas on the sketches and plate denote landfills.)

Table I shows ownership and other informative data.Each landfill has been designated by a two-part number --the first part being an arbitrary number assigned duringthis study and the second part being the Lincoln CountyTax Lot number. In addition to ownership and location,this table lists the area of the fill and indicates whethera Corps of Engineers' permit was issued.

The relative size and location of each fill discussedin Table I are shown on Plate I at the back of this re-port. In addition, detailed drawings of each landfillparcel and a brief summary of pertinent data concerningthe fill appears in Appendix B.

1/ Oregon State Water Resources Board2/ Crisis in Oregon Estuaries3/ Crisis in Oregon Estuaries (U.S.C. and G.S. charts)

(area between M.L.L.W. and M.H.H.W.)4/ Total acreage deeded to private owners by State

Land Board5/ 1912 survey by railroad (area between M.L.W. and

M.H.W.)6/ Army Corps of Engineers data

SUMMARY

There is a total of 24.75 acres of landfill ontidelands in Alsea Bay. All of the fill lies onsubmersible land -- in no instance was landfill foundon submerged land. The majority of the filled landis marine oriented with heavy emphasis on recreation.

We wish to take this opportunity to thank all theagencies which provided portions of the necessary in-formation enabling the completion of this report. Inparticular, we wish to extend our gratitude to thefollowing agencies:

U.S. Army Corps of Engineers, Portland DistrictOregon Historical Society, Portland, OregonOregon State Water Resources BoardOregon Division of State LandsLincoln County AssessorLincoln County SurveyorThe Port of Alsea

Maps and Charts Used in this Study

Lincoln County Assessors MapsDepartment of Revenue Forest Cover MapsU.S. Army Corps of Engineers Aerial Photos

1939 - 1961 - 1965Oregon State Highway Department Aerial Photos

1971

APPENDIX ADEFINITIONS OF TERMS PERTAINING TO

TIDELANDS AND TIDAL BOUNDARIES

• Definitions Used by

U. S. Coast and Geodetic Survey

from

Shore and Sea Boundaries

by

Aaron L. Shalowitz

Mean Higher High Tide. - Same as Mean Higher High Water.

Mean Higher-High-Tide line. - Same as Mean Higher-High-Waterline.

Mean Higher High Water. - The average height of the higherhigh waters over a 19-year period. See Higher HighWater, Nineteen-year Tidal Cycle.

Mean Higher High Water Line. - The intersection of the tidalplane of mean higher high water with the shore. SeeMean Higher High Water.

Mean High Tide. - Same as Mean High Water.

Mean High Water. - The average height of the high waters overa 19-year period. All high waters are included in theaverage where the tide is either semidiurnal or mixed.Where the type of tide is predominantly diurnal, onlythe higher high-water heights are included in theaverage on those days when the tide is semidiurnal. Seemixed tides, semidiurnal tides, diurnal tides, Nineteen-year Tidal Cycle.

Mean High-Water Line. - The intersection of the tidal planeof mean high water with the shore.

Mean High-Water Mark. - Same as Mean High-Water Line.

Mean Lower Low Water. - The average height of the lower lowwaters over a 19-year period. The tidal plane used onthe Pacific Coast as a datum for soundings on the hydro-graphic surveys and nautical charts of the Coast andGeodetic Survey.

Mean Low Water. - The average height of the low waters overa 19-year period. All low water heights are includedin the average where the type of tide is either semi-diurnal or mixed. Where the type of tide ispredominantly diurnal, only the lower low water heightsare included in the average on those days when the t:Ldebecomes semidiurnal.

Mean Low-Water Line. - The intersection of the tidal planeof mean low water with the shore.

Mean Sea Level. - The average height of the surface of thesea for all stages of the tide over a 19-year period,usually determined from hourly height readings. Adetermination of mean sea level that has been adoptedas a standard for heights is called a sea level datum.

Mean Tide Level. - Same as Half-tide Level. A tidal datummidway between Mean High Water and Mean Low Water.

Ordinary High Water. - A nontechnical term considered by theCoast and Geodetic Survey to be the same as the tidalplane of mean high water.

Ordinary Low Water. - A nontechnical term considered by theCoast and Geodetic Survey to be the same as the tidalplane of mean low water.

Diurnal Tide. - Tides having a period or cycle of approxi-mately one tidal day. Such tides exhibit only one highand one low water during a tidal day; the predominanttype of tide in the Gulf of Mexico.

Semidiurnal Tides. - Tides having a period of approximatelyone-half a tidal day; the type of tide that is pre-dominant throughout the world, with two high waters andtwo low waters each tidal day. Tides along the AtlanticCoast are of this type.

