an investigation of gold recovery in the grinding and gravit y

198
( An Investigation of Gold Recovery in the Grinding and Gravit y Circuits at Les Mines Camchib Inc. Lilan Liu M.Eng. (Metallurgy) A thesis submitted to the Faulty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Engineering Department of Mining and Metallurgical Engineering McGill University Montreal, Canada © October, 1989

Upload: vudan

Post on 02-Jan-2017

221 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: An Investigation of Gold Recovery in the Grinding and Gravit y

(

An Investigation of Gold Recovery

in the Grinding and Gravit y Circuits at Les Mines Camchib Inc.

Lilan Liu M.Eng. (Metallurgy)

A thesis submitted to the

Faulty of Graduate Studies and Research

in partial fulfillment of the requirements for

the degree of

Master of Engineering

Department of Mining and Metallurgical Engineering

McGill University

Montreal, Canada

© October, 1989

Page 2: An Investigation of Gold Recovery in the Grinding and Gravit y

l' "

Abstract i

Abstract

This thesis presents a research program designed to evaluate the performance of the gold gravit y circuit at Les Mines Carnchib Inc.

A detailed sampling program was conducted on the grinding and gravity circuits. Samples were screened and each size class was processed on a Mozley Laboratory Separator to determine free gold content. The performance of pinched sluices, Knelson concentrators, and a riffleless table is characterized on the basis of particle size, shape and liberation of gold. The amount of total gold and free gold in each size class of grinding circuit streams was also determined.

The pinched sluices recover from 8 to 17% gold in 4.8 to 7.3% of the mass. The double sluice recovers slightly more gold at a higher yield than the single sluice. In ad,1ition, the double sluice performed better at a higher feed density.

The 76 cm (30") Knelson recovers 62 to 71 % of the feed gold, at very high upgrading ratios (326 to 480). Free gold recovery is high, generally above 90% for all size classes. Gold recovery decreases when wash water pressure is lowered from 100 to 40 kPa; a 90 minute cycle time does not cause concentrate overload, i.e. decreased gold recovery.

The 19 cm (7.5") Knelson used in the gold room yielded 90% recovery. Reprocessing the tails in the same unit give only a marginal gold recovery, suggesting that a single pass is adequate. Fine gold losses on the riffleless table are significant, especially in -38 #lm (400 mesh).

Page 3: An Investigation of Gold Recovery in the Grinding and Gravit y

.

~. ~ ~

f

~ ~~ , f

..;".

Acknowlegements 11

Acknowledgements

1 am grateful to Prof. A. R. Laplante for his excellent supervision, Prof. J. A. Finch for his inspiring lectures and M. Leroux for his help on experiments.

1 also gratefully thank Les Mines Camchib Ine. for their financial support and

access to the mill site; the help and encouragement of Mr. André Cauchon, mill superintendant, and Mr. Enrico Boiocchi is especially acknowledged.

1 would also like to thank my friend, Y. Shu, for many helpful discussions and

accessibility and all my colleagues, G. Sheng, P. Cousin and M. Kaya.

Last, my special thanks to Manqiu, my husband, for his help to both my research

work and our housework.

Page 4: An Investigation of Gold Recovery in the Grinding and Gravit y

(

'" , !

f "

Table of Contents 111

Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. i Acknowlegements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11

Table. of Contents ................•....•................... iii List of Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 INTRODUCTION 1 1.1 The Chibougamau Mill . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 1.2 Objectives of the Research Work .... . . . . . . . . . . . . . . . . . . .. 10 1.3 Estimating Free Cold Content. . . . . . . . . . . . . . . . . . . . . . . . .. 10 1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Il

Chapter 2 GOLD RECOVERY DY GRA VITY 13 2.1 Roles of Gold Recovery by Gravit y . . . . . . . . . . . . . . . . . . . . . .. 13 2.2 Theories of Gravit y Concentration. . . . . . . . . . . . . . . . . . . . . . .. 15

2.2.1 Stratification. . . . . . . . . . . . . ................... 15 2.2.2 Film Concentration ............................. 17

2.3 Gravit y Concentration Equipment . . . . . . . . . . . . . . . . . . . . . . .. 18 2.3.1 Review of Gold Gravit y Equipment .................. 18 2.3.2 Gold Gravit y Equipment at Camchib ................. 20 2.3.3 Laboratory Equipment .......................... 23

2.4 Summary ..... &. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 29

Chapter 3 Assessing the "PerCeet" Gravit y Separators 31 3.1 Experimental Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Experimental Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32

3.2.1 Tests 1 and 2 on Non-prepared Feed ................. 32 3.2.2 Test 3 on Screened Feed . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.3 Test 4 on Hydraulically Classified Feed ............... 33 3.2.4 Multi-Pass Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33 3.3.1 Separation of a Non-Prepared Feed .................. 33 3.3.2 Separation of Prepared Feeds . . . . . . . . . . . . . . . . . . . .. 36

Page 5: An Investigation of Gold Recovery in the Grinding and Gravit y

-.. Table of Contents IV

3.3.3 Multi-Pass Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 The Gemini Table .................................. 41 3.5 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 4 Grinding Circuit 46 4.1 Grinding Circuit Size Distributions. . . . . . . . . . . . . . . . . . . . . .. 46

4.2 Evaluation of Cyclone Classification ....................... 48

4.2.1 Actual Classification Functions . . . . . . . . . . . . . . . . . . . . 48

4.2.2 "Corrected" Classification Function ................. 49

4.3 Evaluation of the Grinding Kinetics ....................... 54 4.4 Gold Liberation in the Grinding Circuit ..................... 57

4.5 Summary. . . . '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5 The 76 cm Knelson Concentrator 59 5.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1. 2 Sampling Consideration . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1. 3 Sample Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Mass Balance Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Grade Combination ............................ 63

5.2.2 Flowrate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2.3 Overall Gold Recovery ......................... 64

5.2.4 Free Gold Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Results and Discussion ............................... 67 5.3.1 Gold Assays and Percent Solids in AU Tests ............ 67

5.3.2 The Effeet of Back Water Pressure .................. 68 5.3.3 The Effeet of Cycle Time ........................ 69

5.3.4 The Effeet of Particle Size ....................... 73

5.3.5 Comparing the Knelson Concentrator and the MLS ........ 76

5.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 6 The Pinched Sluices 80 6.1 ExperimentaI Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Total Gold Recovery ................................ 81

6.3 Size-by-Size Gold Recovery ............................ 84

6.4 Minimum Sample Mass ............................... 85

Page 6: An Investigation of Gold Recovery in the Grinding and Gravit y

Table of Contents v

6.S Summary ........•.............................. 86

Chapter 7 Gold Room 87 7.1 The 19 cm Knelson Concentrator . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.2 The Riffleless Table ................................. 91 7.3 Summary ....................................... 94

Chapter 8 8.1 8.2 8.3

Conclusions Results . . . . . . . . . . . . . . . . . . . . " . . . . . . . . . . . . . . . . . . . . 96 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Page 7: An Investigation of Gold Recovery in the Grinding and Gravit y

List of Appendices vi

List of Appendices

Appendix A Experimental Results of the Grinding Circuit 106 Rod mill discharge (Dec. 16, 1987) . . . . . . . . . . . . . . . . . . . .. 108 Cyclone overflow (Dec. 16, 1987) . . . . . . . . . . . . . . . . . . . . .. 109 Cyclone underflcw (Dec. 16, 1987) .................... 0 0 110 BalI mill discharge (test 2 double sluice feed, Deco 16, 1987) 0 0 0 0 0 0 III Grinding data balancing output (final results) 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 112 JWBASIC output (ball mill simulation results for total mail) 0 0 0 0 0 0 113 JWBASIC output (ball mill simulation results for gold) . 0 0 0 0 0 0 0 0 114 Fresh feed tonnage 0 0 0 • 0 •• 0 0 0 0 •• 0 •••• 0 0 • 0 0 0 0 0 0 0 0 0 0 115

Appendix B Experimental Results of the 76 $cmS Knelson Concentrator 116 Test 1 (April, 13, 1987): 76 cm Knelson concentrate (19 cm Knelson rougher feed) .. 0 0 •• 0 0 0 0 •• 0 0 0 0 ••• 0 • 0 0 • 0 117 Test 1 (April, 13, 1987) (76cm Knelson feed: test 1 double sluice concentrate) .. 0 • 0 0 0 0 0 0 118 Test 1 (April, 13, 1987) (four 76cm Knelson tails combined) . . . . . . . 0 • • • • ••• 0 • • 0 0 0 119 Test 1 (April, 13, 1987) (76cm Knelson tails #1) ... 0 ••• 0 ••••• 0 • 0 ••• 0 0 0 0 •• 0 0 0 120 Test 1 (April, 13, 1987) (76cm Knelson tails #2). . . . . . 0 0 0 • 0 • 0 • • • 0 0 0 0 • 0 • 0 0 • o. 121 Test 1 (April, 13, 1987) (76cm Knelson tails #3) . 0 • 0 • • • • • • • • • • • • • • • • • • • 0 • • •• 122 Test 1 (April, 13, 1987) (76cm Knelson tails #4) . 0 ••• 0 ••••••••••• 0 • • • • • • • • •• 123 Test 1 (July, 1987: 76cm Knelson Feed) .... 0 0 ••••• 0 • 0 • 0 • 0 124 Test 2 (July, 1987) (three 76cm Knelson taits combined #2, #3, #4) 0 0 0 0 •• 0 • 0 0 • 0 0 • 125 Test 2 (July, 1987: 76 cm Knelson tail #1) 0 0 ••••• 0 0 •• 0 • • • •• 126 Test 2 (July, 1987: 76 cm Knelson tail #2) ............... o. 127 Test 2 (July, 1987: 76 cm Knelson tail #3) .. 0 •••• 0 0 • 0 • • • • •• 128 Test 2 (July, 1987: 76 cm Knelson tail #4) ... 0 •••••••• 0 • • •• 129

Test 3 (Deco, 1987, llpsi: four 76cm Knelson feeds combined) .... 130

Page 8: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

( '-

List of Appendices vii

Test 3 (Dec., 1987, llpsi: 76cm Knelson concentrate) .......... 131 Test 3 (Dec., 1987, llpsi: four 76cm Knelson tails combined) .... 132

Test 3 (Dec., 1987, Il psi: 76cm Knelson feed # 1) . . . . . . . . . . .. 133

Test 3 (Dec., 1987, llpsi: 76cm Knelson feed #2) ............ 134

Test 3 (Dec., 1987, llpsi: 76cm Knelson feed #3) ............ 135

Test 3 (Dec., 1987, llpsi: 76cm Knelson feed #4) ............ 136 Test 3 (Dec., 1987, llpsi: 76cm Knelson tail #1) ............ 137 Test 3 (Dec., 1987, llpsi: 76cm Knelson tail #2) ............ 138

Test 3 (Dec., 1987, llpsi: 76cm Knelson tail #3) . . . . . . . . . . .. 139

Test 3 (Dec., 1987, llpsi: 76cm Knelson taïl #4) ............ 140 Test 3 (Dec., 1987, 6 psi)

(three 76cm Knelson feeds combined #2, #3, #4) ............. 141

Test 3 (Dec., 1987, 6 psi: 76cm Knelson concentrate) ......... 142

Test 3 (Dec., 1987,6 psi: four 76cm Knelson tails combined) . . .. 143

Test 3 (Dec., 1987,6 psi: 76cm Knelson feed #2 ............. 144 Test 3 (Dec., 1987,6 psi: 76cm Knelson feed #3 ............. 145

Test 3 (Dec., 1987,6 psi: 76cm Knelson feed #4 ............. 146

Test 3 (Dec., 1987, 6 psi: 76cm Knelson taïl #1 . . . . . . . . . . . .. 147

Test 3 (Dec., 1987,6 psi: 76cm Knelson taïl #2 ............. 148

Test 3 (Dec., 1987, 6 psi: 76cm Knelson tail #3 ............. 149

Test 3 (Dec., 1987,6 psi: 76cm Knelson tait #4 ............. 150

Appendix C Experimental Resolu of the Pinched Sluices 151 Test 1 (April 13, 1987: Double sluice feed) . • . . . . . . . . . . . . .. 152

Test 1 (April 13, 1987: Double sluice concentrate) ........... 0 153

Test 1 (April 13, 1987: Double sluice tail) . 0 ••••• 0 ••• 0 0 • • •• 154

Test 2 (Dec. 16, 1987: Double sluice feed) . 0 •••• 0 •••• 0 •••• 0 155

Test 2 (Dec. 16, 1987: Double sluice concentrate) ..... 0 •••••• 156

Test 2 (Deco 16, 1987: Double sluice tail) . 0 •••••••••• 0 •• o. 157

Test 3 (Dec.16, 1987: Single sluice feed) . . . . . . . . . . . . . . . . .. 158

Test 3 (Dec.16, 1987: Single sluice concentrate) . 0 •••••••••• 0 159

Test 3 (Dec.16, 1987: Single sluice tail) . . . . . . . . . . . . . . . . .. 160

Test 4 (Dec.18, 1987: Single sluice feed

without dilution water in feed) 0 •••••••••••• 0 ••••••• 0 • 0 • 161

Page 9: An Investigation of Gold Recovery in the Grinding and Gravit y

List of ~ppendices viii

Test 4 (Dec.18, 1987: Single sluice concentrate

without dilution water in feed) ......................... 162

Test 4 (Dec.18, 1987: Single sluice tail

without dilution water in feed) ......................... 163

Test 4 (Dec.18, 1987: Double sluice taïl

without dilution water in feed) ......................... 164

Appendix D Experimental Resolts of the Gold Room 173 Test 1 (April13, 1987: 19cm Knelson rougher feed) .......... 174

Test 1 (April 13, 1987: 19cm Knelson rougher tail) . . . . . . . . .. 175

Test 1 (April 13, 1987: 19cm Knelson scanvenger tail) ........ 176

Test 1 (April 13, 1987: Riffleless table feed) . . . . . . . . . . . . 177

Appendix E Computer Programs 178

Page 10: An Investigation of Gold Recovery in the Grinding and Gravit y

( List of Tables IX

List of Tables

3.1 Riffleless table middling size distribution . . . . . . . . . . . . . . . . . . .. 32 3.2 Tests 1 and 2 on non-prepared feed . . . . . . . . . . . . . . . . . . . . . .. 34

3.3 Test 3 on screened feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Test 4 on hydraulically classified feed ...................... 37 3.5 Comparing the MLS performance with and without feed preparation ... 38 3.6 Comparison of the single pass and multi-passes using the MLS

with the 76 cm Knelson feed in the 75-106 #Lm class ........... 41

3.7 Comparison of the single pass and multi-passes using the MLS with the 76 cm Knelson concentrate in the 75-106 pm class ....... 42

3.8 The Gemini table on non-prepared feed ..................... 43

4.1 Grinding circuit size distributions ......................... 48 4.2 Actual classification functions for mass, gold and free gold ......... 49

4.3 The "Corrected" classification function .................... 52

4.4 The ball mill breakage function . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.5 BalI mill feed and discharge size distributions for both mass and gold used

to estimate their selection functions . . . . . . . . . . . . . . . . . . . . . . 56 4.6 Size-by-size free gold content in grinding streams ............... 58

5. 1 Free gold recovery calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Gold assays and percent soIids in all tests . . . . . . . . . . . . . . . . . . . . 68

5.3 The effect of back water pressure . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 The effect of cycle time .............................. 70

5.5 The effect of particle size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 The optimum operating points for feeds and tails

of all tests by the MLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 Summary of the estimation of the variance of the calculated

recovery and upgrading ratio using unadjusted data ............ 83

6.2 Summary of the estimation of the variance of the calculated recovery and

upgrading ratio using adjusted data . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Adjusted size-by-size recovery .......................... 85

6.4 Required sampling mass in each size class . . . . . . . . . . . . . . . . . . . 85

Page 11: An Investigation of Gold Recovery in the Grinding and Gravit y

List of Tables x

1.1 The 19 cm Knelson concentrator performance ................. 88 1.2 The 19 cm Knelson size-by-size recovery . . . . . . . . . . . . . . . . . . . . 91 1.3 The riffIeless table performance . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.4 Final gravit y concentrate .............................. 92 1.5 Gold distribution in the gold room feed, table feed and concentrate,

and the overall upgrading ratio . . . . . . . . . . . . . . . . . . . . . . . . . 93

Page 12: An Investigation of Gold Recovery in the Grinding and Gravit y

(

, ·1 ..

List of Figures xi

1.1

1.2 1.3 1.4 1.5 1.6 1.7

2.1 2.2 2.3 2.4 2.5

3.1 3.2

3.3

3.4

4.1 4.2 4.3

List of Figures

Flowsheet of grinding and gravit y circuit at Les Mines Camchib Inc. (Dec. 1986) ..................... 3

The pinchecl sluice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 The 1.7mm sereen and the 76cm Knelson concentrator . . . . . . . . . . . 5 The 19cm Knelson concentrator in the gold room . . . . . . . . . . . . . . . 6 The riffleless table in the gold room . . . . . . . . . . . . . . . . . . . . . . . 7 The gold concentrate is upgraded on the riffleless table . . . . . . . . . . . 8 The riffled drum used to c1ean the riffleless table middling . . . . . . . . . 9

A cross section view of the Knelson concentrator interior bowl ...... 22 The Mozley laboratory separator . . . . . . . . . . . . . . . . . . . . . . . . . 26 The MLS in concentrating gold . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Free gold concentrated by the MLS . . . . . . . . . . . . . . . . . . . . . . . 28 The Gemini table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

The effect of feed preparation on the MLS . . . . . . . . . . . . . . . . . . . 35 The MLS performance investigated test 1 (sample: the 76 Knelson

feed in the 75 - 106 ",m cJass at 73KPa . . . . . . . . . . . . . . . . . • . 39 The MLS performance investigated test 2 (sample: the 76cm Knelson

concentrate in the 75 - 106 ",m class al 73 KPa .............•. 40 Comparing the Gemini table and the MLS . . . . . . . . . . . . . . . . . . . 45

Mass balance of grinding and pcimary gravit y circuit (Dec., 1987) .... 47 Cyclone classification efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 50 Determination of m and d.sOc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Estimation of free gold recovery . . . . . . . . . . . . . . . . . • . . . . . • . 66 5.2 The 76cm Knelson concentrator subcycle total gold recovery ........ 71 5.3 The 76cm Knelson concentrator subcycle free gold recovery ........ 72 5.4 The 76cm Knelson concentrator total gold recovery as

a function of particle size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.5 The 76cm Knelson concentrator free gold recovcry as

a function of particle size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Page 13: An Investigation of Gold Recovery in the Grinding and Gravit y

List of Figures Xl1

7.1 The 19cm Knelson concentrator size-by-size recovery . . .......... 89 7.2 Scanning electron photographs of coause gold lost to

the 19cm Knelson tail .......••..................... 90 7.3 Gold room upgrading performance . . . . . . . . . . . . . . . . . . . . . . . . 95

Page 14: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Chapter 1

Introduction

1.1 The Chibougamau Mill

The Chibougamau mill of Les Mines Camchib Inc. is located on Merrill Island,

about 700 km north of Montréal, Québec, Canada. It has processed ore from copper­

gold deposits since 1955 [14]. At that time, gold recovery was not stressed due to

the low priee of goldj flotation concentrates assayed 23-26% Cu with a 75-82% gold

recovery. In recent years, gold priee has increased dramatically. This, cou pIed with

generally decreased copper priees, now makes gold the dominant economic value in

Chibougamau ores (as much as 90% of the total value) [38]. In order to maximize

gold recovery, the copper grade of flotation concentrates was lowered to 17-19% Cu,

a gravit y circuit was then installed within the grinding circuit at Camchib in the faU

of 1984, to recover coarse gold ahead of flotation. As a result, gold recovery increased

to 87-90% [37].

The sulfide mineraIs in the Chibougamau region are mostly pyrite, pyrrotite and

chalcopyrite with traces of sphalerite and galenaj the host matrix contains chlorite,

quartz, carbonates (calcite, siderite, ankerite) with minor occurrences of chloritoid,

actinolite and talc [28]. The Camchib plant now processes three ore deposits: S-3,

Cedar Bay and Meston. At the time of this survey, ore from the Henderson II mine

was also processed. Gold grades are highly variable, at 3 to 5.5 gft for S-3 and Cedar

Bay, and 6 to 14 gft for Joe Mann. Copper grade is about 0.3% for S-3 and Joe

Mann, and 0.5-1 % for Cedar Bay. Details of the metallogeny can be found in [33].

1

Page 15: An Investigation of Gold Recovery in the Grinding and Gravit y

, Chapter 1. Introduction 2

Figure 1.1 shows the gravit y and grinding circuit flowsheet at Les Mine Carnchib

Inc. at the beginning of this project. ACter three stages of crushing, finc ore is fcd at.

122 tlh to an open circuit, one rod mill (3.4 m x 4.0 m), then two ball mills (3.1 m

x 3.7 m) in parallel in closed circuit with two 76 cm cyclones. The cyclone ovcrfiow

goes to flotatiol1j one baIl mill discharge to one "double" sluicej and the other to one

"single" sluice. The tails of the sluices and the Knelsons are pumped to a cyclone

sump. The concentrates of two sluices go to a 1.7 mm (10 mesh) screen, and the

undersize is fed to two 76 cm (30") Knelson concentrators that operate alternately

with c. loading cycle of 90 minutes. Their concentrate is pumped to a security area

called gold room. In the gold room, the concentrates are first screened at 1.7 mm,

to remove metallic wires, and then upgraded in a 19 cm Knelson. Its rougher tail is

processed again with the same unit, and the rougher and scavenger concentrates are

combined and fed to a 213 x 102 cm riffleless table. The riffleless table yields a final

gold concentrate containing 49% gold which is ~,cid-cleaned prior to direct smelting.

The table middlings are processed in a riffled drum, the concentrate going to final

gravit y concentrate, and the tail of the drum being recycled to the table fced. Thc

riffled drum plays a minor role, it would not be discussed in detail in the thesis. The

tailings of the riffleless table and the 19 cm Knelson are processed by an outside

refinery. Figure 1.2 to Figure 1. 7 show aIl of equipment in the gravit y circuit.

The 19 cm Knelson has now been replaced by a 30 cm Knelson, to decrease

manpower costs. The tailings of the table and the 30 cm Knelson are now column­

cyanided prior to return to the grinding circuit.

Page 16: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Chapter 1. Introduction

Fine Oe

Rod Mill

OIF to flotatlon

r-------------r-, 2 76 cm ......... Cyclone.

Tall

U/F

2 Bail Mill

1 Double Siulc. 1 Single Siulc.

_A --OIS ._--- 1.7 mm Screen

U/

",,===/=;"'1 2 76 cm Knel.on

L_~c.".J-~::;=~_.J Concentrator.

19 cm Knelaon ~~ ...... ......;;;;;;p;;;....... Concentrator

19 cm Knel.on Concentrator \,.-............... __ --'

Magnet

(ft)

Gold Conc.

Tallinga

Figure 1-1: Flow.heet of grlndlng and gravit y circuit. at Le. Mine. Camchlb Inc. (Dec. 1986)

3

Page 17: An Investigation of Gold Recovery in the Grinding and Gravit y

Chaptcr 1. Introduction ·l .......;;.;;~-------~------------------_ .. _._.-

....... .......

~~." '" .. , ,. y

--......

Figure 1-2: The plnehed slulee

-

Page 18: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 1. Introduction 5

(

, , j i

1

(

Figure 1-3: The 1.7 mm .creen and the 76 cm Knelson concentrator

Page 19: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 1. Introduction 6 -';"'-A-~"';';""--';::==~:"::-________________________ . __ _

--

-

Figure 1-4: The 19 cm Knelson concentrator ln the gold room

--

Page 20: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 1. Introduction 7

(~

(~

Figure 1-5: The rlffleless table ln the gotd room

Page 21: An Investigation of Gold Recovery in the Grinding and Gravit y

, Chaptcr 1. Introduction ------ - --"--s

--

Figure 1-6: The gold concentrate Is upgraded on the rlffleless table

--

Page 22: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 1. Introduction 9

(~

.... ~ .- 1

(' 1.

(~

Figure 1-7: The rlffled drum used to clean the rlfflele88 table mlddllng

(

Page 23: An Investigation of Gold Recovery in the Grinding and Gravit y

..,,-.

--Chapter 1. Introduction 10

1.2 Objectives of the Research Work

The objectives of this project are as follows:

• to evaluate the performance of the gravit y circuit and change sorne of the im­

portant operating conditions of the equipment to maximize gold recovery by

gravity.

• to evaluate the performance of the Mozley Laboratory Separator (MLS) and

Gemini table as measures of free gold recovery.

• to estimate the kinetics of gold liberation and fragmentation.

1.3 Estimating Free Cold Content

The accepted method of determining free gold content is amalgamation. Liberated

and highly exposed gold particles of ail sizes will readily amalgamate with mercury.

Samples may be assayed before and after amalgamation and the quantity of "free

glod" gold is determined by difference. Alternatively, gold may be recovered from the

mercury by distillation. This method suffers from three important drawbacks.

1. The use of mercury and distillation, thereof, is a serious health and environ­

mental risk.

2. Free gold is recovered irrespective of its shape and size, which may make it

refractry to gravit y recovery.

3. The use of amalgamation for size-by-size studies is tedious.

As the main objective of the thesis ifJ to evaluate the performance of an industrial

gravit y circuit, the amalgamation route was discarded in favour of very effective

Page 24: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 1. Introduction 11

laboratory gravit y separators refered to as "perfect separators" , to reflect their ability

to achieve a near-perCect separation of liberated, gravity-recoverable gold particles.

The performance of these devices will be further enhanced by careful monitoring of

separation parameters and the use of single Tyler class as feed material.

In this thesis, the term "Cree gold" will therefore reCer to that fraction or grade of

gold which can be recovered by the "perfect separators", that is, "gravity-recoverable"

gold.

1.4 Outline of the Thesis

Chapter two is a literature survey of gold recovery by gravity. It contains informa­

tion on the roles of gold recovery by gravit y, theories of gravit y concentration and

equipment description.

Chapter three presents the rationale and experiment results for choosing the

MLS as a measure of free gold content for size classes in -212 /lm and the Gemini

table for +212 /lm as a whole.

Chapter four investigates the grinding circuit performance. For the 76 cm cy­

clones, classification efficiency, gold recovery, free gold recovery as well as a "cor­

rected" classification curve to the underflow are presented; for the ball mills, breakage

kinetics are estimated.

Because this work focuses on the Kelson concentrators, the 76 cm Knelson con­

centrator is addressed before the pinched sluices, in chapter 5. Results of four tests,

completed between April and December, 1987, are presented and discussed. The

experimental design and mass balance calculations are given. The performance of

the 76 cm Knelson concentrator and sorne factors affecting its performance such as

particle size, cycle time and wash water pressure are discussed.

Page 25: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 1. Introduction 12

Chapter six investigates the two pinched sluice performance. Four tests arc

included, test 1 was sampled on April 13 1987, and test 2,3 and 4 in Decembcr 1987.

The effects of sluice area and solid percents on performance are discussed.

Chapter seven looks at the cleanup of primary gravit y conccntrate in the gold

roomj the upgrading ratio and gold recovery are addressed. In addition, sorne irn­

provements to the flowsheet are suggested and discussed.

In chapter eight, the rnost salient results are summarized and discussed. Sug­

gestions for further work are presented.

Page 26: An Investigation of Gold Recovery in the Grinding and Gravit y

(

r ,

Chapter 2

Gold Recovery by Gravit y

2.1 Roles of Gold Recovery by Gravit y

Gravit y concentration of gold has been used since antiquity but its importance has

decreased at the turn of the century, due to the development of fiotation and cyanida­

tion technology. However, in recent years, reagent cost and induced pollution have

led to a revaluation of gravit y systems. In addition, gravit y concentration is a large

capacity, low operating cost technique, and can treat a wider size range than other

processes.

There are three major sources of gold: hard rock, placer and by-product. For

hard rock ore, South Africa ranks supreme with 50% of the world production in 1982.

For alluvial, beach sand gold ores, gravit y concentration is the principal, and

often the sole recovery method. Outside of South Africa a large proportion of gold is

produced from gold placers, especially in the V.S.S.R., using simple gravit y concen­

tration units such as sluice boxes or jigs.

In fiotation and cyanidation plants, a gravit y circuit is often ilsed within grinding

circuits, after a bail mill discharge or cyclone underHow {2,17,30]. Mining groups that

retain gravit y concentration maintain that they can use a shorter leaching time, or

that overall plant recovery is increased [9,34,41]. The recovery of coarse mineraIs

in the grinding circuit of the Tsumeb mill by using high-tonnage gravit y separation

equipment (a Reichert cone) has resulted in significant decreases in the consumption

13

Page 27: An Investigation of Gold Recovery in the Grinding and Gravit y

........

....

------- ----- --------, Chapter 2. Gold Recovery by Gravit y 14

of reagents in the oxide flotation circuit [57].

Another major source of gold are the so-called refractory ores, whcre gold is

associated, often intimately with copper, pyrite, carbonaceous minerais. Flotation,

cyanidation or roasting-cyanidation are then the dominant recovery methods. Gravit y

is usually an inappropriate recovery method for this type of ore.

For most of the twentieth century, little emphasis was put on the development

and improvement of gravit y technology. However, in recent years, a number of fac­

tors have stirred renewed interest in gold recovery by gravity. First, the priee of

gold has soared, and gold production has dramatically increased worldwide. This has

generated much interest for aIl gold recovery technologies, such as heap leaching and

activated carbon, which have over the past 10 years become very important industri­

ally. Gravit y has not escaped, with the development of new technologies, such as the

Reichert cone, Knelson and Falcon concentrators, and a thorough reappraisal of the

more established methods. Although the development of heap leaching (for "micro"

gold) and refractory ore oxidation (for "invisible gold) is definitely a step away from

gravit y technology, other considerations are expected to sustain interest in gravit y

for years to come. First, the ordinance of stringent environ mental regulations and

a rapidly escalating cost (up to $4 Canadian per kg for sodium cyanide on the spot

market at the beginning of 1989) has dramaticaIly changed the economics of cyanida­

tion. Second, base metal sulphides, when present'in the ore, must be floated prior to

cyanidation; it is then desirable to recover gold by gravit y ahead of flotation, to max­

imize net smelter return. Third, the failure of larger scale mining in many developing

nations has shed much attention to the attractiveness of smaU seale mining; gold

gravit y recovery from placer material may be the epitome of smaU scale mining. In

a Canadian perspective, gravit y recovery has gained a momentum bccause a number

of smaU producers have recently made the choice to limit capital costs and not use

cyanidation. Western Canada had also been the site of much development work for

centrifugaI separators, such as the Knelson [7] and the Falcon [5] .

Page 28: An Investigation of Gold Recovery in the Grinding and Gravit y

r

Chapter 2. Gold Recovery by Gravit y 15

2.2 Theories of Gravit y Concentration

The various mechanisms of gravit y separation can be divided into two broad classifi­

cations:

• those mechanisms relating to movement in a vertical plane, or stratification.

• those mechanisms relating to movement on an inclined plane, or film concen­

tration.

2.2.1 Stratification

The stratification mechanisms mainly relate to jigging, although they apply to various

gravit y separators. Four major mechanisms have been proposed in jigging: differential

acceleration at the beginning of a faU, hindered settling, interstitial trickling and

potential energy minimization.

During the upward stroke of the jigging cycle, the particle bed dilates and parti­

des move upwards until their velocities are eventually reduced to zero. Particles can

be considered as starting to faU from rest with a negligible drag force, yielding initial

accelerations, and hence velocities, functions of particle density, and independent of

particle size.

dv / dt = (1 - d' / d) . 9 (2.1)

where v - particle velocity cmfs d - particle specifie density g/cm3

d' - fluid specifie density gfcm3

Thus, dense particles are recovered more effectively at the beginning of faU. How­

ever, as particle velocity increases, drag forces can no longer be neglectedj eventuaIly,

Page 29: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 2. Gold Recovery by Gravit y 16

particles reach their terminal settling velocities which are much more depcndcnt on

size than density.

Particles settle in a stationary fluid depending on their density, ~hapc and size

according to the equations of Newton and Stokes:

Vi = I< . (d' - dt . D" m (2.2)

where Vi terminal settling velocity (cm/s)

D" particle diameter (cm) n,m exponents

]( constant term

For particles coarser than 0.2 cm, Newton's equation applies, and both n and m

are equal to 0.5. The hindered settling theory cannot apply; therefore, for separate

coarse particles, longer, slower strokes should be used; for particles finer than 0.1 mm,

Stokes' equation yields n=l and m=2. Particle size is then extremely important, and

the terminal velocity of finer particles is much IQwer than that of coarser ones; fine

particles become difficult to recover. Thus, to separate small heavy mineraI particles

from large light ones, a short jigging cycle is necessary.

For fine particles, as the solids content of pulp increases, the effect of intcr­

particle interference becomes significant. It eould be argued that the slurry density

could equal that of the lighter component; this would yield a separation akin to that

of a heavy medium. This is unlikely to be a case with a pyrite/gold system, but pyrite

could definitely act as a heavy medium for gold/silica separation.

Since particles of different size or specifie gravit y do not travel the same distance

during any one of the settling periods, the coarse particles may remain in suspension

for a much shorter period of time than the fine ones. As a result, coarsc particles

bridge together, while fines will continue to settle through the interstices of larger

ones; this effect is called interstitial trickling.

Page 30: An Investigation of Gold Recovery in the Grinding and Gravit y

f i

Chaptcr 2. Gold Recovery by Gravit y 17

The three mechanisms mentioned above were suggested by Gaudin [25J. Another

jigging theory is the center-of-gravity theory which is proposed by Mayer [44J. The

notable feature of this theory is that the bed is opened up to permit the release of

the potential energy of the mixed bed by the bed stratifying. It is an alternative to

the classical hydrodynamic approaches and is widely accepted [56,58]. But it does

not indicate how the denser particles move through the bed.

2.2.2 Film Concentration

Film concentration covers two very distinct cases: thin film and flowing film con­

centrations. In the former, film thickness and particle size are of similar magnitude

and the rate of shear on the fluid is relatively low; when a film of water flows down

a smooth inclined surface, under laminar flow conditions, the velocity distribution

is parabolic, being zero at the bot tom, and maximum at the top. In flowing film

concentration, a particle suspension is subjected to a continuous shear which is much

larger than that in thin film concentration. A dispersive pressure is created across the

plane of shear at right angles to the surface of shear. This phenomenon was originally

described by Bagnold [8]. The shear may be natural result of a pulp flowing over an

inclined surface, or may be produced by the movement of a surface underlying a pulp

stream. The Bagnold force is proportional to the square of particle diameter, and

hence lifts the larger and lower specifie gravit y particles preferentially, that is reverse

classification - coarser lights on top and finer heavies at the bottom. Thus, fine dense

particles will preferentially be recovered. In general, separators with applied shear

have higher recoveries on fine values.

Page 31: An Investigation of Gold Recovery in the Grinding and Gravit y

.... ,.

Chapter 2. Gold Recovery by Gravit y 18

2.3 Gravit y Concentration Equipment

In this section, first we will brie8y review equipment usually associatcd with gold

recoveryj set:ond we will d"\'eU on Camchib equipmentj {urther, we will discuss the

two laboratory devices used as measures of near "perfect separation".

2.3.1 Review of Gold Gravit y Equipment

Jigs were applied to primary treatment of alluvials or free metal recovery in the gold

milIs. North American gold mines commonly incorporate jigs in the grinding circuit

to recover coarse free gold [17,301. The jig has the widest treatment range (200 - 0.1

mm) among gravit y concentration devices, but its recovery of fine particles is poor.

Flowing film concentration is the oldest pro cess used in gold gravit y concentra­

tion, and remains of major importance as a pre-concentration or fine gold recovery

units. Sluices are still used as the primary unit to process placer gold, for example in

the Yukon [47], Alaska, and developing nations. Sluice operation can be optimized by

controlling feed rate and density [601, and choosing an appropriate surface (turf, cor­

duroy). However, sluices remain ineffective for fine gold recovery, and are practically

worthless below 100 l'mj generally they should not be as sole recovery units.

A pinched sluice is considered modern development of the riffied sluice. It differs

from the riffied sluice both in the smooth bottom of the trough and the continuous

removal of concentrate. A Reichert cone has identical operation principles, and can

therefore be expected to produce comparatively similar results on any particular

{eed material. The differences are that the Reichert cone will yield slightly better

separation due to the absence of deleterious wall effects; a pinched sluice is more

flexible with capacities lower than that of a Reichert cone (anywhere from 2% to

20% the capacity). The Reichert cone has become an industry standard for high

capacity treatment of finer sized low grade ores, as is weIl descrit-ed in papers by

Page 32: An Investigation of Gold Recovery in the Grinding and Gravit y

r

Chapter 2. Gold Recovery by Gravit y 19

Ferree [20,21,22] and others. As any single separation stage is relatively inefficient,

yielding poor upgrading and moderate recoveries, the Reichert cone incorporates as

many as eight separation stages per unit (e.g. 4DS) [11]. Still, many such stages must

be incorporated to achieve reasonable upgrading. For example, OK Tedi uses three

stages of Reichert con es as a rougher and a cleaner to recover free goldj the cleaner

concentrate is fed to spirals for further upgrading [34].

A spiral concentrator is one of the relatively modern units for smaller scale

plants with a low capacity (1-3 tph per start). A lateral movement is generated

by the addition of centrifugaI force. Its performance is similar to the Reichert cone

[50,18]. Many types of spi raIs have been manufactured for recovering various ores

[23].

A compound water cyclone (CWC) should be considered a pre-concentrator

ahead of more costly processing equipment. A 305 mm CWC achiend 75-90% gold

recovery with upgrading ratios of 11:1 and 5:1 [59]. A 102 CWC achieved 50% recovery

for 53/75 /lm placer ore with a upgrading ratios of 10 and 20 to 1, and a 63% recovery

of Iode ore 70% finer than 74 /lm.

Thin film concentrators recover fine gold efficiently. Unfortunately, their cap ac­

ities are rather low, and operation is discontinuous. The wet shaking table evolved

from the thin mm concentrator concept to solve both problems. In addition to the

thin film effect, a horizontal asymmetrical motion at right angles to the flowing film

and riffles placed across the flow are added. The role of the asymmetric motion, with

a slow forward stroke and a quick backstroke, is to preferentiaiiy move fine and dense

particles further than coarse and light ones. Each trough between successive riffles

can considered as a miniature jig. This action is more effective than a regular jig

in concentrating fine particles, because of a much thinner bed. As a result, tables

can recover much finer particles. Their capacities per unit area are low, and they are

generally used as the Iast upgrading stage [34].

Page 33: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 2. Gold Recovery by Gravit y 20

It was long considered that effective gra\'ity concentration was impractical bclow

50 pm. However, it should theoretically be possible at aIl sizes, until the gravitational

setting forces are matched by the inter-particle forces holding the particles in suspen­

sion. In the last quarter century, a resurgence of interest in gravit y concentration

has resulted in the development and commercialization of a range of new equipment,

reducing the finest practical size of recovery as fine as 5 pm [12]. A significant im­

provement in the concentration of heavy mineral~ in the range of 10-50 l'm has becn

achieved by the development of the Bartles-Mozley concentrator [46]. Others are the

rocking shaking vanner [13], and the endless belt concentrator [9]. In the sixties,

very little work had taken place to use centrifugaI forces in gravit y separation [19],

until recently. Recent developments include the Chinese YT centrifugaI separator for

gold and other heavy mineraIs [55], the compound water cyclone (CWC) for fine gold

recovery [9,59], and the Knelson concentrator [7].

Another new separator is the Magstream which uses a magnetic ftuid to "buoy"

particles radially inwards against an outward centrifugai force of rotation [3]. It is

claimed to achieve high quality separations independent of particle size and size range

in the feed, and adjustable magnetic fluids density beyond 21 glcm3• However, its

low capacity makes it a laboratory rather than production unit.

2.3.2 Gold Gravit y Equipment at Camchib

The gravit y equipment at Camchib includes: pinched sluices, the Knelson concentra­

tors and a riilleless table.