Mixed Tides. - Tides in which the presence of a diurnal wave isconspicuous by a large inequality in either the high orlow-water heights, or in both, with two high waters andtwo low waters occurring each tidal day. Tides along theCalifornia (and Oregon) Coast are of the mixed type.

Tidelands. - The land that is covered and uncovered by the dailyrise and fall of the tide. More specifically, it is thezone between the mean high-water line and the mean low-water line along a coast, and is commonly known as the"shore" or "beach." Referred to in legal decisions asbetween ordinary high-water mark and ordinary low-watermark. Tidelands presuppose a high-water line as the upperboundary.

2

Alsea Bay (T 13S - R 11W)

Total Area: 2227 acres

Tidelands: 1338 acres

Tidelands Sold: 70 acres

Tidelands Granted: 1257 acres 1/

Navigable Length: (a) Alsea R. - 13.0 miles(b) Drift Cr. 1.5 miles

Tidewater:

(a) Alsea R. 5.0 miles aboveTaylor Landing Bridge

(b) Drift Cr. 5.5 miles abovemouth

Tide Data

Waldport

Stage M.L.L.W. M.S.L.

M.H.W. +7.0 +3.53M.L.W. +1.2 -2.27M.L.L.W. 0.0 -3.47

Port District: Port of Alsea

1/ According to the Railroad Survey of 1912

APPENDIX BSKETCH PLATES OF LANDFILL PARCELS

0 V)CN %Dr-Ir-I

4-1o

cril4

• W••

• W A4-i laO 0

4-1$40 .C10 -r-I 0U) 414

ak 0

0.• 5.4

a)U a) cas.4

03 a)

ul co0 C.) O

O

O

0H 0. 6 r-1 H

6-66 Tr..6-6. (j)

0 0 0 H,Q

H (NI rl 11:1

o

•-• •-•-•

rci al a)Q) H

• ri/ ci) H

< 44 • 0/0 C.) H

-1-3 ›-■O 0 0••m

11)$.1

X u 3-1 4.-■U)0 0)

IL W 0 0U)

00

O

•46

6•1 4-O0 1)

03-1 0 0

0 WPA 0 U

C9zcn

4.1

664

• N10

UlH

Z• 0

6-1 440

t-- 0 ko• o ,0

O• CO CO 6-1

>66614H

O 0 0

1-4 0 0

o t•X Li)

H ft1

H al 00

C.) HO 0 A

• 64 66-1

01 64 4, (364#

(1) N 4-1

44° Li) 0U1 W04.11 8 8 m

-0 U G

LINT

pegOO

o-

=

'4

00

U]U0•

H

o 0 '—' 0

N° 400

44g;;44),

- 04,q a' •

rt •,-1E-1 a 0

0.4

O

H 0• y.,4,a)

0m 0 00 8 Lou

U)

Fr

U)

r)

H

Z

0rn

UIH to

4.) RdH

rd (1) -•

0.HO)0 v

rcsE-■(1)

0

a)(.0

0-0 00 0 00

0—N CD C' CD

er ,1C. 0

1/40H H H

0rn

00 0Z

<

, ; 4 0

-'

0

--' P0 0

P.-

0 •0 o.,

.;-1 ,z V

.0

.

0:1 g .00 >,

<

d mo 0 .0 _..c/

m,

w

▪ -Pm,m-46m

or

,4

.1

0• •-

,40 cy4„1-,1

LT,45(<566 ...

X ›,V.

rou.t.lwr.i.En

-I l'OC' t- I.- < w

E' l'a 0 • ' P0 g, g Q.

4 Q 6 I--

4" . .0° yr

0

- 00.0m N. w

2°00

6O W

1._ 4k

Hm

p°0°0060y.,O 0

1.- - 0.1m,tool)-ow,

0 a' 0

Pgb

Oco

O

z

BROADWAY ST.

4)

0EtE

UIy

/ 6 0a4,

Lo ›,..nO al sr/■-.1 ONf■ 0 HI

ox HI C)

w0 0) CD 030 .. Cr 1-4 C .1.1 00 0) -Ia \ a

ca ) X trI Qd 3-iO 0 030 E. C11 0 Z0 \ LLI 0

0 ‘e --I •.-I

cl \ ' -1 •\ , 5 ■ - C.)▪U_ H ..0) 3-1 4-)

* J C.) 0) W ••*

.1!-- $.4 0 0 co

1:4_ 4 0 a ED c.) 0d 3 0 01V I-

0

0

U)

F-

OQO

c),0W cf) , o

„,

(<"

0

O

-s4

0

O--IO.