Pinched Sluices

There are two pinched sluices at Camchih, one is a single sluice (610 x 69 cm), and

the other a double (610 x 138 cm). Each sluice receives the discharge of one hall mill

Page 34: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Chapter 2. Gold Recovery by Gravit y 21

as a preliminary rccovery stage.

Each pinchcd sluicc consists of an inclined channel which decreases in width in

the direction of pulp flow. Both were installed at a horizontal angle of 40• As a high

solids density (63%) stream flows down the sluice, a flowing film velocity gradient

is set up and the tiner and heavier particles concentrate in the lower levels by a

combinat ion of hindered settling and interstitial trickling. The opening to remove

heavies is at the end of channel, and can be adjusted to control the amount of the

concentrate.

The Knelson Concentrators

The Knelson concentrator outperforms other gold concentrators su ch as spirals and

slime-deck shaking tables [52]. It has been considered by sorne the most sophisticated

fine gold recovery device on the market today.

It consists essentially (Figure 2-1) of double conical wallsj riffles are welt in the

inner wall at the right angle to the vertical axis of the concentrator vessel. Slurry

enters the inner cone bottom through an axial feed pipe. As the inner cone rotates at

very high speed, lights flow up and out over the riffles to a taillaunder, whilst heavies

are collected behind the riffles by a centrifugai force. Compaction of the heavies is

prevented by injecting water from the outer jacket through a series of perforations in

the inner wall. The perforations in the inner cone are evenly spaced between every

two riffles and are drilled tangentially, allowing water to be introduced in the opposite

direction to the cone rotation [43].

The Knelson concentrator is a semi-batch unit, as the concentrate is removed

intermittently. There are two 76 cm Knelson concentrators being operated alternately

at Les Mines Camchib Inc. as dominant gold recovery units by gravit y, for cycles of

60 to 90 minutes at feed rates of about 20 t/hj there is a 19 cm Knelson in gold room

-, \

J 1 ~

_J

Page 35: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 2. Gold Recovery by Gravit y 22

for upgrading. For cleanup, the cone is stopped and emptied out by opening up a

drain at the bot tom and flushing out the concentrate.

Figure 2-1: A cros. aectlon vlew of the Knelson concentrator Interlor bowl

Page 36: An Investigation of Gold Recovery in the Grinding and Gravit y

! ..

Chapter 2. Gold Rccovery by Gravit y 23

The so}id particlcs in the Knclson eoneentrator have their functional specifie

gravit y magnified by a factor of up to 60. Gold, with a specific gravit y of 19.3, has

a "working force" of 1158, while sulphides, with a specifie gravit y about 4.5, have a

"working force" of 270, and siliea (2.65 g/cm3) has a "working force" only 159 [43].

It is this sprcad that yields much higher specific gravit y differences between gold

and gangue than conventional recovery methodsj therefore, good concentration is

achieved. Knelson daims that " g" forces of up to 60 have been successfullyachieved

for the 76 cm diameter unit at 400 rpm, (m a daim which is supported by a theoretical

analysis, but not by direct measurement), and that it handles material up to 0.6 cm

[11 ].

Riffleless Table

There is a 213 x 102 cm riffleless shaking table in a gold room to clean 19 cm Knelson

concentrate. In the absence of riffles, reverse size classification is amplified. Numerous

gold flakes are present in the table feed, and are difficult to concentrate between

riffles, as they have a behaviour intermediate between that of coarse dense and fine

light particles.

2.3.3 Laboratory Equipment

The Choice of "Perfed" Gravit y Separators

The most widely used method to evaluate the potential of gravit y separation of an

ore is sequential heavy liquid analysis which, although a tedious technique, does give

reproducible results. Gold at Camchib is free gold (19.3 g/cm3) or electrum (12-19

g/cm3) associated with pyrite (4.9-5.2 g/cm3

) and chalcopyrite (4.6 g/cm3 ). The

highest heavy liquids are Clerici solutions which only allow separation at densities up

to 4.2 at 20°C or 5.0 at 90°C. Separations of up to 12.0 gJcm3 can be achieved by

Page 37: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 2. Gold Recovery by Gravit y 2·&

the use of "magnetohydrostatics", i.e. the utilization of the supplcmentary wcighting

force produced in a solution of pararnagnetic salt whcn situatcd in a rnagnctic field

gradient [66]. This type of separation is applicable prirnarily to nonmagnctic mineraIs

with a lower limiting particle size of about 50 /lm.

Bench scale testing using a very efficient gravit y device takcs into account particlc

size, mass, and shape, as well as relative density; therefore, it can he regard cd as

a doser method to approach plant performance. Hcavy liquid analysis only takcs

account relative density.

Hand panning is one of the oldest methods of carrying out physical test work

on samples of up to a few kilograms. However, it is not reproducible, and is clearly

unsuitable as a measure of separability.

Laboratory shaking tables are generally incapable of efficient separation helow

approximately 75 /lm [11]. An exception may be the Gemini table, as it was de­

signed especially for free gold recovery. It will be tested as a tool to evaluate circuit

performance.

On sized samples the Mozley Laboratory Separator (the MLS) can approach

the efficiency of heavy liquid separation for tin ore and wolframite [6]. Bench scale

testing with the MLS is fast, and the treatment of a large number of sarnples is

practical. Its primary role is for fiowsheet design. For example, the MLS was uscd

as a measurement to confirrn a stage grinding/ concentration flowsheet requircd and

optimum grinding size, by carrying out a series of tests while varying the rnesh of

grinding [62]. For this project, the MLS will be used for circuit diagnostic rather

than design.

The 7.5 cm (3") Knelson concentrator could.also be an efficient rneasurer of the

free gold content, but it was unavailable when this study was initiated.

The above techniques were prirnarily developed to assess the amcnability of var-

Page 38: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 2. Gold Rccovery by Gravit y 25

ious ores to gravit y separation. Their mechanical performance is generally superior

to that of a single stage plant unit, and as such they can be used to predict the sep­

arability of full gravit y circuits where many stages are used to achieve a separation

which is nearly perfect to mechanically and limited only by incomplete liberation or

similarities in specifie density. Hence the concept - and the name - "perfect" separa­

tions. Alternately, these separators can he used to diagnose mechanical inefficiency

in operating circuits, as will be the case in this study.

Two "perfect" separators are introduced in detail as follows:

The Mozley Laboratory Separator

The MLS was developed in England by Richard Mozley in 1979 [4]. It has hecome a

standard bench-scale gravit y concentration device, and is claimed to separate minerai

grains having close specifie gravities. Its components of with the fiat tray are shown

Figure 2-2. The unit consists essentially of a separating tray, sloping slightly in one

direction, and oseillated in simple harmonie motion by a crankshaft in the other

direction. For separations in the range of 10 to 100 l'm, a fiat tray is used, but yields

poor separation with coarser feeds, as wash water can force large heavy particles down

the tray. To overcome this problem: the fiat tray is replaced by a "V" shaped tray

with 1650 included angle, and a longitudinal "knock" twice a oscillation is added to

move heavies up [6]. The "V" shaped tray is suitable for recovering coarse size in the

range of 100 to 2000 pm, and will be used for this study, as it corresponds hetter to

the size range of gold being recovered.

The operation of the two trays is similar. A sample weighing between 100 to 150

g (not exceeding 200 g) is put near the head of a tray, and is wetted. A small amount

of wash water is introduced to make sure the tray surface is thoroughly wetted, then

the MLS is started. The tray is oscillated for a predetermined periodj the oscillatory

motion promotes the mobility of mineraI particles and encourages them to move

Page 39: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 2. Gold Recovery by Gravit y 26

towards the central apex of the shallow for "V" shapcd tray to form a narrow band.

Heavier particles collect in the lower layels of the band aud arc conveyed upstrealll

by the knocking action against the direction of wash water flow. Lighter particles arc

displaced into the upper layers where they arc washed down to a tail laundcr; the

concentrate will he in the area adjacent to the upstream end of the tray; a middling

fraction will be in the zone hetween the concentrate and the lower cdge of the I.ray.

The MLS can concentrate free gold efficiently,. Figures 2-3 and 2-4 show the proccss

of the MLS concentrating Cree gold.

CONTROL PANEL IncJudes Tlmer /Slart button, Water rolameter Rotameter water valve,

36.n (91·2cm)

t .... LAUNDER' .....

l1m Oulle!) ....

CRANK

,"/./ PULlEYS ( T 0 pro'llde speeds 60.70 80.90.100 110rpm)

(1101lac 50hz) (220/240VdC 50hz)

(II) provlde amplitude of 2.Y2 1n 10 6m)

~ ADJUSTABlE LEVELLING JACKS CASTORS

Figure 2-2: The Mozley Laboratory Separator [4J

Page 40: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 2. GoJd Rccovery by Gravit y 27

(

r '"

Figure 2-3: The MLS ln concentratlng gold

(

Page 41: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 2. Gold Recovery by Gravit y

1

--150"'106 um

"

Figure 2-4: Free go Id concentrated by the MLS

'-';f' , " " . .. ~.:.s.

Page 42: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 2. Gold Recovery by Gravit y 29

The Gemini Table

The Gemini table is a new design gold separator with longitudinal and traverse slops

and central-convex grooved surface (see Figure 2-5). As the table shakes, gold parti­

des settle in the grooves and slip down to a concentrate launder by shaking, gangue

materials cross over heavier mineraI bed and washed down to a taillaunder. It was

daimed to achieve unique separation capabilities when fed "pre-concentrate", and

has a distinct advantage over previous table design, being able to produce a clean

free gold product with exception al recovery capability of a finishing table. The com­

bination of a Reichert cone, spirals, and a Gemini table to pro cess old mill tailings

routinely recovers gold down to 38 J'm [18].

2.4 Summary

This chapter is a literature survey of gold recovery by gravity. First, the role of gold

recovery by gravit y is described. Gravit y concentration is the sole recovery method

for alluvial ores, is an auxiliary recovery rnethod in flotation and cyanidation plants,

but is generally inappropriate for refractory ores. Second, the theories of gravit y

concentration are discussed, induding stratification and film concentration. Third,

traditional gravit y concentration equipment is briefly reviewed, and separation units

at Les Mine Carnchib gravit y circuit as weil as two laboratory devices to be used to

estimate free gold recovery are discussed.

Page 43: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 2. Gold Recovery by Gravit y 30

-

S.!.. ~t .. ~

-

Figure 2-5: The Gemlnl table

-

Page 44: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Chapter 3

Assessing the "Perfect" Gravit y Separators

3.1 Experimental Objectives

Exploratory test work will be completed to compare the performance of the Mozley

Lahoratory Separator (MLS) and the Gemini table as standards to assess plant gravit y

performance.

A secondary objective will be to demonstrate that sorne plant unit operations

fail to recover liberated gold. For this, a tailing stream known to contain significant

fine gold values will be used for aIl tests, i.e. the riflleless table middIing. As the

gangue in this product is largely pyrite, it will De a good test of the MLS's ahility

to separate gold from sulphides, an important feature of the Camchib gravit y circuit.

The middling has a high gold content 25000 g/t (700 oz/st), which will minimize

problems associated with assaying statistics.

Among various possible avenues to increase separation efficiency, feed prepa­

ration by screening and hydraulic classification will he tested with the MLS. This

technique is used in the South East Asian tin sheds to increase separation efficiency

[11].

31

Page 45: An Investigation of Gold Recovery in the Grinding and Gravit y

......

Chapter 3. Assessing the "Perfect" Gravit y Separators 32

Table 3.1: Riflleless table middling size distribution

Size(l'm) +425 300 212 150 106 75 53 38 0 L -425 -300 -212 -150 -106 -75 -53 -38

~ass(%) 1 1.2 1 2.8 1 7.4 1 19.1 1 32.5 1 26.9 1 8.0 1 1.5 1 0.6 1100.0 Il

3.2 Experimental Procedure

A mas ter sample was dried and split into 400-500 g sub-samples. One of sub-samples

was used to determine the size distribution by screening, as shown in Table 3-1. The

sample con tains virtually no mass below 38 l'm, 1.2% above 425 l'm. The bulk of the

mass is in three Tyler size classes, from 75 to 212 l'm.

3.2.1 Tests 1 and 2 on Non-prepared Feed

These tests aimed at determining optimum feed mass for the MLS. A 440 9 sam pIe

was split into two 220 9 sub-samples for test 1, a 300 9 sample split into three 100 9

sub-samples for test 2, an sub-samples were processed separately. The middIings from

each test then were combined to be processed again into two fractions, the concentrate

to be added to the first concentrates, and the tail constituted a middIing.

3.2.2 Test 3 on Screened Feed

As a first estimate of the ability of the MLS to recover free gold over the full size range

of interest, a riffleless table middling sub-sample was split at 106 l'm, and the two

size fractions processed separately, using the same approach as for the non-prepared

feed. A eut size of 106 l'm was chosen as it is used often as reference size to describe

the inefficiency of gravit y to recover fine gold [11]. The products from both tests were

assayed separately .

Page 46: An Investigation of Gold Recovery in the Grinding and Gravit y

(

Chapter 3. Assessing the "Perfect" Gravit y Separators 33

3.2.3 Test 4 on Hydraulically Classified Feed

A column hydraulic (counter-current) classifier was used to pre-classify the middIing

prior to processing on the MLS. In the column, free settling predominates because

solid percent by weight is much less than 15% [54]. Particles whose settling velocities

exceed that of the upward moving fluid are recovered in the underflowj others report

to the overflow. The upward flow of water was chosen to achieve about a equal

mass split between the float and the sink products, based on the density of pyrite.

The underflow and overflow were processed, using the same approach as for the non­

prepared feed.

3.2.4 Multi-Pass Tests

In order to investigate the performance of the MLS further, a single pass and multi­

passes of the 76 cm Knelson feed and concentrate will be tested to see how the MLS

approaches "perfect separation". The first and second middlings and the tail from

the first pass will be processed again separately, and aIl products separately assayed.

This procedure is aimed at investigating maximum potential recovery on a given feed.

AIl test products were fire assayed for gold and silver at Les Mines Camchib Inc.

3.3 Results and Discussion

3.3.1 Separation of a Non-Prepared Feed

Table 3-2 compares the results of tests 1 and 2, on the non-prepared table middling.

Yield is defined here as the mass recovered in the concentrate. This definition will

be used throughout the thesis. Results are quite comparable for the concentrate, but

the middIing of the first test has about the same grade as that of the second, despite

Page 47: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 3. Assessing the "Perfect" Gravit y Separators 34

Table 3.2: Tests 1 and 2 on non-prepared feed

Mass Yield Cum.Y. Grade Cum.G. Dist'n Cum.D. (g) (%) (%) (oz/st) (oz/st) (%) (%)

C 12.1 2.8 2.8 15526 15526 60.3 60.3 Test 1 Au M 41.4 9.5 12.3 1186 4429 15.8 76.1

T 383.8 87.7 100.0 194 713 23.9 100.0 C 8.0 2.8 2.8 14972 14972 61.2 61.2

Au M 58.4 20.0 22.8 947 2637 28.3 89.5 Test 2 T 225.0 77.2 100.0 91 671 10.5 100.0

C 8.0 2.8 2.8 3554 3554 55.0 55.0 Ag M 58.4 20.0 22.8 270 665 30.4 85.4

T 225.0 77.2 100.0 34 177 14.6 100.0

Note: C: concentrate; M' rniddling; T: tail

having only half of its yield. As a result, a considerably lower gold content in the tail

of test 2 is achieved, 91 oz/st, as compared with 194 oz/st in test 1. This suggests

that the feed mass of test 1 was too high. Ali further tests will be performed on a

maximum of 150 g.

Test 2 shows that much of the gold in the table middling can be recovered at a

very high grade, about 18500 oz/st Au + Ag, at 60% recovery. Visually, this gold is

mostly fine and granular, although a few larger flakes are also recovered. The gold

to silver ratio in the concentrate is about 4 to l, which suggests that a significant

fraction of the silver is recovered as electrum. Mineralogical studies on the main

source of gold, the Joe Mann Mine [33}, confirm that the coarse gold particles are

mostly present as electrum.

Test 2 also shows that about 30% of the gold reports as a middIing product. This

gold is largely liberated, but its size or shape makes it refractory to gravit y separation

from a pyritic gangue. This material is now directed to column cyanidation, where

recovery about 90% is achieved in 24 hours, the leaching residue then being washed

and returned to the grinding circuit.

Page 48: An Investigation of Gold Recovery in the Grinding and Gravit y

.--. ~ ~

~ .. • > 0 U • a: 'U -0 CJ

"

Chapter 3. Assessing the "Pe .. fect" Gravit y Separators

100

80

60

40

20

0 0 0 Il)

Q Q II) ~

non-prepared f.ed

8creened feed

hydroslz.d feed

0 Q 0 Q Il) Q C'I ID

Q 0 0 0 ....

Cumulative Grade (oz/st) log.

0 Q Q ID ....

Figure 3-1: The ett.ct of f •• d praparatlon on the MLS

35

0 0 0 ID C'I

Page 49: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 3. Assessing the "Perfect" Gravit y Separators 36

Table 3.3: Test 3 on screened feed

Mass Yield Cum.Y. Grade Cum.G. Dist'n Cum.D. (g) (%) (%) (oz/st) (oz/st) (%) (%)

C 3.1 1.2 1.2 12817 12817 50.5 50.5 +106 M 49.1 19.6 20.8 281 1025 17.5 68.0 (pm) T 198.5 79.2 100.0 127 314 32.0 100.0

C 7.6 5.4 5.4 19625 19625 73.2 73.2 Au -106 M 27.8 19.6 25.0 1205 5160 16.4 89.6

(pm) T 106.4 75.0 100.0 199 1437 10.4 100.0 C 10.7 2.7 2.7 17653 17653 66.9 66.9

AlI M 76.9 19.6 22.3 615 2696 16.7 83.6 T 304.9 77.7 100.0 152 720 16.4 100.0 C 3.1 1.2 1.2 3227 3227 45.0 45.0

+106 M 49.1 19.6 20.8 76 263 16.6 61.6 (pm) T 198.5 79.2 100.0 43 89 38.4 100.0

C 7.6 5.4 5.4 4682 4682 65.3 65.3 Ag -106 M 27.8 19.6 25.0 376 1300 19.2 84.5

(pm) T 106.4 75.0 100.0 80 385 15.5 100.0 C 10.7 2.7 2.7 4261 4261 59.4 59.4

AlI M 76.9 19.6 22.3 184 682 18.4 77.8 T 304.9 77.7 100.0 56 196 22.2 100.0

3.3.2 Separation of Prepared Feeds

Results on the screened sample are shown in Table 3-3. Screening at 106 l'm already

achieves a significant separation, as the grade of the undersize is almost fivefold that

of the oversizej 72% of the gold is finer than 106 l'm. Thus, most los ses in this stream

are due to fine gold rather than coarse flaky gold.

Recovery of the +106 l'm is poor, 68% for a yield of 21%, which suggests sorne

liberation problems. Recovery in the undersize is 90% for a yield of 25%. The

concentrate is very rich, 24300 oz/st, or 83.5% Au + Ag. Overall results suggest that

pre-screening the feed will not be very useful, as performance is comparable to tests

1 and 2. This stems from the relatively homogeneous nature of particle size, 78.5%

between 75 and 212 l'm.

Page 50: An Investigation of Gold Recovery in the Grinding and Gravit y

...----------------- -

::( 1 ..

,(

Chapter 3. Assessing the "Perfect" Gravit y Separators 37

Table 3.4: Test 4 on hydraulically classified feed

Mass Yield CUID.Y. Gra:de CUID.G. Dist'n CUID.D·II (g) (%) (%) (oz/st) (oz/st) (%) (%)

C 3.8 3.0 3.0 14878 14878 66.9 66.9 U/F M 24.7 19.1 22.1 744 2628 21.7 88.6

T 100.5 17.9 100.0 96 655 11.4 100.0 C 5.7 2.4 2.4 18540 18540 60.4 60.4

Au OIF M 52.0 21.5 23.9 782 2537 23.3 83.7 T 184.0 76.1 100.0 155 724 16.3 100.0 C 9.5 2.6 2.6 17075 17075 62.5 62.5

Ave M 76.7 20.7 23.3 770 2567 22.8 85.3 T 284.5 76.7 100.0 134 700 14.7 100.0 C 3.8 3.0 3.0 3562 3562 62.3 62.3

U/F M 24.7 19.2 22.1 198 647 22.5 84.8 T 100.5 17.9 100.0 33 168 15.2 100.0 C 5.7 2.4 2.4 4388 4388 52.3 52.3

Ag OIF M 52.0 21.5 23.9 257 665 27.9 80.2 T 184.0 76.1 100.0 52 198 19.8 100.0 C 9.5 2.6 2.6 4058 4058 55.4 55.4

Ave M 76.7 20.7 23.3 238 659 26.2 81.6 T 284.5 76.7 100.0 45 188 18.4 100.0

Hydraulic preparation yielded two fractions of approximately the same gold con­

tent (Table 3-4), with 65% of the mass reporting to the overflow. The underflow shows

the same recovery problem as the + 1 06 l'm. The overflow, as the -106 l'm, yields a

high grade.

Figure 3-1 shows the grade-recovery curves of tests 2,3 and 4. The ability of

feed preparation to yield a richer concentrate at slightly higher recoveries is apparent;

however, the unprepared feed yields a higher recovery in the middling plus concen­

trate, at the same grade. Feed preparation would thus be unadvisable if producing a

tail with the lowest precious metal content was the main objective.

With t'ither screening or hydroclassification, the weighted average concentrate is

slightly ri cher than that of tests 1 and 2 where the feed is split into two size classes,

Page 51: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 3. Assessing the "Perfect" Gravit y Separators 38

Table 3.5: Comparing the MLS performance with and without feed preparation

Concentrate Non-Prepared Feed Prepared Feed (Tests 1 & 2) (Tests 3 & 4)

Gold Grade (oz/st) 15000-15500 17000-17700 Gold Recovery (%) 60-61 63-67

as shown in Table 3-5. The differences are smaIl, which testifies that the MLS is

an efficient gravit y device. Of aIl tests, test 3, with the screened Ceed, yielded the

highest concentrate grade and recovery. This is tantamount to the best ability to

isolate free gold, and confirms the original intention of processing single Tyler classes.

Consequently, aIl subsequent tests will use single class feeds.

3.3.3 Multi-Pass Separation

Figure 3-2 compares the results of a single pass to those of multi-passes Cor 75-106 l'm

size class of the 76 cm Knelson feed. The maximum difference oC recovery is about

5% at a 20% mass recovery. Free gold recoveries for both tests are very close at a very

smaIl fraction. Figure 3-3 compares a single pass and multi-passes with the 75-106 l'm

class of the 76 cm Knelson concentrate. The maxitnum difference is about 10%, larger

than that of the Knelson feed. Further, the difference would impact significantly on

the estimate of free gold content, as it is at a low mass recovery. The high gold and

sulphide content of the Knelson concentrate makes it difficult for the MLS to recover

aIl free gold with 150 g of feed. Thus, the MLS results for the Knelson concentrates

must be interpreted carefuIly.

Page 52: An Investigation of Gold Recovery in the Grinding and Gravit y

~

tf!. ~

>-... • > 0 U • ... • > -..-tU -::s E :::1 0

Chapter 3. Assessing the "Perfeet" Gravit y Separators

100

80

60

40

20

o o

• Single pas.

• MUltl-pass

20 40 60 80 100

Cumulative yleld (0/0)

Figure 3-2: The MLS performance Investigation teat 1 Clample: the

76 cm Knelson feed ln the 75-106 um clall at 73 kPa)

39

Page 53: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 3. Assessing the "Perfeet" Gravit y Separators 40

, -.

100 • AC

80

~

cf. - 60 >-~

CD > 0 U CD • Single pass a::

" 40 • Multl-pass -0 CJ

20

o o 20 40 60 80 100

Mass Recovery (%)

Figure 3-3: the MLS oerformance Investigation test 2 (sample: the

76 cm Knelson concentrate ln the 75-106 um clasa at 73 Kpa)

Page 54: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Chapter 3. Assessing the "Perreet" Gravit y Separators 41

Table 3.6: Comparison of the single pass and multi-passes using the MLS with the

76 cm Knelson feed in the 75-106 l'm class

Mass Yield Cum.Y. Grade eum.G. Dist'n Cum.D. (g) (%) (%) (oz/st) (oz/st) (%) (%)

C 2.38 0.35 0.35 86.95 86.95 40.1 40.1 Single Ml 10.75 1.60 1.95 5.90 20.59 12.3 52.4 pass M2 127.12 18.90 20.85 0.76 2.62 18.7 71.1

T 532.43 79.15 100.0 0.28 0.77 28.9 100.0 1 2.38 0.35 0.35 86.95 86.95 40.1 40.1 2 0.12 0.02 0.37 71.70 86.21 1.7 41.7 3 1.01 0.15 0.52 34.80 71.42 6.8 48.6 4 0.26 0.04 0.56 27.06 68.36 1.4 49.9 5 1.84 0.27 0.83 12.37 49.99 4.4 54.3

Multi- 6 0.51 0.08 0.91 8.58 46.54 0.9 55.2 pass 7 8.53 1.27 2.18 2.94 21.15 4.9 60.0

8 2.21 0.33 2.51 1.12 18.53 0.5 60.5 9 97.17 14.45 16.95 0.77 3.40 14.5 75.0

10 14.62 2.17 19.12 0.72 3.09 2.0 77.0 11 27.23 4.05 23.17 0.54 2.65 2.8 79.9 12 134.28 19.96 43.13 0.21 1.52 5.3 85.2 13 382.52 56.87 100.0 0.20 0.77 14.8 100.0

It can be concluded that although the MLS is not "perfect", if will give an

accurate indication of free gold content; furthermore, this indication will be more

accurate for samples of lower gold and sulphide content.

3.4 The Gemini Table

This test was completed at RTe Precious Metals, St. Jérome. About 450 g of

unprepared feecl was tabled once to procluce a tail, two middlings, and a rougher con­

centrate. The rougher concentrate was processed again, to yield a final concentrate,

two middlings and a tail which were combined to those of the roughing stage.

Table 3-8 gives the gold and silver metallurgical balance with the Gemini table.

Page 55: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 3. Assessing the "Perfcct" Gravit y Separators 42

Table 3.7: Comparison of the single pass and multi-passes using the MLS with the

76 cm Knelson concentrate in the 75-106 pm class

Mass Yield CUID.Y. Grade CUID.G. Dist'n eUID.D. (g) (%) (%) ( oz/st) ( oz/st) (%) (%)

c 5.57 1.27 1.27 1958 1958 21.0 21.0 Single Ml 39.51 8.98 10.25 659 819 50.1 71.1 pass M2 253.26 57.57 67.82 43 160 21.0 92.1

T 141.59 32.18 100.0 29 118 7.9 100.0 1 0.44 0.10 0.10 17836 17836 15.1 15.1 2 1.90 0.43 0.53 5195 7572 19.0 34.1 3 2.03 0.46 0.99 4745 6259 18.6 52.7 4 5.57 1.27 2.26 1958 3849 21.0 73.7 5 2.96 0.67 2.93 1218 3245 7.0 80.6

Multi- 6 2.50 0.57 3.50 415 2786 2.0 82.6 pass 7 34.08 7.75 11.25 145 967 9.5 92.1

8 17.35 3.94 15.19 33.54 724 1.1 93.2 9 72.00 16.37 31.56 23.41 361 3.3 96.5

10 49.74 11.31 42.86 16.36 270 1.6 98.1 11 33.07 7.52 50.38 4.61 230 0.3 98.4 12 64.06 14.56 64.94 4.16 180 0.5 98.9 13 154.23 35.06 100.0 3.85 118 1.1 100.0

Page 56: An Investigation of Gold Recovery in the Grinding and Gravit y

(

Chapter 3. Assessing the "Perreet" Gravit y Separators 43

Table 3.8: The Gemini table on non-prepared feed

Mass Yield Cum.Y. Grade Cum.G. Dist'n Cum.D. (g) (%) (%) (oz/st) (oz/st) (%) (%)

C 51.0 11.6 11.6 5336 5336 77.6 77.6 Ml 186.0 42.4 54.0 157 1271 8.3 85.9

Au M2 111.0 25.3 79.3 86 893 2.7 88.6 T 91.0 20.7 100.0 439 799 11.4 100.0 C 51.0 11.6 11.6 1402 1402 76.1 76.1 Ml 186.0 42.4 54.0 41 334 8.2 84.3

Ag M2 111.0 25.3 79.3 32 238 3.8 88.1 T 91.0 20.7 100.0 123 214 11.9 100.0

Note: C: concentrate; Ml and M2: lst and 2nd middlings; T: tait

Results, when compared to the MLS, are disappointing. The Gemini table fails to

yield a concentrate of higher grade (Figure 3-4), or a tail of lower grade. Comparing

the MLS and the Gemini table is somewhat unfair: the former is a laboratory batch

device which pro cesses a 100-200 g sample over a 5-15 minute period; the latter

is a small-scale continuous production unit, capable of treating almost 300 to 500

g/min. In this study, the Gemini table will be used to process the +2121Jm size class

where sampling statistics necessitates more than 1 kg for adequate reproducibility

(see chapter 5).

The poor performance of the Gemini table, when compared to the MLS, must

not detract from its ability to recover 78% of the gold in a 12% yield, from the riffleless

table middling, without elaborate efforts to optimize its operation. A full size Gemini

table has been commissioned by Les Mines Camchib Ine.; testing is scheduled to begin

in carly 1989.

Page 57: An Investigation of Gold Recovery in the Grinding and Gravit y

--

Chapter 3. Assessing the "Perfect" Gravit y Separators 4·1

3.5 Summary

Preliminary test work on an middling stream has confirmed the ability of the MLS to

recover free gold from a product which had been processed repeatedly on a riffleless

table. Feed preparation by screening has yielded the highest concentrate grade at

the highest recovery (although both are only ma.rginally better than without feed

preparation or with hydrosizing). Thus, all future work will be on single Tyler classes,

not only ta maximize the MLS efficiency, but also to study the circuit on a size-by-size

basis.

Preliminary estimates show reproducibility to be excellent, especially on concen­

trates. However, it is already apparent that the MLS dose not yield perfect separa­

tions, especially when the gold and sulphide content is very high. The Gemini table

has failed to equal the performance of the MLS, but will be used to process large

quantities (l-5kg) of coarser material (+212 pm), because of its increased capacity.

Page 58: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 3. Assessing the "Perfect" Gravit y Separators 45

100

80

-?P-->- 60 .. • > 0 U • a: ~

40 -0 CJ

(

20 the Mozley Laboratory Separator

._---- the Gemlnl Table

0 Q 0 0 0 0 0 Q 0 0 0 0 0 II) Il) 0 0 0 0 .... Il) 0 ." an .... .... C\I

Cumulative Grade (oz/st) log.

Figure 3-4: Comparlng the Gemlnl table and the MLS

(

Page 59: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 4

Grinding Circuit

4.1 Grinding Circuit Size Distributions

The grinding circuit flowsheet at Les Mine Camchib Inc. is shown in Figure 4-1.

After three stages of crushing, fine ore is fed to an open circuit, one rod miU (3.4 m

x 4.0 m), then two baIl milIs (3.1 m x 3.7 m) in parallel in closed circuit with two 76

cm cyclones. The cyclone overflow goes to flotation; one baIl mill discharge to one

"double" sluice, the other to one "single" sluice.

The various streams of the grinding circuit were sampled on December 16 1987,

at a 122 t/h (see appendix A). The rod mill feed, baIl mill discharges (separately),

and cyclone overflow and underflow (jointly) were sampled every 15 minutes during

2 hours, at steady-state. The size distributions of rod and baIl mill discharges and

cyclone products were used to estimate the circulating load, using the APPLESOFT

BASIC software GRINDING DATA BALANCE [16]. Results were confirmcd with the

NORBAL2 software [53]. Both outputs are in appendix A. Results are summarized

in Table 4-1. A circulating load of 300% was estimated, with very small adjustments

to the size distributions. This is slightly highcr than previously reported circulating

loads, around 200% [35].

The relative abundance of gold below 212 l'm makcs it the target of the gravit y

system. As gold is iargely recycled to the cyclone underflow even in the 38/53 l'm

class, systems capable of recovering such fine gold must be set in place. This would

46

Page 60: An Investigation of Gold Recovery in the Grinding and Gravit y

,. '"

Claapter 4. Criuding Circuit

Fln. Or.

122 100

0.28 100

Rod Mill

.

488 400 0.43 811

K.y

-OIF to flotatlon

122 100

0.15 54

278cm ~ Cyclon ••

L r 388 300

U/r 0.52 557

tlh "ma .. 2 Bail Mill oZ/.t Au "R Au

344.5 282.~ 0.47 478 -

Tall

1.8 1.5

-21.5 17.8

Conc 1.28 81

1 Doubl. Siulc. 1 Singi. Siulc.

,-' 1.2& 7 _-OIS '( __ ,- 1.7 mm Scr •• n

18.7 18.1

0.48 28

U/~ 18.7 16.1

l' 1.28 74

2780cm Kn.llon Conc.ntratorl

0.034 0.028

480 48

Conc. to gold room

Flgur.4-1: Ma •• balane. of grlndlngand prlmary gravit, circuit. (D.c.1887>

4'j

Page 61: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 4. Grinding Circuit 48

Table 4.1: Grinding circuit size distributions

Size Unadjusted Data Adjusted Dat.a (/lm) (%) (%)

RMD BMD CUF COF RMD BMD CUF COF

+212 54.9 34.8 52.4 2.8 54.9 34.8 52.2 2.8 181 5.6 14.6 13.7 8.3 5.6 14.6 13.7 8.3 128 4.3 12.1 10.2 10.9 4.3 12.3 10.1 10.9 91 4.4 10.8 i ~ 11.8 4.5 10.9 8.5 11.8 64 4.4 6.8 4.6 11.8 4.4 7.0 4.5 11.7 46 3.1 3.5 1.9 7.9 3.1 3.5 1.9 7.9 -38 23.3 17.4 8.7 46.4 23.2 16.9 9.1 46.6 E 100 100 100 100 100 100 100 100 -75pm 30.7 27.4 15.5 66.2

be evell more relevant for other mills which generally grind finer, around 80% -75Ilm,

as opposed to 66% -75 pm at Camchib.

4.2 Evaluation of Cyclone Classification

4.2.1 Actual Classification Fonctions

With a 300% circulating load, the mass fraction to the overflow is 25%, and to the

underflow 75%. Knowing the solids partition, size distributions of cyclone products,

and size-by-size assays, the mass recovery, Y, and gold recovery, R, can be determined

for each size class. Free gold recovery to the underflow will be assumed to occur at 1 %

mass recovery for both overflow and underflow (this assumption is further discussed

in chapter 5). Table 4-2 gives ail of classification functions; curves are shown in Figure

4-2.

The recovery curve for the ore shows the central section of the typical "S" curve.

The finer section is not shown, being in the sub·sieve range; the coarser section is also

Page 62: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

Chapter 4. Grinding Circuit 49

Table 4.2: Actual classification functions for mass, gold and free gold

Size CUF CDF Feed Grade (oz/st) Y R Rlree (pm) 0.75u, 0.250, CUF CDF (%) (%)

+212 39.2 0.7 39.9 0.26 0.45* 0.982 97.0 64.3 181 10.3 2.1 12.4 0.64 0.11 0.832 96.7 99.0 128 7.6 2.7 10.3 0.74 0.08 0.735 96.3 99.2 91 6.4 3.0 9.3 0.87 0.08 0.684 95.9 98.8 64 3.4 2.9 6.3 1.17 0.09 0.536 93.8 98.0 46 1.4 1.9 3.4 2.90 0.19 0.419 91.7 90.1 -38 6.8 11.6 18.5 0.41 0.17 0.370 58.5 88.1 Total 0.52 0.15 0.750 91.2 91.7

Note: u, and 0, are the size distributions of underftow and overftowj * assay error

lumped, in the +212 Ilm. Total gold and free gold are classified at a considerably finer

size than total solids. Both curves are closely matched above 38 #lm, as most gold in

the cyclone feed is free [40]. The free gold recovery in +212 Ilm is in error because

of the unusually high assay of the cyclone overflow. The dso fOl' both the total gold

and free gold curves is below 38 Ilm. Below 38 Ilm, total gold is recovered to a lesser

extent to the cyclone underflow than Cree gold. This again stems from the method

used to assess free gold content, which exclu des Cree gold too fine to be recovered by

the MLS, with the "V" shaped tray. Clearly, additional work is warranted to better

understand the hehaviour of the gold below 38 Ilm. For that work, the MLS fiat tray

should he used, and the -38 Ilm should be split into different size fractions.

4.2.2 "Corrected" Classification Function

An ideal classifier would partition aIl materials greater than sorne give size into the

coarse stream and the remainder into the fine stream. But there is always a fraction

of fine material routed to the coarse product without classification and a fraction

of coarse material routed to fine product without any classification. The former is

interpreted to represent the water fraction to the coarse product; the latter is generally

Page 63: An Investigation of Gold Recovery in the Grinding and Gravit y

"'" fi. ~

:. 0 -... .. CD

" c ::)

CD C 0 -u >. U 0 .., C 0 -.., u .,. ..

1&.

--

Chapter 4. Grinding Circuit

100

80

60

40

20

o

 free gold

• gold

• or.

0 "Corrected" ore

19 46 64 91 128 181

Partiel. Slz. (um) log.

Figure 4-2: Cyclone clls.lflcatlon efflclency

325

50

Page 64: An Investigation of Gold Recovery in the Grinding and Gravit y

f ...

Chapter 4. Grinding Circuit 51

negligible in hydrocyclones. Further, a significant fraction of the material around the

cut-size is also misplaced. This overa11 performance is represented by a classification

curve.

In cyclones it is useful to correct a classification curve by subtracting the material

short circuited to the underflow. This "correction" is carried out mathematically as

follows:

Y-Ru,. yi = 1- Ru,

where Y': the mass fraction oI particles of a particular size and density which will be directed to the coarse product as a result of the classifying action;

Y: the mass fraction of particles of a given size and density which actually report to the coarse product.

Ru,: the fraction of {eed liquid which is recovered in the coarse product stream.

(4.1)

Rw can be determined {rom a water balance. The measured solid percentages of

cyclone overflow and underflow are 37.16% and 75.42%, respectively, then:

Water in under flow = 1~;.~~.42 ·3.0 = 0.98

Water in over f low = l~ç~~.t6 = 1.69

Rence, D - 0.98 - 0 367 lL,u - 0.98+1.69 - •

Thus, the recovery of water to the underflow is 36.7%. This agrees weIl with the

measured mass recovery of -38 pm to the underflow, 37.0%.

With Rw, the "corrected" classification function, Y', can be determined using

Equation 4.1, is shown in Table 4-3.

The "corrected" curve is shown ID Figure 4-2. Using the "corrected" curve

Page 65: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 4. Grinding Circuit 52

Table 4.3: The UCorrected" classification function

Il Size (pm) 1 y 1 yi lIn 1 ty, Il +212 0.982 0.972 3.576 181 0.832 0.735 1.3·~8

128 0.735 0.581 0.870 91 0.684 0.501 0.695 64 0.536 0.267 0.311 46 0.419 0.082 0.086 -38 0.370 0.005 0.005 Total 0.750 0.605

one ean determine a second eut size referred to as the eorrected dsoc. It is a more

fundamental parameter that reflects the magnitude of the separating forces opcrative

in the classifier. The most widely used equation to represent a corrected classification

curve is [49]:

d y' = 1-exp[-0.693(;r)m]

sOc

where dsoc the particle size which has equal (50%) probability of reporting to the underflow and overflow products.

m: a measure of the sharpness of separation.

(4.2)

The dsoc and m parameters can be estimated by tinear regression. To evaluate

the dso and separation sharpness, m, the regression suggested by PHtt was used; ail

points below y' = 0.10 and above y' = 0.90 were deleted. The four remaining points

yielded a dsoc of 104 pm and a m of 1.333.

The dsoc and m can also be determined by a linear plot of classification function.

Equation 4.2 can be rearranged to form a linear equation as follows:

1 ln ln ( y ) = m ln d + ln ln 2 - m ln dsoc 1- 1

(4.3)

Page 66: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

""'" .~

1

Chapter 4. Grinding Circuit

.... 0.100 ......

........ ....