N- - 2J

CV Z

! .-4 /0 4.!, 8 x o ca a;

>, al 4..!0 r 11: E 4 0 PIN.-I 00ill 0..-1

1 U01 4.3•• 0

Z t I,•I t n PW 4.4 4-1

$-1C) Oa ) Ou ) 0"

! I 3PI 8 8 0° 'I!17Z.

,, (0

0(NI

r"k11 co

W

‘1)(Q-..1

NI I

000

2 ,o00 VI.4 0 r-IW V' ..... •-•.-I 0co 0--i ■ 01 0 0,--1.1 M°) ..--. 1--MI 1•••C',--I 0 W 010 Z .-I•• Ena) ca ,--1r0 0 al CU0- 01 Z •-•I.--1 1--I• r0W • •

cc) 4a La LaLa o )4 a)cc(..)

. 4> 4 4- u° 0$4>' 10.1j°5 0a)

2 ,,, 4 4 a

_1

4

:3, i•,-i

ci, 4 x zo(0 a)

0

-J 2 0W 4-)_.1 -

T_ o O O

a) )4 4a

4k 0- 0.--1 04000 OW

---E- —e! - - 0 0 0 0.1- I g ts, ,,Ia )0 C,1 NI nt

csir•-•

a)0 •--10 W0 1/400 Wo0,

0O WH !LI

0o 0

(1)

L.Lt

cr)10

H

32

co

O

InWCr

0 c:(

0

li- 0

—I 2.

I— 000I— CV

C•1

00CSI

OCV 0 II csl O oO O oO W ko

■-•

I HI Cs/H l'•-•

I 0 ON 01O 0.1

O 00 0 C.) -.1..–.• •CA■ o I-1 CA 01 (I) RI

O O rclO‘.0 •••

U C•1•• I

0 r W 4., 0a) ei 0

• .X N

0n:t • o'0HST a

0 H.o 00.4J 00C.) ■..0 Cs/

H W $.1(1) u4-,• a) tl)

01ITS 3 0 talig 0 C.)

• .16

O 0O 0

0 6O 0N t0

ZPA C/F/C OCEAN

0

coI> o lj

0Dc-) >M

03 '-71 <

> 8 F;7MX —9 (70 (i)

> g > Z> HI> X —I-< >7 oo > U) m m 0 m

mm z m F r- 0z r D K0 g,' i -I > Z K 7--I " 0 z ° 'lom 2w 0 < , 2mx 7 co m m ts,-n 'T.i <— Hz AO m 0 a,0 F -I m 0 x H 2r 0 0rn 0 XI -<0 x -im7 m Tn ox rnz .0

10

H0+I0 lt) 0 socnvomin 1"•••• h h 0 V In 0 C•1 CO CI 0 t.) 0 If/ Inoms000l r4000010r1CDO 1 CV r4HrIC/CDHO NE • • . • • • • • • • • • • • • 1 • • • . • • • • .

a)1

0001-1001-1000000r4h 0000,--ioac• •:r.-i csiA.1-1U) 1001,0MVOC•11111"•••hh04:111f/ ommcnornoin In, pW

OMNOOMr4000M0r400104r-irir-100r-10 N• • • • • • • • • • • • • • • 1 • . • • • • • •000, H100,4000000r4h 0000r1000 .4.• A rl CV

CI)• EJ

(1)13.1MCI)

1 \ I cv 1 r.) I

E4 00 E1M

HCV I

NH

1 I 0,W N I II 1 1 1 1 1 I• =III'01 It! 0 •!!!''!■11d11.1, 1111H 0) = 1-1 V• C...) g 0 U-.-I 0 14

• 0 Z la

$4V:,

• U ooco .4. .4.CV r40 = I IZ 0) • 0 01 r- 0 ni a)0_ = 0 0 g °gni:. = 0= = =0 • 0 0 1.1) 0 III 0Z a Z Z H Z r1 Z

N.4fU4.1o U

$4(1)U) 4-1cnU$4a W : 1/1) >1 W . UE :-. .4. 0 = .1).• 0E . z : g ttttt 0.t .rti Iv •,-1 coEn En U zo En rn

2.-1P u)V 0 -PS4 Z -1-1 4-1H U04 0 0 .0 0 0) .--I 0 U 0)0 2' C.) ›I -P 1-1 $4 ,4 1-1 U U0

-r4tr•-.1

0 0 4-) 0 0 a) gC4 0 H i-.01 4-1 = cn I: 17 .0 t ..g .0 I-1 ni a) to a) (Es'0o • g 0 0 CD 0 0 .1:3 rt, V 0