.E

0.010

Siope, m • 1.3

!/ 1.00CE45 ____ A.-____ ....... ......oII....II~_ ........ ......:; ___ ....... _ ...... _ ....... __'__'~_'_~

10 100 1000

d(um)

Figure 4-3: Determlnltlon of m and d 10.

53

Page 67: An Investigation of Gold Recovery in the Grinding and Gravit y

........

Chapter 4. Grinding Circuit 5·'

This linear graph is shown in Figure 4-3; only the four points used for the lincar

regression are shown. The hgure shows that dsoc is 104 pm and m is 1.3. The results

are in good agreement with those obtained by lincar regression. Thus, the "corrccted"

classification function is:

d y' = 1 - exp [-0.693. (_)1.333] 104

(4.4)

To describe the actual classification function, Equations 4.1 and 4.2 can be

combined as follows:

y = (1- Rw)· [1 - exp-0.693· (~)m] + Hw dsoc

(4.5)

Thus, the actual classification function Y is:

y = 0.633Y' + 0.367 (4.6)

With the three known parameters, dso , ID and Rf, one can predict the size

distributions of both the overftow and underftow for any given feed.

4.3 Evaluation of the Grinding Kinetics

The grinding kinetics of the ore and gold will be evaluated and compared. To do this,

the retention time of aU species will be assumed equal (arbitrarily set to unit y ) and

the breakage function of free gold assumed equal to that of the mill fecd, dctcrmined

in previous simulation work and assumed constant. The selection function (rate of

breakage parameters) thus obtained is not absolute, but it can be used first to compare

the relative breakage kinetics of gold and the ore, and secondly to simulatc grinding

Page 68: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

Chapter 4. Grinding Circuit 55

Table 4.4: The baH miH breakage function

Size(pm} 725 513 363 256 181 128 91 64 46 Brea. Func. 0.44 0.19 0.09 0.05 0.03 0.03 0.02 0.02 0.02

adequately, provided that same assumptions are used again [39]. The selection func­

tion will be estimated using a computer package first written in APPLESOFT BASIC

[16J, but then adapted to IBM compatible JWBASIC.

Table 4-4 shows the breakage function usedj a single vector is shown, as the

breakage function is assumed normalizable. Table 4-5 shows the baIl mill feed and

discharge distributions for both mass and gold u~ed to estimate their selection func­

tions. For mass, the selection function decreases monotonically with decreasing par­

ticle size except for the 37/53 pm class, normally an indication of sound data. The

selection function of the coarsest size shows a drop, but this is also expected, and is

an indication that the coarsest size class is at the upper limit of the grinding ability

of the top baIl size.

Evaluation of grinding kinetics for gold is more difficult. Gold content in the

baIl miU feed and discharge above 212 pm was not available on a ~ize-by-size basis,

and was assumed constant. Interestingly, the measured goJd content of the plus 212

pm of the mill feed and two discharges was equal, 0.26 oz/st. This suggests that most

of the gold is locked, which is confirmed by the Gemini table tests - less than 25%

gold recovery in the gravit y concentrate.

For the -212 pm, the measured gold content of each size class was used.

A few points should be noted:

1. The gold size distribution is the product of the gold assay by the ore mass in

Page 69: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 4. Grinding Circuit 56

Table 4.5: BaIl miU feed and discharge size distributions for both mass and gold uscd

to estimate their selection functions

Size Mass Gold Size Dist'n Gold Assay Gold Dist'n

(pm) (%) Scl. Func. (oz/st) (%) Sel. Func. CUF BMD CUF BMD CUF BMD

1025 7.14 2.24 1.1567 - - 1.86 0.58 1.1567 725 9.47 3.73 1.2660 - - 2.46 0.97 1.2816 513 12.66 7.74 0.9146 - - 3.29 2.01 0.9224 363 12.66 10.27 0.7194 - - 3.29 2.67 0.7194 256 10.45 10.80 0.5554 - - 2.72 2.81 0.5554 181 13.68 14.63 0.3290 0.64 0040 8.76 6.22 0.5398 128 10.17 12.20 0.2587 0.74 0.52 7.53 7.56 0.3212 91 8.55 10.84 0.1533 0.87 0.73 7.44 7.53 0.2880 64 4.62 6.83 0.0947 1.17 0.85 5.41 6.25 0.2079 46 1.91 3.46 0.1259 2.90 1.27 5.54 3.91 0.6960

each size fraction. This is then multiplied by a correction factor to obtain the

true gold distribution. The correction factor is the same for the bail mill fcccl

and discharge, and is equal to the overall golcl assay and of both strcams, 0.52

oz/st.

2. As the first five size classes are given the same gold content in the fecd and

discharge, their selection function will be the same as that of ovcrall orc. As

gold in these classes is essentiaIly un-liberated, its measured breakage bchaviour

will be the same as that of the ore. The individual gold grains, much smallcr on

average than the particles in which they are locked, are unlikely to experiencc

actual breakage until they are ground much finer to liberation size.

Table 4-5 also shows the calculated selection function of gold. Of intcrest arc

the five finest size classes. The selection function of gold for thcse classes is highcr

than that of the ore. This suggests that gold's softness, which should make it casy to

Page 70: An Investigation of Gold Recovery in the Grinding and Gravit y

r i

Chapter 4. Grinding Circuit 57

grind, dictates its grinding kinetics, rather than its malleahility, which should make

it rcsilient to grinding. This rcsult goes against the accepted belief that gold do es not

grind easily. The large circulating loads in grinding circuits are the result of gold 's

behaviour in classification, not grinding. This result must be interpreted carefully, as

it was obtained using a number of assumptions: for example, gold's breakage function

was assumed equal to the ore's. This is unlikely, as breakage mechanisms for malleable

gold and brittle ore must differ significantly. It w~uld be informative to confirm these

results in at least one other grinding circuit.

4.4 Gold Liberation in the Grinding Circuit

The following discussion will be based on the assumption, further discussed in chapter

5, that free gold content is obtained at a weight recovery of 1 % with the MLS and the

Gemini table. This generally underestImates free gold content, but provides a useful

indicator of gold liberation trends.

Table 4-6 shows the free gold content of the cyclone underflow and overflow and

the rod mill and bail mill discharges, overall and as a function of the size. Overall,

the rod mill discharge shows the poorest gold liberation and the bail mill discharge

the best; the cyclone underftow and overflow yield intermediate results. The cyclone

overflow free gold content in the +212 pm is overestimated because of the high (and

most likely erroneous) gold assay in the MLS concentrate. There is significant gold

Iiheration in the bail mi1l; size-by-size data are noisy, but nevertheless show that much

of the liberation takes place helow 75 /lm.

Free gold content below 38 /lm is not significant in the rod mill discharge, pre­

sum,,!>ly because gold is not associated with minerais likely to "slime" in the rod

mill. The content is also low in the cyclone overflow, because free gold is preferen­

tially recycled to the baIl mill, even helow 38 pm. Free gold content below 38 pm

Page 71: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 4. Grinding Cil cuit 58

Table 4.6: Size-by-size free gold content in grinding streams

Size Stream +212 150 106 75 53 38 0 E (",m) -212 -150 -106 -75 -53 -38

RMD 3.9 45.5 59.5 56.3 52.4 42.8 8.5 8.3 Free COF 74.8* 3.9 6.9 13.2 24.5 13.9 11.8 lï.3 gold CUF 8.3 17.8 35.9 47.1 71.4 20.6 58.5 18.2 content (%) BMD 9.2 32.6 26.1 38.2 69.6 59.5 75.6 34.5

* assay error.

is much higher in the cyclone underflow and ball mill dischargc; this again rcinforccs

the neccssity of achieving good gold recovery even below 38 /lm.

4.5 Summary

In this chapter, gold's grinding, classification and liberation were examincd. AlI thrcc

are essential in defining the "target" population of free gold grains. Results show that

gold's grinding kinetics constant, the selection function is equal or superior to that of

the overall ore. However, gold is classified at a much finer dso than the ovcrall ore,

and this creates the high gold circulating load observed at Camchib. Gold liberation

is most apparent below 100 /lm, suggesting that recovery efforts should be airncd at

Cree gold particles between 38 and 100 /lm.

Page 72: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 5

The 76 cm Knelson Concentrator

5.1 Experimental Design

5.1.1 Objectives

The Knelson concentrator is relatively new technological development. Although its

effcctiveness to recover free gold is generally acknowledged, little data are available to

quantify it. More specifically, given a certain {eed rate and density, an operator can

vary two variables, cycle time and back water pressure. The effect of these variables on

gold recovery, preferably size-by-size, is essential information to optimize the Knelson

concentrator operation. Particle size performance is also an important criterion to

guide equipment selection. On the basis of the above reasons, the important questions

from an operating point of view are:

• Vp to what size can gold be recovered?

• How long should a cycle he before the I(ne]son concentrator hecomes overloaded

and gold is 10st?

• What would be an optimum pressure for wash water'!

Test work was designed to answer these questions. Four tests were taken, the

first two in April and in July 1987, and the last two tests on December 17 and 18

1987. For each test, the Knelson was sarnpled over a full cycle for 90 minutes. The

59

Page 73: An Investigation of Gold Recovery in the Grinding and Gravit y

' . .. Chapter 5. The 76 cm Kndson Conccntrator 60

cycle was split into four periods of increasing length to samplc the tail (ail tests) and

the feed (tests 3 and 4) of respective lengths of 10, 20, 20 and 40 minutes. At th(' end

of the cycle, the concentrate was weighed wet (tests 3 and 4) and sampled.

Results, obtained from the first two tests, showcd that sampling the (eed ovcr the

same four sub-cycle periods as the tail and measuring feed flowrate would be desirable.

Hence, for tests 3 and 4, in December 1987, the two sluice concentrates were sampled

repeatedly for known time intervals, to estimate the Knelson feed rate. The screen

oversize was also sarnpled in the same way, to obtain the full mass balance. These two

tests aimed also at establishing whether a lower wash water operating pressure, 40

kPa (6psi), would still yield acceptable operation over the pressure used at Les Mines

Camehib Ine., 80 kPa (12 psi), which was already lower than the manufacturer's

recomrnendation, 100 kPa (15 psi).

5.1.2 Sampling Consideration

Sampling is taking a smalt amount of material to represent sorne larger amount. Il

is an essential tool to evaluate plant performance. Beeause of the low gold grades

of sorne of the streams in the grinding and gravit y circuits, as low as 5 ppm (0.15

oz/st), sarnpling errors can be significant, especially in the coarser size classes. We can

apply Gy's simplified model to estimate the necessary mass for a given fundarnental

sampling variance [26,51,36]:

3 1 Al=c·s·g·[·d '-2-

UFE (5.1 )

Page 74: An Investigation of Gold Recovery in the Grinding and Gravit y

{

Chapter 5. The 76 cm Knelson Concentrator

whcrc M: c:

s: g: 1: d: (12 .

FE'

sampling mass required (g) concentration factor, gold assay divided by 19.3 (g/cm3 )

particle shape factor (usually 0.5; 1 for spheres) size distribution factor (usually 0.25 for unsized material) liberation factor 95% passing size of particles (cm) fundamental sampling error (t.he relative variance of the sampling error)

61

Calculations will be based of 5 g/t (0.15 oz/st) of free gold. The shape factor

will be set at 0.5, whieh is very conservative for flaky gold. The liberation factor

is equal to l, since we are considering free gold. The size distribution factor will

also be set to l, as we consider specifie Tyler classes. We will con si der a variance of

0.01, corresponding to a relative standard deviation of 10%. With these factors, the

required mass is 81 g for 75 pm gold particles, but 5.2 kg for 300 pm particles. This

estimate is high, because gold particles in this size are often flattened, and would

have a shape factor as low as 0.05-0.1. On the other hand, it eould be argued that

the free gold content of the Knelson tail is lower than 5 g/t, beeause of its efficiency,

and that a much higher mass would be required for a sample of adequate size. As a

compromise, samples of at least 5 kg solids will be taken, so that 1 to 2 kg of plus

212 l'm material are obtained for processing with the Gemini table. This is obviously

less than what would be ideal, but the recovery of tiner gold is of more importance.

Indeed, coarse (+212 l'm) losses are not critical, as coarse gold breaks into finer gold

fragments that can still be recovered by gravity.

5.1.3 Sample Processing

AIl of the feed and tail samples were wet screened at 38 pm (400 mesh). Both the

oversize and undersize were dried; the +38 pm was then dry screened from 212pm (65

mesh) to 38 pm (400 mesh), and the -38 pm fraction added to the -38 pm produced

by wet screening. Wet screening was not used for concentrate samples, because of

Page 75: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 5. The 76 cm Knelson Concentrator 62

their very low -38 JJm contents.

Up to 150 grams were processed wlth the MLS from each sizc class bclow -212

JJm. The 38-53 and 53-75 JJm fractions were entirely processcd whcn thcir mass

was below 150 g, which was the general case. For the 106-150 JJm and 150-212

l'm fractions, two or three 150 g batches were processed, to limit the fundamcntal

sampling error.

For the MLS, oscillation frequency was fixed at 84 rpm, amplitude at 63 mm.

Longitudinal slope was in the range of 0-3.5°: 30 for the 150-212 l'm fraction, 3.50

for the 75-150 l'm fraction, and down to 1 ° below 75 l'm. Peripheral wash water was

0.91/min for the 150-75 l'm, down to 0.4 l/min below 53 l'm. The longitudinal watcr

flow was adjusted to achieve a good visual gold concentrate. The operation timc was

15 minutes for t.he 53-212 l'm, and 5 to 10 minutes below 53 l'm. Light minerais wcre

taken as a tail after 3 minutes of operation, and the second middling aCtcr 12 minutes;

the MLS was then stopped, and the mineraI band was split into conccntrate and the

first middling. If the first middling mass was too large, its tail end was added to thc

second middling.

The +212 l'm fraction (except for test 2) was processed by a Gemini table. Four

products of Gemini table were extracted, one concentrate, two middlings and one tail.

All of products from the MLS and Gemini table were sent to Les Mine Camchib

Inc. for fire assay.

Page 76: An Investigation of Gold Recovery in the Grinding and Gravit y

(

1 ...

Chapter 5. The 76 cm Knelson Concentrator 63

5.2 Mass Balance Calculations

5.2.1 Grade Combination

Feed and tailing samples for most tests represent operating times of various and are

used to estimate total feed and tail grades, by weighting the different sub-cycle assays

according to sub-cycle time:

where ti

Ta

5.2.2 Flowrate

tail assay for sub-cycle i (g/t or oz/st) duration of sub-cycle i (min.)

(5.2)

The feed flowrate is the difference between the sum of two pinched sluice concentrates

and 1.7 mm screen oversize flowrate. For tests 3 and 4, concentrate mass was measured

directly. Tail rate can be considereà equal to the feed rate because of the very small

concentrate mass.

The feed or tail rate can also be calculated with two product formula, using gold

assays:

(5.3)

where T: the cycle duration (h) Wc: concentrate mass (kg) f: feed grade c: concentrate grade t: tail grade

Page 77: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 5. The 76 cm Knelson Concentrator 64

This estimate, however, is particularly sensitive to erfors in the fced and tait

assays.

5.2.3 Overall Gold Recovery

Another point to address is the number of mcasurements necessary to achievc a good

mass balance of the Knelson operation. Using the two-product formula:

c J - t R=-·-1 c - t·

(5.4)

However, the gold content of thc concentrate, at 6000-9000 g/t (200-300 oz/st),

is much higher than that of the feed or tails, typically 10-20 g/t, then:

c-t95c

I-t R-:::-t.--- 1 (5.5)

This estimate of recovery is accurate. Assuming that the Knelson feed has a gold

assay of 0.5±0.025 oz/st (17 gjt) and the tail 0.2±0.01 oz/st (7 gjt), the variance of

recovery can be estimated using Taylor's series:

(12 ~ (ÔR)2. (~f)2 + (8R)2 . (~t)2 ôl ôt

- (;2)2.0.0252 + (-7)2. 0.012

- 0.0008

For the above example, recovery is 0.6, with a standard dcviation of 0.028, or a

relative standard deviation of 4.7%. This value is acceptable.

Page 78: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

Chapter 5. The 76 cm Knelson Concentrator 65

5.2.4 Free Gold Recovery

Each MLS test generated a yield-recovery curve, which is represented mathematicaHy

with a cubic spline function[63,64]. Free gold content could then be extracted from

this curve, the fractional gold recovery extracted at a given yield (or grade) corre­

sponding to free gold content. In practice, however, this characteristic yield was not

an obvious choire; what made this choice particularly difficult was that it would be

at a low yield, where gold recovery is highly dependent on yield. As the objective

was not to determine Cree gold content as much as estimating free gold recovery, the

following approach was chosen:

1. A yield, Y, corresponding to free gold content, was arbitrarily chosen. Free

gold recovery for the Knelson was caJculated based on this yield; using:

(5.6)

where R,ree - free gold recovery at the yield Y. Rt gold recovery at yield Y with Knelson tail. R, - gold recovery at yield Y with Knelson feed. t, f as previously defined.

2. Free gold recovery was caJculated as above for yields of 0.1 to 100%. An

example of free gold recovery calculation for tests 1, 3 and 4 is shown in Table 5-1,

and plotted, shown in Figure 5-1. For a yield corresponding to Cree gold, gold recovery

should be maximum. Table and Figure 5-1 show that for aH three Knelson tests,

this corresponds to low yields, below 1 %. At a yield of 100%, total gold recovery

is calculated. Between the "free gold " yield and a yield of 100%, gold recovery

decreases. The Cree gold recovery of test 2 is not shown because of noisy data.

The Cree gold recovery curve for test 3 is suspicious, as gold recovery drops as

yield decreases from 1 to 0.1 %.

Page 79: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 5. The 76 cm I(nelson Concentrator 66

~'

1 " -" , •

~ ,; 100 r

, ~

90 f. 1: : ~ 80 f ~ "; - 70

èft ~

>- 60 .. • > 0 u

50 • a:

" • test 1 -0 40

" • test 3

30 • test 4

20

10

0 11111 1 Il 1 1 1 1

0.1 1 10 100

Mass Recovery (%) log.

'0 , )

;

Figure 5-1: Estimation of free gold recovery i ~'

Page 80: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 5. The 76 cm Knelson Concentrator 67

Table 5.1: Free gold recovery calculation

test 1 test 3 test 4 y Rt Rf Rfree Rt Rf Rfree Rt Rf Rfree (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.1 1.7 5.7 91.3 8.9 11.4 69.9 1.2 7.7 92.6 0.25 4.2 14.1 91.4 13.6 23.5 77.9 3.0 19.0 92.6 0.5 8.2 26.9 91.2 17.9 36.1 80.9 6.0 37.3 92.4 0.75 11.9 28.9 88.0 20.9 44.5 82.0 9.0 52.0 91.8 1 14.9 30.9 86.0 23.3 48.0 81.4 12.1 53.6 89.2 1.5 18.4 32.9 83.8 26.3 48.6 79.3 18.5 55.6 84.2 2 21.0 34.7 82.4 28.2 50.9 78.7 24.3 56.9 79.7 6 33.9 43.1 77.2 37.9 56.7 74.4 36.4 64.3 73.1 10 42.7 48.7 74.5 45.6 61.3 71.5 43.2 69.2 70.4 20 57.3 52.6 73.4 59.8 71.2 67.8 55.3 77.3 66.0 40 74.0 80.5 73.0 76.0 82.6 65.0 71.5 86.3 60.6 60 84.9 90.9 72.9 86.1 89.9 63.3 83.1 92.0 57.1 80 93.2 96.2 71.9 93.8 95.5 62.4 92.3 96.4 54.5 100 100.0 100.0 71.0 100.0 100.0 61.7 100.0 100.0 52.5

5.3 Results and Discussion

5.3.1 Gold Assays and Percent Solids in Ali Tests

Table 5-2 shows aIl assays and percent solids. The variation in the gold assay of

the Knelson feed is significantj it may also indicate that free gold content varies

significantly. In test 1, the first sub-cycle tail assays much higher than the other

three tails, and percent solids are much lower than those of tests 3 and 4, most likely

because the Knelson feed rate was lower, as the second sluice concentrate port was

frequently blocked.

Test 2 has the highest feed rate, and a very high tail grade for the first sub-cycle.

The high variability of the tail gold assay throughout the cycle makes it suspicious.

As a result of the po or reproducibility of the first two tests, the procedure for

Page 81: An Investigation of Gold Recovery in the Grinding and Gravit y

ChaJ)ter 5. The 76 cm J{nelson Concentrator 68

Table 5.2: Gold assays and p~rcent solids in ail tests

Grade( oz/st) Solid(%) Sub-cycle test! test2 test3 test4 testl test2 test3 test4

feed 1 0.38 * 45.3 feed 2 0.93 2.15 0.41 0.57 44.7 - 45.6 44.4 feed 3 0.56 0.51 45.5 43.8 feed 4 0.48 0.68 49.2 46.6 Ave. feed 0.93 2.15 0.47 0.61 44.7 - 47.1 45.4 tait 1 0.45 3.29 0.16 0.31 23.0 - 28.4 29.2 tait 2 0.28 1.46 0.18 0.29 24.8 - 28.9 30.1 tait 3 0.21 0.49 0.16 0.25 19.2 - 29.3 32.2 tail4 0.26 0.81 0.19 0.30 18.0 - 28.9 30.1 Ave. tail 0.27 0.90 0.18 0.29 20.3 - 28.9 30.5 conc. 303 244 226 205 - - 74.5 74.1

* As feed 1 of test 4 was unavailable, result of feed 2 was used for first sub-cycle calculatiolls.

tests 3 and 4 was slightly modified. The mass extracted for each sample and the

number of increments were increased. More importantly, the second sluice operation

was also stabilized. As a result, tests 3 and 4 yielded much stabler data, although

{eed grade are still highly variable. For test 4, the decreased wash water pressure

from 73 to 40 kPa increases tait density slightly.

5.3.2 The Effect of Back Water Pressure

Table 5-3 shows that gold recovery increases with back water pressure from 40 kPa

to 80 kPa. Overall recovery is highest, 71 %, for test 1, whose feedrate was lowest and

back water pressure highest, but stilllower than the recommended 100 kPa. Ovcrall

recovery is lowest, 52.5%, for test 4, at a back water pressure of 40 kPa. This is

likely that low back water pressure cannot fluidize the concentrate bed adequatcly.

Gold particles cannot penetrate the bed and are lost to tails. Free gold recovcry

data are more difficult to evaluate: the highest free gold recovery for test 4, and the

Page 82: An Investigation of Gold Recovery in the Grinding and Gravit y

t

.' ~ ,

Chapter 5.

Il

The 76 cm Knelson Concentrator

Table 5.3: The effect of back water pressure

Wa ter pressure Cy cle time R to tal

Rlr ee

Up grading Ratio Me asured feedrate

culated feedrate Cal Wa ter added

1 test 1 1 test 2* 1 test 3 1 test 4 Il

(kPa) 80 73 40 (min.) 90 ,90 90 90

(%) 71.0 58.1 61.7 52.5 (%) 91.4 82.0 92.6

326 114 480 336 (t/h) -(t/h) -

18.0 19.6 26.5 19.7 24.1 21.1 (t/h) -

========-==========~=====±========~ *' Calculation of test 2 IS based on deleting tail l,

69

lowest for test

and lowest tot

technique still

3. It would be highly unusual to achieve the highest free gold recovery

al gold recovery for the same test. It is likely that the experimental

has to be refined to eliminate experimental scatter and yield results

that can discri minate hetween small differences in free gold recovery. Upgrading ratios

range from 326 to 480 except for test 2. Although test 1 has a higher recovery than

ading ratio is lower. The overall mass balance of the 76 cm Knelson is

er 4 in Figure 4-1, it is on the basis of a 73 kPa wash water pressure

at the plant.

test 3, its upgr

shown in chapt

normally used

5.3.3 The E ffect of Cycle Time

Table 5-4 and

during the thir

o to 10 minute

Figure 5-2 show that for test 1 and 3, total gold recovery is maximum

d sub-cycle, 30 to 50 minutes, up significantly from the first suh-cycle,

s. Recovery then drops slightly at the end of the cycle (50 to 90

he fourtil test, total gold recovery increases slowly during whole cycle,

the first sub-cycle to 55.9% for the last.

minutes). For t

from 45.6% for

Figure 5-3 shows that free gold recovery does not change significantly throughout

the cycle. For test 1, 2 and 4, average free gold recovery varies between 85% to 91 %.

Page 83: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 5. The 76 cm Knclson Concentrator 70

Table 5.4: The effecl of cycle time

Il R (%) 1 Sub-cycle 1 test 1 1 test 2 1 test 3 1 test -1 1 Ave. of 1,3,4 Il

0-10 51.6 x 57.9 45.6 51.7 Total 10-30 69.9 32.1 56.1 49.1 58.4 gold 30-50 77.4 77.2 78.4 51.0 68.9

50-90 72.0 62.3 60.4 55.9 62.8 0-10 92.1 x 84.2 92.7 89.7

Free 10-30 92.4 75.2 90.3 88.9 90.5 gold 30-50 88.1.0 95.1 81.3 85.6 85.0

40-90 93.0 87.0 8·1.6 95.2 90.9

Note 'x' means ncgatlve

The sub-cycle of the highest total gold recovery, 30 to 50 minutes, is the one of the

lowest free gold recovery.

The evolution of the gold recovery during the load cycle of the Knclson should

normally yield a drop of gold recovery when the optimal gold mventory is arhievcd,

or when a change of make-up in the bowl inventory, either in size distribution or

in density, decreases the efficiency of the Knelson. The inventory of the Knelson in

species other than gold is expected to stabilize very quickly, as a mass equivalent to the

holdup is fed every 10 seconds, at 18 t/h. Thus, it is likely t.hat the chosen sampling

mode does not detect the changes in recovery occurring at start-up; neither are thesc

very short-lived transients important to the overall efficiency of the Knelson. As to

the drop of recovery associated with an excessive gold inventory, one must conclude

that the 90 minute cycle is too short to detect any.

Page 84: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 5. The 76 cm Knelson Conccntrator 71

100

80

-~ - 60 >- : • ... • > ... 0 U • a:

" 40 -0 CJ

0 test 1 (80 kPa)

• test 3 (73 kPa)

20 • test 4 (40 kPa)

0 0 0 0 0 .... ('1) Il) G) 1 1 1 1

0 0 0 0 ,... ('1) Il)

Subcycle lime (min.)

Figure 5-2: The 76 cm Knelson concentrator 8ubcycle total gold recovery

Page 85: An Investigation of Gold Recovery in the Grinding and Gravit y

-cf. ~

>t .. • > 0 U • a:

" -0 CJ

• CI» .. u.

Chapter 5. The 76 cm Knelson COllcentrator

100

80

60

40

20

o

Â

o ~

1 o

i

o Cf) 1 o ....

~ •

o an 1 o

M

Subcycle Time (min.)

D

• Â

~

test 1

test 3

test 4

o Q) 1 o

&1)

Figure 5-3: The 76 cm Knelson concentrator subcycle free gold recovery

72

Page 86: An Investigation of Gold Recovery in the Grinding and Gravit y

(

Chapter 5. The 76 cm Knelson Concentrator 73

Table 5.5: The effect of particle size

Il R (%) 1 Size (/lm) 1 test 1 1 test 2 1 test 3 1 test 4 Il

0-38 71.4 X 700 46.9 38-53 900 70.3 73.9 80.3

Total 53-75 78.4 799 72.0 46.4 gold 75-106 546 69.3 62.3 55.7

106-150 34.0 81.1 62.0 55.8 150-212 397 834 52.0 500 +212 64.8 - 55.6 47.1 0-38 91.9 x 81 1 80.9 38-53 96.6 91.1 766 95.8

Free 53-75 89.6 952 79.3 99.9 gold 75-106 68.3 947 807 92.9

106-150 948 970 89.3 93.4 150-212 959 976 87.6 814 +212 91.2 - 90.0 94.9

Note' 'x' means negatlve

5.3.4 The Effect of Particle Size

Figure 5-4 shows that the 76 cm Knelson size-by-size total and free gold recovery for

tests 1 and 3 (total cycle), whose wash water back pressure is in the normal range

of 80-73 kPa, generally increases with decreasing size from 181 J.lm to 46 J.lm. For

the +212 J.lm, the high error associated with the sampling makes data noisy and

interpretation difficult. For the -38 J.lm, recovery drops slightly, presumably because

much free g, !d is too fine to be recovered by gravity. For test 4, at a low back water

pressure of 40 kPa, total gold recovery appears Slze independent (Table 5-5).

Free gold recovery is much higher than total gold recovery. It is generally in the high

eighties and low nineties percent. Thus, most of the gold loses in the l{nelson are

attributable to locked particles. As liberation increases with decreasing particle size,

so does total gold recovery. There is no detectable loss of recovery in the -38 p.m

because the MLS suffers the same limitations as the Knelson in recovery of very fine

gold. For free ~old recovery, Figure 5-5 shows that it seems to be size independent,

and again in the high eighties and low nineties in percent.

Page 87: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 5. The 76 cm Knelson Concentrator 7·1

100

90 - • 80 - •

1 • • - 70 --;R. 0 • ~

>- 60 • • .. r-a» > • • 0 u 50 • a» r-

CC

" -0 40 - • CJ

• 30 -

20 - • test 1

• test 3

10 ~

0 1 1 1 1 1 1 1

CO C") Ln CD 0 N N Cf) Ln p... 0 Ln P- P'" 1 1 1 P'" P'" N N

0 CO (W) 1 1 1 + C") Ln Ln CD 0 + + ...... 0 Il)

+ .... P-

+ +

Particle Size (um)

Figure 5-4: The 76 em Knelson concentrator total gold reeovery

a8 a funetlon of partlele slze

Page 88: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 5. The 76 cm Knelson Concentrator 75

{

Page 89: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 5. The 76 cm Knelson Concentrator ï6

5.3.5 Comparing the Knelson Concentrator and the MLS

Separation of mineraIs is limited hy two constraints: a) that imposed by fced char­

acteristics, and h) that imposed by the ~eparation proccss and machine performance.

In order to achieve the best separation, questions which havc to be addrcssed arc:

where should separation he stopped? which product can be taken as a concentrate

and which one can he rejected as tailings? One method of approaching thcse problems

is to construct cumulative grade vs. cumulative recovery curves. Anothcr is cumula­

tive recovery versus sorne process param.;!ter (e.g. flotation time). Howcver the most

useful curve is the cumulative recovcry vs. cumulative yield (or mass recovcry). This

type of curve is often referred to as a minerai separahility curve.

Technical efficiency is a critical paramcter to evaluate minerai separahility. lt is

defined as:

E = am011.nt separated amount separable

(5.7)

Maximum technical efficiency occurs when the incremental concentrate grade is

the same as the feed grade, or Emax = (Rvalue - Rgangue )max, that is the optimum

operating point [31]. This point was estimated hy a computer program (see appcndix

E) where a tangent to the separability curve is parallel to the Hne through point (0,0)

and (100,100).

Technical efficiency can he calculated as following:

R-Y E = 1-1

where {is {eed grade(%), 1 fV O.

We can estimate the product grade from the separability curve:

(5.8)

Page 90: An Investigation of Gold Recovery in the Grinding and Gravit y

l

...

Chapter 5. The 76 cm Knelson Concentrator 77

Table 5.6: The optimum operating points for feeds and tails of aIl tests by the MLS

Grade f oz/st

test1 0.93 test2 2.15

Feed test3 0.47 test4 0.61 Ave. test1 0.27 test2 0.90

Tai 1 test3 0.18 test4 0.29 Ave.

Recovery Yield R % 77.0 66.9 65.7 70.4 70.0 61.0 69.1 62.6 56.0 62.2

Y %

20.0 19.5 13.7 11.1 16.1 23.0 13.9 22.7 20.7 20.1

R c= -·f y

Con.grade Technical c efficiency oz/st E%

3.58 57.0 7.38 47.4 2.26 52.0 3.87 59.3 4.27 53.9 0.72 38.0 4.47 55.2 0.50 39.9 0.79 35.3 1.62 42.1

(5.9)

For the Knelson feed, the performance of the Knelson and the MLS can be

compared in Tables 5-3 and 5-6. Rêcoveries and yields are averaged in Table 5-

6 simply for purposes of comparison. The MLS averages a 70.0% recovery at the

optimum operating point, which is very close to the 71 % recovery of the Knelson

at 80 kPa, but at a much higher mass recovery (16.1% for the MLS, 0.17% for the

Knelson concentrator) and a much lower concentrate grade (4.27 oz/st for the MLS,

303 oz/st for the Knelson concentrator).

The Knelson concentrator is thus vastly superior to the MLS in producing high

grade concentrates. For future studies of the performance of gold gravit y circuit, a

laboratory 7.6 cm (3" ) Knelson may prove a superior tool to the MLS. The max­

imum efficiency concept, however, cannot be used to estimate free gold content, as

it estimates a much lower concentrate content than what can actually be achieved,

either \Vith the Knelson concentrator or the MLS.

Page 91: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 5. The 76 cm Knelson Concentrator 78

The Knelson tails have optimum gold concentrations two to fivc timcs lower than

those of the feed. However, tail optimum yields ale closc to thosc of the fccd. Again,

this confirms that the maximum efficiency concept cannot be directly applicd when

investigating the recovery of free g;old.

5.4 Summary

The 76 cm Knelson concentrator was shown to recover bet ween 53 and 71 % of the total

gold and 82 and 93% of "free gold". The highest total gold recovery corresponded

to test l, at a lower feedrate, about 12-15 tlh, and higher wash water pressure, 80

kPa. The lowest corresponded to a lowest back water pressure, 40 kPa, at 18-20

t/h. Size-by-size and sub-cycle data were generally erratic, and did not yield much

information; more specifically, the expected decrease in recovery with increasing cycle

time or decreasing particle size did not materialize, within the range of test parameters

used.

The objective of the test work was to evaluate the operation of Knelson at

Camchib, not to evolve a comprehensive model of the Knelson's performance. The

difficulties associated with this latter task are irreconcilable with the inherent vari­

ability of plant testing. Thus, while the present test work confirms the suitability of

the Knelson in recovering of fine gold, additional, more fundamental test work should

be completed in a more controlled environment.

While the MLS has proven its ability to differentiate locked and free gold, the

testing method has yet to be refined to yield reproducible results. That free gold

recovery is higher for test 4 than for test 3 is highly suspicious, and is likely an

operator-related problem. The critical parameter is separation time with the MLS,

which varied excessively from test to test, as these different operators participated in

the study. The superiority of the Knelson suggests that as a laboratory machine, it

Page 92: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Chapter 5. Tite 76 cm Kne]son Concentrator 79

is a superior unit to the MLS, and could be used profitably for studies su ch as this

ore. Unfortunately, it was commercially unavailable when this study was initiated.

1 '~

l 'l 1

J

Page 93: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 6

The Pinched Sluices

6.1 Experimental Design

There are two pinched sluices at the gravit y circuit as the first step gold recovery

unitsj one is a "double" sluice (61Ox138 cm), the other is a single sluice (61Ox69 cm).

Each is fed by a baIl mill discharge. Their purpose is to bleed the high throughput

baIl mill discharges, at 100 to 150 tfh, to a stream that can be handled by a 76 cm

Knelson, typically 30 to 40 tfh.

Four tests were done for the pinched sluices. For aIl tests, about 5 kg of mass

(solid) was sampled from the feed, concentrate and tai!. Test 1 was carried out on

April 13 1987, sampled from the double sluice. On December 16 1987, the double

sluice (test 2) and single sluice (test 3) were simultaneously sampled. Test 4 was com­

pleted two days later, on December 18 1987, for the double sluice without dilution

water in the feed. AIl samples were weighed wet and dry, to get their solid per­

cents. Samples were then screened and each size class processed using the procedure

described in chapter 5.

For tests 2, 3 and 4, the concentrate flowrates for both the double and single

sluices were measured with timed samples. For test 1, the concentrate flowratc was not

measured but is assumed equal to that of test 2, performed under idcntical conditions.

80

Page 94: An Investigation of Gold Recovery in the Grinding and Gravit y

. {

{ ...

Chapter 6. The Pinched Sluices 81

6.2 Total Gold Recovery

Table 6-1 summarizes experimental results. The sluice feed rate was estimatecl from

the grinding circuit mass balance (Figure 4-1); the sluice tail rate was not measured,

but is the difference between the estimated flowrate of the feed and the measured

flowrate of the concentrate. The assays in Table 6-1 are the combined assays of each

size class in terms of the size distribution of each sam pIe.

For test 1, the feed and concentrate solid percents unavailable, and the tail solid

percent is very close to that of test 2 performed under identical conditions. The solid

percents of both tests are 2 to 3% lower than that of test 4 in which the dilution

water in the feed was eut off.

Recovery can be estimated in various ways. Taking the raw data, recovery can

be estimated in the following ways:

R _ Cc l-Cc+t(F-C)

Ff-t(F-C) R3 = Ff

Ff-t(F-C) R .. = -:-'----:'-____ -~ Cc+t(F-C)

c f - i Rs=-'-­f c- t

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

Page 95: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 6. The Pinched Sluices

where F: C:

F - C: f: c: t:

fecd flowrate coneen trate flowrale tai! flowrale feed grade concentrate grade tai! grade

82

To evaluate which equation yields the minimum error variance, Taylor's series

can be used (first order terms only). This will be done using a relative accuracy of

5% for both assays and measured flowrate. Results are summarized in Table 6-1.

Table 6-1 shows that the recovery based on assays alonc, R5 , has the poorest

accuracy, because of the grades of sluice streams are numerically similar. RI is the

most accurate as it makes use of the measured flowrates and ail the assays. R2 uses

the two measured flowrates and two of the assays, and also yicld a lowerror. R3 and

R4 evaluate the mass of gold recovered into the concentrate as the difference betwcen

feed and tail gold content, and have errors of intermediate magnitude.

Actually, although Rl and R2 are the better estimates of recovery, neither is

the best. The best approach is to mass balance the data [51], using ail information

available. This was performed for aH tests, using the NORBAL2 software developed

by R. Spring of the Noranda Technology Centre [53]. Ali data are given a relative

standard deviation of 5%, except for the feedrate of test 1, which was given a relative

standard deviation of 20%, as the circulating load had not been measured during or

prior to the test.

Results are snmmarized in Table 6-2; details are in appendix C. There are no

flowrate adjustments for tests 1, 3 and 4, only a small adjustment for test 2. Grade

adjustments are small, usually less than the a110t ted 5% relative. The major exception

is the fecd grade for test 4, which is adjusted from 0.74 to 0.54 oz/st. This adjusted

value is in better agreement with the measured {eed grades of tests 2 and 3, performed

just two days before test 4.

Page 96: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 6. The Pinched Sluices 83

Table 6.1: Summary of the estimation of the variance of the calculated recovery and

upgrading ratio using unadjusted data

Flowrate Grade Solid R S.D. R.S.D Upgradi~g ~ (t/h) (oz/st) (%) (%) (%) ratio

RI 11.2 1.02E-2 9.1 test 1 F 183 0.62 - R2 10.4 1.04E-2 10.0 (double, C 12.7 0.93 - R3 17.4 5.85E-2 33.6 1.5 4/13/87) T 170.3 0.55 63.8 R4 18.8 7.54E-2 40.1

Rs 27.6 1.42E-1 51.3 RI 14.7 1.29E-2 8.8

test 2 F 183 0.51 63.3 R2 13.4 1.32E-2 9.9 (double, C 12.7 0.99 66.5 R3 21.5 4.13E-2 19.2 1.9 12/16/87) T 170.3 0.43 63.0 R4 23.4 7.58E-2 32.4

Rs 27.7 9.86E-2 35.6 RI 6.8 6.50E-3 9.5

test 3 F 183 0.53 66.4 R2 6.2 6.87E-3 11.1 (single, C 8.8 0.68 70.4 R3 15.6 5.97E-2 38.3 1.3 12/16/87) T 174.2 0.47 66.2 R4 17.2 7.76E-2 45.1

Rs 36.7 2.07E-1 56.3 RI 17.1 1.48E-2 8.6

test 4 F 183 0.74 66.2 R2 11.1 1. 11 E-2 10.0 (double, C 13.3 1.13 67.5 R3 46.1 6.30E-2 13.7 1.5 12/18/87) T 169.7 0.43 66.1 R4 71.0 1.41E-1 19.8

Rs 67.6 5.73E-2 8.5

Recoveries in Table 6-2 are very close to the values of RI and R2 (in Table 6-1),

the best unadjusted estimates of recovery. One interesting result of the adjustment

procedure is that equations 6.1 to 6.5 yield the same estimate for gold rccoveryas the

adjusted data are now totally concordant. Results confirm that operating the double

sluice without wash water yields the hest gold recovery, 17%, with an upgrading

ratio of 2.3 (much higher than with the raw data, as the {eed grade was significantly

adjusted downward). The upgrading ratio is marginally better than for test 2 (double

sluice with dilution water), but superior to test 3 (single sluice). Results from test

1 cannot readily be analysed, as neither the {eed nor the concentrate flowrate was

measured.