4-) • ,-1 0 g rti >1 >I rtI 34 g 0 •ri = • -1 CU S-1 ..-1 H140

rt1 co 4 14 C.) 4-1 4-1 0 0 I-1 .0 14 cn Z C : 0 14 14 ■-•0 0 0 0 0 -.-1 -.4 0 4 rt1 C) CCI 0..1 01

0 •1) ai0 g VIP-I> C) C.)› C.)ZWZ C4Z Z1:4Z u

.ri.V0 W NN NO\ ri4JWO NHN •

I 4.1 VD Irl •ZI• h. ••• r4 I= h• 01.0h= = WNW= 0CI) 01 01 01 = CT 01 \(1) 01 ON MOI\ Z

1-1gi, HIHri .--11-1 NWHI H1 rAHM

I -.... ,... 0m in S444-r-1

.•

0U

• CD0CVTi

a)tilChWW Nal\ Me-11410 WOOUD ri In V'= N 01 Hi= = = = = 10 r- 101 = = v) N 10 =

4-1as

4J Ch Ch CI 01 0'. th "•,, ON cn a-. cn --... >$4 H1-1 $4 H .i r-1 ri in rl ri 1-1 H CO 0

• 0.0In0 .....,,4 M1-1n,

0cll

C:4

.-ir0H

• ,•-1

U -) •4• (1) a A>1 0 4-1 14 4) g14 • >, 1-1 0 /4 0 4-1 • >1 0W 4 00ZO-P 0 .4 W CO H •• .0 0 as H 0,04 co o -1 H 1-1 $4

- ,•I34U4ifcl

•..

H• .-111-.'00al

0 0 VD 0) g CD • V tn U CO 0 g a) 0 -,-1 1-D0 g • Ul -r-i H c) H r-i >, u) • .. .-1 3 Z 0 WHD() r-11.1.4 r 1 n ”-4 nn ...- c •-• 0 (0 4co 0 II4 0 0 zz g org uo w H• H tS 00) H Z 0 0 0 Z= al 04 0 --i -.-4 E14 0 4-1 4-1.04-100,4 k g z= M CD >,=

0)4)04-1co

1-1 0 Uri 0 cu 0 R 0 .0 V CD H 41) Q) 14 C434 V 0 0 0 U.4.0 00 010>, UUN 14.0 S4 V •.X**---.ell

>100EPts-P 4-1 00P00 to 0-Pg >10 14• 0.--1,-1 10 0 0-.-I •,-1,-1 144 • ,-1 0 0 0 W H • 0MUI-IMP4WOCQUMP4 AOW 04= 03P-1.(..)

U r--1$4 • u) 4-1 •W A 4-1 P 4.) 04 0 0• >I 34 P • >I 00-g1 .g CU 0 Z 0 4-1 eg W (0 •ti) 0 0 H 04 a 0 Uri H 14H 3 0) 0) g c0 • rO U) 0 W 0 I-1• rl • CO •l 1-4 L.) ri U • • .-1 >i Z 0 tn.a •ri44 •OHgg 0 00.0 U)>I0 D4 U In 0 0A C.) 4 $4 0 ,41 3 w .P WO LI 0 H • H 0 H al'0 0 Z CO .1-1 U 0 Z= u) t: 4 al 0 ,-1 000 U) 0 44 >I 44.0 44 H E 0 P 0 U 3 >I U>1()WHO g o g oom-loH0 z)4 0 aZ.• 14 1.4 H 0 >1 g 0 '0 0 0 0 >4 >0rl 34 () -P $-1 41 >1 1-4 >, • • 4 • C.) 0 0414 >1 • g4-1o ,C1 0 g $4 14 151 4-1 4141.iongtn .04) 0 0014

g 4 .,-1000-,-1 •. .-1 • • 14 • -10 00 a) ,-I • oa E.) a a a r4 c) a c..) 0 al 4 Q 1-4 C.1 I-D 4 = I-4 3 >1

4-114 V0 00 04V 0 $4oVrt) W ri-i 34 W H1-Dti) H 0 Ill .X

H H OS .X H0 0'0 W 3 U KC 00 '0 rlH -.1 4-1 4-1 IX 11 = = I: = = 4-1 = = - c = = • ..1 1:rl 0 0 0 C.1 3• r-1 .0G. 4-, ›Itai 4-• g X

gU

14 4-3 ..-1 P .0 140 .•-1 0 0 0 0gli C.) C4 P4 h>1.0 • .a)0 En • 0• >, • 4-/ 14 4-1 VI• gH 14 4 V 14 0 14 0) H .0 >I 0