Page 97: An Investigation of Gold Recovery in the Grinding and Gravit y

(

{ ,

(

Chapter 6. The Pinched Sluices 84

Table 6.2: Summary of the estimation of the variance of the calculated recovery and

upgrading ratio using adjusted data

Flowrate Grade R Upgrading (t/h) (oz/st) (%) ratio

test 1 F 183 0.59 (double, C 12.7 0.93 11 1.6

4/13/87) T 170.3 0.57 test 2 F 181.4 0.48 (double, C 12.8 1.00 15 2.1 12/16/87) T 168.6 0.45 test 3 F 183 0.51 (single, C 8.8 0.88 8 1.7 12/16/87) T 174.2 0.49 test 4 F 183 0.49 (double, C 13.3 1.14 17 2.3 12/18/87) T 169.7 0.44

We can therefore conclude that the single sluice is largely overloadedj not only

its gold recovery is very low, bllt also its upgrading ratio is only about twofold.

6.3 Size-by-Size Gold Recovery

Since the data of size-by-size grade are very noisy (see appendix C), the NORBAL2

software is used again to mass balance the data. The ftowrate of each stream is

the whole size ftowrate multiplied by the size distribution. Results are summarized

in Table 6-3; details are in appendix C. It shows that the pinched sluices recovery

is poor, and generally decreases with decreasing particle size; recovery is especially

poor below -212 l'm.

Page 98: An Investigation of Gold Recovery in the Grinding and Gravit y

.....

Chapter 6. The Pinched Sluices 85

Table 6.3: Adjusted size-by-size recovery

Size test 1 test 2 test 3 test 4 (J'm) Double Double Single Double

April 1387 Dec. 1687 Dec. 1687 Dec. 18 87 +300 18 - - -300-212 10 31 14 46 212-150 5 12 5 10 150-106 6 9 4 12 106-75 4 11 5 9 75-53 8 3 6 8 53-38 25 8 7 8 0-38 15 5 3 12

Table 6.4: Required sampling mass in each size class

Size(Jlm) 300 212 150 106 75 53 38 0 -425 -300 -212 -150 -106 -75 -53 -38

Il Mass(g) 1147,989 1 5,205 Il,847 1 650 1 229 1 81 1 28 1 11 Il

6.4 Minimum Sample Mass

The noisy recovery data stem from the close grade data of the feed, tail and con­

centratej another reason is the low sample mass. Although a 5 kg sample mass is

enough to achieve 90% confidence for 5 g/t (0.146 oz/st) free gold (see chapter 5),

the sub-sample mass from each size class is not enough especially in .. he coarse size

classes. For sized classes, the required mass in each size classes can be predicted by

Gy's model. The sampling mass required are shown in Table 6-3 (with a shape factor

of 0.5, liberation and size distribution factors of unit y, a free gold concentration of 5

g/t, and a confidence of 90%).

Table 6-4 shows the required sampling mass largely depends on particle size.

Page 99: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Chapter 6. The Pinched Sluices 86

For the 212/300 Jlm, 5.2 kg is needed, a mass clcarly impractical to pro cess on the

MLS. For 150/212 pm, the usual 300 g processed with the MLS yields a Cundamental

sampling crror is 25% - unacceptable large. The usual150 g processed with the MLS

is only adequate below 75 Jlm. For future tests, a 10 to 20 kg should be sampled and

entircly processed (with a Gemini table or a KnelsoD concentrator).

6.5 Summary

Four tests were done to investigate the piDched 'sluice performance. Total gold re­

covery was estimated in various way based on both assays and measured flowrates.

Gold recovery was finally estimated with balanced data, using NORBAL2 software,

the simulated results is in good agreement with the calculated recoveries which make

use of most measured flowrates and assays.

The pinched sluices perform poorly, recovering from 8 to 17% gold in 4.8 to 7.3%

of the mass recovery, with an upgrading ratio Crom 1.3 to 2.3. The double sluice at a

density of 66.2% solids yield the best gold recovery, 17%, with the highest upgrading

ratio, 2.3.

Size-by-size recovery generally decreases with decreasing particle size; recovery is

especially poor below 212 Jlm. Data are noisy, as the minimum sample mass required

for good reproducibility, as estimated by G'y model, is much ab ove what can be

realistically processed in a Mozley Laboratory Separator.

1 1

Page 100: An Investigation of Gold Recovery in the Grinding and Gravit y

-..

Chapter 7

Gold Room

The 19 cm Knelson concentrator and the riilleless table in the gold room at Camchib

were used for upgrading the 76 cm Knelson concentrate to a grade about 50% gold.

The concentrate is then acid-cleaned and smelted. The 19 cm Knelson was now been

replaced with a 30 cm unit.

7.1 The 19 cm Knelson Concentrator

On April 13 1987, the processing of one 76 cm Knelson concentrate batch was inves­

tigated. Samples one batch of the 76 cm Knelson concentrate, the 19 cm Knelson

rougher and scavenger tail (separately) and concentrate (combined) were extracted

in multiple increments. No single product was weighed, in order to minimize pertur­

bations to normal operations.

Since no stream was weighed, their mass must first be estimated. For the 19 cm

Knelson concentrator, it can be safely assumed that rougher and scavenger stages yield

a nearly equal mass of concentrate, as both stages are operated with same conditions.

The total concentrate mass can be estimated by the two-product formula.

f - t 303 - 36 Gtotal = c _ t = 1786 _ 36 = 15.26%

Crougher = Cllcavenger = 7.63%

87

Page 101: An Investigation of Gold Recovery in the Grinding and Gravit y

r

Chapter 7. Gold Room 88

Table 7.1: The 19 cm Knclson concentrator performance

Mass Grade Dist'n Upgrading (%) (oz/st) (%) ratio

Feed 100.00 303 100.0 1.0

Crougher 7.63 2942 74.1 9.7 Trougher 92.37 85 25.9 Cscavenger 7.63 629 15.8 2.1 T,catJenge,. 84.74 36

1

10.1 Ctotal 15.26 1786 89.9 5.9

The mass and grades of other streams can be estimated from existing assays.

Results are shown in Table 7-1.

Table 7-1 shows that the rougher stage yields a 74.1% gold recovery with an

upgrading ratio of 9.7. However, the scavenger stage achieves only a 15.8% recovery

of the total feed and decreases the overall upgrading ratio down to 5.9. To eliminate

the second pass, the 19 cm Knelson concentrator has already been replaced by a 30

cm Knelson concentrator with a single pass to decrease man power costs.

Size-by-size recovery can also be estimated with the two-product formula. Ta­

ble 7-2 and Figure 7-1 show size-by-size recovery decreases from 98% to 87% with

increasing size. Coarse gold flakes suffer the wor!!! losses. Figure 7-2 shows two

scanning electron photographs of coarse gold lost to the 1 q cm Knelson tail. Energy

dispersive analysis shows that both flakes are not free gold, but middlings of electrum

with lesser amounts of pyrite and chalcopyrite. This incomplete liberation lowers the

overall particles density, and is certainly a factor in the recovery process. The flaky

nature of the grains may also hinder concentration, especially by trickling.

Table 7-2 also shows that although the feed grade in the +300 l'm is lowest,

its rougher tail grade is highest. This confirms the difficulty of concentrating coarse

Baky gold.

Page 102: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 7. Gold Room 89

100

80

-'# ->- 60 .. • > 0 u • IX '0 -0 40

" 20

0 co C"') Il) CD 0 N 0 0 Cf) an ,... 0 Il) ... 0 0 1 1 1 ... ... N (W) Cf)

0 co Cf) 1 1 1 1 + C"') Il) Il) CD 0 C\I ,...

0 Il) ... ... ... C\I

Partlcle Size (um) log.

Figure 7-1: The 19 cm Kne'.on concentrator .'ze-by-.lze recovery

........

Page 103: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Chaptcr 7. Gold Room 90

Figure 7-2: Scanning electron photographs of coarse gold 10st to the

19 cm Knelson tail

Page 104: An Investigation of Gold Recovery in the Grinding and Gravit y

1 q •

Chapter 7. Gold Room 91

Table 7.2: The 19 cm Iùclson sizc-by-sizc rccovcry

Size Feed Trougher T~cavenger Ctotal. Recovcry. (Jlm) (oz/st) (oz/st) (oz/st) (oz/st) (%)

0-38 268.2 12.6 8.8 543 98.3 38-53 953.9 56.2 48.1 8916 95.5 53-75 795.8 54.3 49.7 6467 94.5

75-106 447.9 51.9 36.7 3507 92.8 106-150 289.8 50.2 28.7 2333 91.2 150-212 259.3 61.8 28.4 1783 90.5 212-300 2.52.1 67.2 32.1 1686 89.0

+300 244.0 136.9 43.2 815 86.9

The scavenging step recovers Iittle additional gold below 75 Jlm, as the drop in

gold content from the rougher to the scavenger tai! is smal!. The recovery of gold

in the scavenger concentrate is most significant for the +300 J'm, with a threefold

decrease in the tail grade.

7.2 The Riffieless Table

The performance of the riilleless table is difficult to evaluate, because of the recycling

of a middling fraction and the highly unsteady nature of the operation. On April 1:;

1987, the processing of the 19 cm Knelson rougher and scavenger concentrates in the

table was investigated. Increments of the table feed, concentrate, middling and tailing

streams were taken. Unsized samples were assayed for gold. The table concentrate

was screened and each size assayed for gold.

Table 7-3 gives the overall performance of the table. A gold recovery of 99% is

estimated if the middling is not considered. Gold recovery is actually much lower,

as the middling con tains a significant fraction of the gO')ld in high grade sulphides.

Actual gold recovery from the middlings is difficult to entimate, as it is mixed with

Page 105: An Investigation of Gold Recovery in the Grinding and Gravit y

f

Chaptcr 7. Gold Room 92

Table ï.3: The riffieless table performance

Feed Middling Tai 1 Cone. Recovery Upgrading (oz/st) (oz/st) (oz/st) (oz/st) (%) Ratio

Il 1786 1 720 1 20.1 14247 1 99.0 1 8.0 Il

Table 7.4: Final gravit y concentrate

Size Yield Grade Grade Dist'n (pm) (%) (oz/st) (%) (%)

+850 0.79 9494 32.6 0.5 600-850 4.06 19960 68.4 5.7 425-600 6.90 18788 64.4 9.1 300-425 9.79 20444 70.1 14.1 212-300 10.21 18353 62.9 13.2 150-212 15.99 12607 43.2 14.2 106-150 18.07 9051 31.0 11.5 75-106 17.71 9483 32.5 11.8 53-75 11.02 15992 54.8 12.4 38-53 4.12 21292 73.0 6.2 0-38 1.34 16469 56.5 1.6

1: 100.00 14247 48.9 100.~

fresh 19 cm Kne1son concentrate prior to reproee~sing on the ta~Je.

Table 7-4 shows that the final gravit y coneentrate (prior to acid wash) contains

14247 oz/st (49%) gold, most of it between 53 Jlm and 425 pm. Little gold is recovered

be10w 38 pm, largely because there is little in the gold room feed.

Evolution of the gold size distribution is shown in Table 7-5, which shows the

gold assay and distribution in the gold room feed, table feed and concentrate, and

the overall upgrading ratio of the gold room.

Because the recovery of 38 to 150 pm particles is privileged on the table, these

Page 106: An Investigation of Gold Recovery in the Grinding and Gravit y

1 Chapter 7. Gold Room 93

Table 7.5: Gold distribution in the gold room fccd, tablc fecd and eoncentratc, and

the overall upgrading ratio

Gold Room Table Tahle Feed Feed Cone.

Size Grade Dist'n Grade Dist'n Grade Dist'n Upgrading (pm) (oz/st) (%) (oz/st) (%) (oz/st) (%) Ratio

+300 244.0 27.2 815 18.0 19421 29.4 79.6 212-300 252.2 15.8 1686 16.9 18353 13.2 72.1 150-212 259.3 15.7 1783 20.1 12607 14.2 48.6 106-150 289.8 13.4 2333 13.3 9051 11.5 31.2 75-106 447.8 12.5 3507 13.9 9183 11.8 21.2 53-75 795.8 8.7 6467 11.9 15992 12.4 20.1 38-53 953.9 5.5 8916 5.6 21292 6.2 22.3 0-38 268.2 1.2 - - 16469 1.6 61.4

L 302.9 100.0 1786 100.0 14247 100.0 47.0

size classes shows a very low upgrading ratio. They were also difficult to separate

on the MLS, and are also known to yield high gangue recovery with other gravit y

separators. For example, spirals also exhibit a maxjmum recovery for high and heavies

at an intermediate size range, in this case, between 100 and 600 J.lm [39J. The goid

distribution per size class does not change significantly in the gold room feed and

final concentrate, with the exception of the 53/75 }lm class, whieh increases from

8.7 to 12.4%. Thus, gold recovery is approximately constant for aIl classes. As gold

recovery in the 19 cm Knelson conccntrator increases with decreasing size, it must

be that for the table, gold recovery decreases \Vith decreasing size. This would be

tied to gold losses in the table tails, which are predominantly fine gold. Additional

losses of coarse flaky gold also take fllace in the middlings. A complete metallurgical

balance would also have to inc1ude the magnetic concentrate (picked off the table),

which contains up to 60 oz/st of flaky gold. Overall, gold recovery mûst likcly drops

with increasing particle size in the gold room. Overa1\ gold recovery lies betwœn 8.5

and 90%, as can be estimated from daily analyses of the gold room tailing product.

Page 107: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

Chapter 7. Gold Room 94

7.3 Summary

The 19 cm Knelson conccntrator previously used in the gold room achieved about

90% recovery with two passes. The rougher stage achieved a 74% gold recovery with

an upgrading ratio of 9.7; the scavenger stage achieved only 16% gold recovery of

total feed, and decreased the overall upgrading ratio clown to 5.9. A 30 cm knelson

coucentrator has since replaced the 19 cm Knelson concentrator, with a single pass.

The size-by-size recovery of the 19 cm Knelson concentrat.or decreases from 98%

to 87% with increasing size.

The performance of the riffleless table is difficult to evaluate, because of the

recycling of a middling and the unsteady nature of the operation. A good recoveryof

99% was estimated (excluding the middling). As the middling contains a significélnt

fraction of gold associated with sulphides, table recovery is actually much lower.

1

Page 108: An Investigation of Gold Recovery in the Grinding and Gravit y

r •

t

! f

l

Chapter 7. Gold Room

850z/at

76 cm Knelson Cone.

303 oz/st

Magnet

1786 oz/st (il) 36 oz/st

720 oz/st

Talllngs

Rlffleless

Table

200z/lt

19 cm Knelson

Concentrator

90% Recovery

6 Upgradlng Ratio

99% Recovery 8 Upgradlng Ratio

Gold Conc.

14247 oz/st

49% Au

Figure 7-3: Gold room upgradlng performance

95

Page 109: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

Chapter 8

Conclusions

8.1 Results

The gravit y and the grinding circuits at Les Mine Camchib have been investigated.

Each stream of the circuits was sampled; aIl samples were sized and each size class

was processed by the MLS (-212 pm) or the Gemini table (+212 pm). Free gold

content was estimated from the concentration of these two "perfect" separators.

In the grinding circuit, the relative selection functions of gold and the total ore

were evaluated. Above 212 pm, gold has essentially the same behaviour as the total

ore, as very little gold is liberated; below 212 pm, gold has a higher selection function

than the total ore. Thus, the high gold circulating load is not due to grinding, but

to its propensity to report to the cyclone underflow; indeed, free gold recovery to the

underflow is as high as 88.1 % in the -38 Jlm.

In the gravit y circuit, the performance of recovery units, pinched sluices, Knelson

concentrators and a riffieless table was characterized on the basis of particle size, shape

and liberation of gold. The total gold recovery in the gravit y circuit is 39 to 42%

with an upgrading ratio of 27,000 to 1. . The 76 cm Knelson achieves 58 to 71 % total gold recovery and 82 to 93% free

gold recovery with very high upgrading ratios of 330 to 480. The optimum wash water

pressure is around 73 kPa; a 90 minute cycle time does not overload the Knelson. The

total gold recovery by both the 76 cm and the 19 cm Knelson slightly increases with

96

Page 110: An Investigation of Gold Recovery in the Grinding and Gravit y

1

Chapter 8. Conclusions 97 ---------------------------------------------~

decreasing particle size, at least down to 38 pm, and probably lower; this overcomes

the traditional problem of fine gold recovery by gravity.

The pinched sluices perform inefficiently, 8 to 17% total gold recovcry with

upgrading ratios of 1.6 to 2.3. The double sluice performs better than the single

sluice, with much higher recovery. Clearly the decreased load on the pinched sluice

is beneficial. In addition, the double sluice performed better at a higher feed density.

ln the gold room, the 19 cm Knelson achieves a 90% recovery with a 5.9 upgrad­

ing ratio. The 3econd pass of the Knelson tail achieves only 15.8% recovery of total

feed, and decreases the overall upgrading ratio significantly. A 30 cm Knelson with

a single pass has already replaced the 19 cm unit. The rifHeless table achieves a 99%

recovery with an upgrading ratio of 8.0, if the middIing is not considered. Overall,

gold recovery lies between 85 to 90% according to the daily analyses of the table tail

product.

8.2 Recommendations

The efficiency of the existing circuit is clearly limited by the pinched sluices. This

can be partially remedied to if sluice efficiency is improved. First, the double sluice is

outperforming the single sluice, and should be used wherever space limitations make

it possible. Second, density should be closely monitored, as it has been demonstrated

that diluting the feed was deleterious. Third, the maximum yield should be extracted

with the Knelson processing capacity, which clearly has not been reached at Camchib.

Indeed, using a feed rate of 30 t/h (an increase of 50%) would result in a substantial

increase in total gold recovery, even if free stage gold recovery were to drop to 80%

because of the increased throughput.

However, it may be argued that even a better operating sluice still represents

a liability to the gravit y circuit. Specifically, the sluice recovers coarse gold more

Page 111: An Investigation of Gold Recovery in the Grinding and Gravit y

... t

Chapter 8. Conclusions 98

efficient)y than fine gold, whereas the very opposite is preferable (as coarse gold

becomes "fine gold"). Thus, replacing sluices with pre-concentration equipment better

designed in a substantial increase in free gold recovery, and a corresponding decrease

in Cree gold reporting in the flotation concentrate. Two separation units would be

tested. The compound water cyclone (CWC) [59] has a modest potential for fine gold

recovery, and would be easy enough to install. Its recovery above 75 pm is certainly

acceptable, but its performance down to 38 pm 'needs to he assessed before its use

can be definitely recommended. The other unit which could act as an effective pre­

concentrator is the Reichert cone. Although its efficiency even helow 38 pm is well

documented [48] even for iron ore of density 5.2, installation and operating costs make

its economic justification less obvious. Clearly, more information is needed to decide

whether one of these units should be installed, and which one it should be.

In the gold room, the decision to pro cess the 30 cm Knelson concentrate with

the shaking table has not been formally justified. Processing of the 30 cm Knel­

son concentrate with the 19 cm unit May weil be a better alternative. It is likely

that significant magnetics (especially magnetite) wou Id then be rejected, and that a

concentrate of smaller mass would then be directly acid-cleaned prior to smelting.

Fina.lIy, there is little evidence in the work performed that cycle time has to he

as short as 90 minutes for the 76 cm Knelson in the grinding circuit. Extending cycle

time with little or no losses in gold recovery would result in a lower tonnage in the

gold room. This would lower further processing costs and possibly lead to an increase

in gold recovery in the gold room.