4 0)0 g 0 Z 0 44 4-1 C.) W w HH.N • 4 El) ill MS C14 0. 0 0.4 U) rl H H $414 "0 0 0 U H Ri • '0 0-1 0 g 0 g •0-1 17U 0 g .-.. . g r rs Li r H p>i W • • -1 3 Z 0 4-1o > H D 0 r4 0 0 0'0 (1) >1 0 0 0) .0 03 H 004•3,413x g a) v c..) c.) $4•H en.-1 a)0 04 W E-1 C) 0 C.) 0 Z• al C4 0 .1-1 .14 0

M 14 g 4-1 g 4-1 .0 4-1 W 1-1 0 14 g Z 1:: x 043 >1=00).--10300g04 •ric...1.--1 0) WP 043.0 V 0 0 0 0 C.) g R-) 0 g tc, 0 >I 0.)to 0 C.) 4-1 0 >I 1-1 >, g g 4 • 0 0.) 14 .0 14 •X>1 0 0 14 g H 4-1 •P g roungtr, o 4-1 g >1 0 S-10 r-1 -ri 0 0 -r-i . .-1 • -,-i H 14 14 • ,-I 0 al 0 W ,--I • 0CA C_) 1.4 P4 O 0 0 CCI C..) CQ r. 410i-lki OFICM C.-I>c

•0 "0 "0 0 $4.1-1 '0 0 $4 $.1 0.) fra0 0 0 (t1 0 01/1/ 0 AC .X rl 0II) H KC 0 0 1114 H 0KCa)/4Pi

a)"0..-1

.ri -ri44 04 = - - - - 4--1 --- -.-i g a) .0 M30to1In

El 4 44-/ fo, 04 44 • g H14 r.-1 r -I $4 0140 0 0 • 0

134 C40 C4 C14 3>1•o

4-1 Hi.7. kg)Ln in4-1

H U •14 0 u) • 00.) 0 -P 14 4-1 r0 • 0 H •

•.X 4 '0 0 P H 4 >t 0H U 0 0 Z 0 4) C.) W N •0 (I) Ili 0 04 04 P4 in H H 143 0.) .--I V • 1t) 0 0 g I-D

0g z..-i 4-)

• 1-.0N "00

• Nin H C_) .--1 Ill • ,--1 >I Z 0 131• 0 H .X '0 0 0 4 Ea ›, 0 a U En 0 gP1 04 S4 • 3 ,03 014-1 OTIC)0 H•H OH 0V -el0) E.--1 $4

14 0 0 U 0)-riC)0 Z:4 c0040) 0 rl0 H W(1)00

0.00 044 >1 4-1 A 4-1 H 014 g W Z = >I (1) >I=Li Uri 0 g ogoocn•rior-la) z 14 az

•ri H 0 >,10 CO "0 0 0 0 >I '0r4$40.1-1$40>li-1>i • • 4 • C.) 0 0414 >I • g

..-1a4-1,--i

•,. 0A 0 014 14 H 4-14-) CA C.3 C.) 0 0 01 4 4-1 g 0 014 4 0 4 -ri 0 0 -ri -,-1 • •ri • • 1-1 • •ri 0 0 0 W , I • 0a c) ,-q a a• ED E.) co C.) C.) CI■ KC A 1-1 W 1-D4, = 1-4 3 >1

0EU

O o o U o 40 o o o o o o o o o >, IX.0'0 CD CD CD 00000 CD CD CD CD Ch 01 0= = = CD CD 0 =

H

0 CV CI CX) tt st• •=1. CV CV rl r4 ri CV 'c!' 10 N CI 01 0• 0

Hr4CV ri Lb = HlNN CVH CV

C.) ,-$41O1

0Z U'0 c0H

H 0....)..-1F-1 0-.-I

01-4 0 0 0 0 CD ri CO 0 0 .0 0 0 CD 0 ri 0 CD 0 0 0 0 r4 CV0V -10W -,Xco '00 CD 0 0 0 0 0 -p o o o o o o o cD ).- cD o o o o o I I

el .--IM V' H ri Cf) 1-1 CV M cr 11) 1.0 t--- H In 01 M 1:14 H 1000 •X..-1 44El 0

rl04M

CV H CV •=1' ri 1-4 1-1 ri HI r4 CV 1-4 H r4 ri 00>4 CV,1

N-1-10 U)...... ••••,HIN!

C.)

' •0 r4 CI 01 1.1. 1cP .4. In In In In In In In In 1.0 10 N 00 CO CO cn o o o= H H H

S