8.3 Future Work

This study has yielded very informative data on the resent operation of the circuit.

It has also identified areas where further work would be beneficial.

Page 112: An Investigation of Gold Recovery in the Grinding and Gravit y

.......

Chapter 8. Conclusions 99

First, the whole sub-sieve range remains unexplored, and grinding, classification,

liberation and gravit y recovery mechanics should be better quantified in this range.

Second, the use of the MLS to estimate free gold content was found time con­

suming. The 7.5 cm Knelson may weIl replace it advantageously, since it can process

rapidly samples of 5 to 20 kg, with negligible losses of free gold. This is now being

investigated. A formaI study should be initiated to compare free gold as determined

by the 7.5 cm knelson, the MLS, amalgamation and direct visual (or electron beam)

examination.

Third, this :;tudy has clearly shown that the Knelson is a performing unit that

deserves a better fundamental understanding. Of special importance are particle­

particle interactions, which play an essential role in the Knelson, and are still a

po orly understood area of mineraI processing.

Finally, it should be pointed that is a Knelson capable of processing 100 t/h

were availahle, pre-concentration would he unnecessary. Although this c1early goes

beyond the scope of university research, scale-up efforts to produce such a unit would

certainly be warranted .

Page 113: An Investigation of Gold Recovery in the Grinding and Gravit y

( Bibliography

[1] Adamson, R. J., "SME Mineral Processing Handbook", SME of AIME, Ed. N.

L. Weiss, New York, 1985, Vol. l, Section 18-15.

[2] Agar, G. E., "Optimizing the Design of Flotation Circuits, CIM Bull., Vol. 73,

No. 824, Dec. 1980, pp. 173-181.

[3J Andres, U., "A New Method for the Commercial Separation of Particles of Dif­

fering Densities Using Magnetic Fluids", The Proceedings of XV International

MineraIs Processing Congress, Cannes, France, June 1985.

[4] Anon., "British-Developed Laboratory Separator Aids Small Scale Mineral Stud­

ies", Min. Mag., Jan. 1979, pp. 45-48.

[5] Anon., Falcon Concentrators Inc., Model B-12, Public Product, 1986, Suite 1205-

1177 West Hasting St., Vancouver, British Columbia, Canada.

[6] Anon., "Laboratory Separator Modification Improves Recovery of Coarse

Grained Heavy MineraIs", Min. Mag., Aug. 1980, pp. 158-161.

[7] Anon., "New Separator for Fine Gold Recovery", Min. J., Jan. 21 1983, p. 40.

[8] Bagnold, R. A., "Experirnents on a Gravit y Free Dispersion of Large Solid

Spheres in a Newtonian Fluid under Shear", Proc. Roy. Soc., Sect. A, Vol. 225,

1954, pp. 49-63.

[9] Bath, M. D., A. J. Duncan and E. R. Rudolph, "Sorne Factors Influencing Gold

Recovery by Gravit y Concentration", South Afr. Inst. Min. Metall. J., June 1973,

pp. 363-384.

100

Page 114: An Investigation of Gold Recovery in the Grinding and Gravit y

.-

Chapter 8. Conclusions 101

[10] Burch, C. R. and R. H., Mozley, "Sorne Experiments in Gravit y Concentration",

Trans. Cornish Inst. of Eng., 12, 1956, pp. 24-40.

[11] Burt, R. O., " Gravit y Concentration Technology", Vol. 5, Devel. in Min. Proc.,

Ed. Elsevier, Amsterdam, 1984,605 p.

[12] Burt, R. O., "A Review of Gravit y Concentration Techniques for Processing

Fines", 27th Annual Conference of Metallurgists of CIM, Montréal, Canada,

Proceeding Vol. 7, Aug. 1988, pp. 375-385.

[13] Chin, P. C., Y. Y. Wang and Y. P. Sun, (1977), "A New Slime Concentrator -

The Rocking Shaking Vanner", in Proc. of Thirteenth Int. Miner. Proc. Cong.,

Ed. J. Laskowski, Warsaw, Elsevier (1980), 1398-1423.

[14] Coté, J. Y. Strasser and A. Cauchon, "Campbell Chibougamau, Mining Practice

in Canada, CIM Special Vol. 16, 1978, pp. 91-93.

[15] Davidson, R. J., G. A. Brown, C. G. Schmidt, N. W. Hanf, D . Duncanson and

J. D. Taylor, "The Intensive Cyanidation of Gold-Plant Gravit y Concentrates",

South. Afr. Inst. Min. Metall. J., Jan. 1978, pp. 146-165.

[16] Del Villar, R. and Laplante, A. R. "Grinding Simulation in Applesoft Basic",

CIM Bull., Vol. 78, No. 883, Nov. 1985, pp. 62-65.

[17] Dickson, K. W. and S. M. Reid, "Campbell Red Lake Mines Limited", Mining

Practice in Canada, CIM Special Vol. 16, 1978, pp. 54-56.

[18] Dolphin, K. and T. J. Ferree, "An Economical Approach to Reprocessing Old Mill

Tailings", 89th National Western Mining Conference and Exhibition, Denver,

Colorado, Feb. 12-14 1986.

[19] Ferrara, G., "A pro cess of CentrifugaI Separation Using a Rotating Tube". Pro­

ceedings 5th Int. Miner. Proc. Cong., The Inst. of Min. and Metall. London,

1960, pp. 173-184 .

Page 115: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Chapter 8. Conclusions 102

[20] Ferree, T. J., "Introduction to the Reichert Cone", AIME-MBB Annual Meeting,

Colorado Springs, 1972, 15 p.

[21] Ferree, T. J., "An Expanded Role in MineraIs Processing Seen for the Reichert

Cone", Mining Engineering, Vol. 25, No. 3, 1973, pp. 29-31.

[22] Ferree, T. J. and L. F. Mashburn, "Fine Gold Recovery with a Reichert Cone

- A Case History", Soc. of Mining Engineers of AIME - Trans., Vol. 272, 1981,

pp. 1916-1918.

[23] Ferree, T. J., "The Mark-7 Reichert Spiral Concentrator - A New Concept for

Fine Gold Recovery", First Intern. Symp. on Precious Metals Recovery, Reno,

Nevada, June 10-14 1984, Paper XII, 10 p.

[24] Gasparrini, C., "The Mineralogy of Gold and Its Significance in Metal Extrac­

tion", CIM Bull., Vol. 76, No. 851, March 1983, pp. 144-153.

[25) Gaudin, A. M., "Principles of Mineral Dressing", McGraw-Hill, New-York, 1939,

554 p.

[26] Gy. P. M., "Sampling of Particulate Material", Developments in Geomathematics

4, Elsevier Scientific, Amsterdam, 1982,432 p.

[27] Hallbauer, D. K. and J. C. Joughin, "The Size Distribution and Morphology of

Gold Particles in Witwatersrand Reefs and Their Crushed Products", South Afr.

Jnst. Min. Metall. J., June 1973, pp. 395-405..

[28] Hawkins, W. M., "A Spectrochemical Study of Rocks Associated with the Sul­

phide Ore Deposits of the Chibougamau District, Québec", McGill University

Thesis, 1960.

[29] Irwin, A., "The Knelson Hydrostatic Concentrator", Min. Review 2 (4), 1982,

pp. 41-43.

Page 116: An Investigation of Gold Recovery in the Grinding and Gravit y

Chaptfr 8. Conclusions 103

[30] Johnson, E. W. and A. A. Adamson, "Pamour Porcupine Mines, Limited. Schu­

macher Division", Mining Practice in Canada, CIM Special Vol. 16, 1978. pp.

69-73.

[31] Jowett, A. and Sutherland, D. N. "Sorne Theoretical Aspects of Optimizing

Complex Mineral Separation Systems", Int. J. Min. Proc., Vol. 14, pp. 85-109.

[32] Kelly, E. G. and D. J. Spottiswood, "Introduction to Mineral Processing", Ed.

Wiley, New York, 1982,491 p.

[33] Kieller, B. and Wilhelmy, J. F., "Etude de la libération de l'or dans trois

échantillons de procédé", Report 86-Mi, Centre de Recherches Minérales,

Québec, Québec, 1987.

[34] Lammers, J. M., "The Process Design of the OK Tedi Project" , First Intern.

Symp. on Precious Metals Recovery, Reno, June, 1984, Paper IV, 15 p.

[35] Laplante, A. R., "Report on the Camchib Mill Grinding Circuit", 1982, 36 p.

[36] Laplante, A. R., "Plant Sampling and Mass Balancing for Gold Ores", First

Intern. Symp. on Precious Metals Recovery, Reno, June 1984, Paper V, 25 p.

[37] Laplante, A. R., A. Wibisono and A. Cauchon, "Development of a Flowsheet for

the S-3 Ore", CMP Reg. Meet., Chibougamau, Sept. 1986, 38, pp. 155-192.

[38] Laplante, A. R., "Mineralogy and Metallurgical Performance of Various Gold­

Copper Ores of the Chibougamau Area, Québec", Proc. Intern. Symp. on Gold

Metallurgy, Eds. R. S. Saiter, D. M. Wyslouzil, G. W. McDonald, Winnipeg,

Aug. 1987, pp. 141-155.

[39] Laplante, A. R. and Y. Shu, "Simulating gravit y circuits: the Compromise be­

tween Accuracy and Simplicity", Intern. Sym·p. on Computer Software in Chcmi­

cal and Extractive Metallurgy and Pyrometallurgical and Process Applications" ,

27th Annuai Conference of Metallurgists of CIM, Montréal, Canada, Aug. 28-31

1988.

Page 117: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

Chapter 8. Conclusions 104

[40J Laplante, A. R., L. Liu and A. Cauchon, "Mineralogy and Flowsheet Changes

at the Carnchib Mines Inc. Mill, Chibougamau, Québec", 118th Annual Meeting

of AIME, Les Vegas, USA, Feb. 27 - March 2 1989.

[41] Lloyd, P. J. D., "Trends in Gold Production Technology, Metal Bull. Monthly,

Dcc. 1982, pp. 7-13.

[42] Loveday, B. K. and J. E. Forbes, "Sorne Considerations in the Use of Gravit y

Concentration for the Recovery of Gold", South Afr. Jnst. Min. Metall. J., May

1982, pp. 121-124.

[43] Martin, L. S., "The Knelson Concentrator", Product Report, 1984, 1 p., Field

Co-ordinator, Marconn Mining and Exploration, Cranbrook, British Columbia.

[44] Mayer, F. W., "Fundamentals of a Potential Theory of the Jigging Process",

Proc. 7th Int. Miner. Proc. Congr., New York, Vol. l, 1964, pp. 75-97.

[45] Melean, J., "The Reichert Cone Gravit y Concentration Pilot Plant", South Afr.

!nst. of Min. Metall. J., Oct. 1975, pp. 95-97.

[46] Mozley, R. H., " A Gravit y Concentrator for Fine MineraIs, Technical Conference

on Tin Ore, Intern. Tin Council London, Vol. 1, 1967, pp. 81-87.

[47] Musial J., " Fine Gold Sluicing", The Northern Min. Mag., Sept. 1987, pp. 68-71.

[48] Nudo, V., "Scavenging Iron Ore Tailings with the Reichert Cone", McGill Uni­

versity Thesis, 1987.

[49] Plitt, L. R., "A Mathematical Model of the Hydrocyclone Classifier", CJM Bull.,

Vol. 69, No. 776, Dec. 1976, pp. 114-123.

[50] Robinson, C. N. and K. Dolphin, "Gold Placer Operations in North America Us­

ing Reichert Spirals", Fourth Annual RMS-Ross Seminar on Placer Gold Mining,

Vancouver, Feb. 1984, 11 p.

,

Page 118: An Investigation of Gold Recovery in the Grinding and Gravit y

Chapter 8. Conclusions 105

[51] Smith, H. W. and N. Ichiyen, "Computer Adjustment of Metallurgical Balances",

CIM Bull., Vol. 66, No. 737, Sept. 1973, pp. 97-100.

[52] Spiller, D. E. and E. L. Rau, Colorado School of Mines Research Institute Report,

Nov. 1982, 5 p.

[53] Spring, R., "NORBAL2", Research Report N-8325: RR 85-1, Centre de

Recherche Noranda, Pointe Claire, Québec, 1985.

[54] Taggart, A. F., "Handbook of Mineral Dressing", Wiley, New York, 1945, Section

22-76.

[55] Tu, T. Y. and Yan, C. H., "A Combined Beneficiation Method for the Treatment

of Refractory Alluvial Tin Ores", Thirteenth Intern. Miner. Proc. Cong., Warsaw,

Ed. J. Laskowski, 1979, pp. 1146-1164.

[56] Van Koppen, C. W. J., "A Contribution to the Fundamentals of the Jigging

Process", Paper B3, 5th Int. Coal Prep. Congr., Pittsburgh, 1966, pp. 85-97.

[57J Venter, W. J. C. and B. R. Taylor, "The Introduction of High-Tonnage Grav­

ity Separation Equipment to Recover Base-Metal MineraIs ahead of Flotation",

Johannesburg, South Afr. Inst. Min. Metall. J., 1982, pp. 841-846.

[58] Vinogradov, N. N. et aL, "Research on the Separation Kinetics of Gravit y Pro­

cessing in Mineral Suspensions", Proc. 11 th Miner. Process. Congr .. Cagliari

April 1975, pp. 319-336.

[59] Walsh D. E. and Rao P. D., "Study of the Compound Water Cyclones Concen­

trating Efficiency of the Free Gold from Placer Material", CIM Bull., Vol. 81,

No. 919, Nov. 1988, pp. 53-61.

[60] Wang W. X, S. Huang and J. Chen, "Application of the Triangle Markov Chain to

Fine Gravit y Concentration", 27th Annual Conference of Metallurgists of CIM,

Montréal, Aug. 1988, Proceeding Vol. 7.

Page 119: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

{

Chapter 8. Conclusions 106

[61) Wang, W. and G. W. Poling, "Methods for Recovering Fine Placer Gold", CIM

Bull., Vol. 76, No. 860, Dec. 1983, pp. 47-56.

[62] WelJs, D. T. and A. J. Elliot, "Mill Modifications at South Crofity Ltd. Improve

Throughput and Recovery", XIV Intern. Miner. Proc. Cong., Toronto, Oct. 1982,

Paper VI-4, 18 p.

[63] Whiten W. J., "The Use of Multidimensional Cubic Spline Functions for Regres­

sion and Smoothing", The Australian Computer J., Vol. 3, No. 2, May 1971, pp.

81-88.

[64] Whiten W. J., "The Simulation of Crushing Plants with Models Developed Using

Multiple Spline Regressions", South Afr. Inst. Min. Metall. J., May 1972, pp.

257-264.

[65] Wills, B. A., "Laboratory Simulation of Shaking Table Performance", Min. Mag.,

June 1981, p. 489.

[66] Wills, B. A., "Mineral Processing Technology", 2nd Ed., Pergamon Press, Ox­

ford, 1981, pp. 525 p.

Page 120: An Investigation of Gold Recovery in the Grinding and Gravit y

....

Appendix A

Appendix A

Experimental Results of the Grinding Circuit

, lOi

Page 121: An Investigation of Gold Recovery in the Grinding and Gravit y

r Appcndix A 108

Rod mill discharge (Dcc. 16, 1987)

Size Size Dilt. Stream NISS Yield Cum. Y. Grade Cum. G. Unit Recov. Cum. R. (LIlI) (X)

0-38 23.29

38-53 3.12

53-75 4.36

75-106 4.44

106-150 4.28

150-212 5.57

212 54.94

AU 100.00

C

N1 N2

(II) (X) (X) (oz/st) (oz/st) (oz) (Xl (1)

0.22 0.15 0.15 20.97 20.97 0.94 0.63 0.78 2.21 5.76

51.92 34.84 35.62 0.15 0.27

3.10 1.39 5.23

5.79 5.79 2.60 8.39 9.77 18.16

T 95.94 64.38 100.00 0.68 0.53 43.78 81.84 100.00 F 149.02 100.00 0.53 53.49 100.00

C 0.60 0.51 0.51 15.11 15.11 7.65 39.76 39.76 Nt

M2 T

F

C

M1 M2 T F

C

M1 M2 T

F

C M1 M2 T

F

C

MI N2 T

F

C M1 M2 T

F

C M1 N2 T

F

2.32 1.96 2.46 34.86 29.41 31.sa 80.74 68.12 100.00

118.52 100.00

1.18 0.13 0.08 0.19

4.04 2.31 12.01 51.78 0.43 3.82 19.88 71.66 0.19 5.45 28.34 100.CO

19.23 100.00

0.70 4.66

0.48 3.20

0.48 18.52 18.52 3.68 0.16 2.56

8.90 51.88 51.88 0.51 2.98 54.87 3.22 18.81 73.67 4.51 26.33 100.00

39.16 26.87 30.55 101.20 69.45 100.00 t45.n 100.00

0.12 0.07 0.17

0.41 0.17

17.15 100.00

0.70 0.47 0.47 26.89 26.89 12.63 55.48 55.48 3.83 2.57 3.04 0.35 4.45 0.89 3.90 59.38

51.62 34.64 31.68 0.15 0.50 5.20 22.83 82.21 92.86 62.32 100.00 0.07 0.23 4.05 17.79 100.00

149.01 100.00 0.23 22.76 100.00

0.95 0.64 0.64 27.62 27.62 17.59 58.95 58.95 3.80 2.55 3.18 0.47 5.90 1.20 4.01 62.96

33.00 22.12 25.31 0.28 0.99 6.19 20.76 83.n 111.43 14.69 100.00 0.07 0.30 4.86 16.28 100.00 149.18 100.00 0.30 29.83 100.00

2.04 0.96 0.96 18.80 18.80 18.02 45.41 45.41 7.82 3.67 4.63 0.75 4.48 2.76 6.94 52.36

73.89 34.71 39.35 0.23 0.13 1.98 20.12 n.48 129.10 60.65 100.00 212.85 100.00

137.31 3.64 3.64 124.10 302.94

3.29 6.93 8.03 14.96

3207.50 85.04 tOO.OO 3771.85 100.00

83.33 2.11 2.17 99.06 2.58 4.76

129.98 19.03 23.79 2922.67 76.21 100.00 3835.03 100.00

0.18 0.40

0.70 0.33 0.22 0.15 0.18

2.33 0.49 0.18 0.24 0.28

0.40 10.92 27.52 100.00 39.68 100.00

0.10 2.55 14.37 14.37 0.52 0.36

1.09 1.n

6.12 20.49 9.97 30.46

0.18 12.33 69.54 100.00 17.13 100.00

2.33 5.06 18.06 18.06 1.33 0.41

1.26 4.49 22.55 3.39 12.08 34.63

0.28 18.33 65.37 100.00 28.04 100.00

Page 122: An Investigation of Gold Recovery in the Grinding and Gravit y

, t ~ 1

Appendix A

Size Size Dist. Stream (LIlI) (X)

0·]8 46.43

38-53 7.90

53-75 11.80

75-106 11.83

106'150 10.94

150·212 8.28

+212 2.84

All 100.00

C

M1 M2 T F

C

M1 M2 T

F

C

M1

M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T F

C

M1 M2 T f

Cyclone ovcrflow (Dcc. 16, 1:)87)

Mess Yield Cum. Y. Grade Cum. G. (SI) (X) (X) (oz/st) (oZ/st)

0.75 0.51 0.51 3.88 2.62 3.12

18.20 12.27 15.40 125.45 84.60 100.00 148.28 100.00

0.80 2.69

48.n 101.14 153.40

1.40 5.22

0.52 1.75

31.79 65.93

100.00

0.96 3.56

0.52 2.28

34.07 100.00

0.96 4.52

41.85 28.56 33.07 98.08 66.93 100.00

146.55 100.00

1.52 3.76

68.39

1.03 2.54

46.17

1.03 3.56

49.73 74.47 50.27 100.00

148.14 100.00

1.29 0.86 0.86 2.69 1.79 2.65

41.83 27.90 30.55 104.12 69.45 100.00 149.93 100.00

1.01 0.68 0.68 3.66 2.47 3.15

60.16 40.54 43.69 83.55 56.31 100.00

148.38 100.00

3.13 0.92 0.80 0.04 0.17

4.66 0.39 0.15 0.17 0.19

2.32 0.23 0.13 0.04 0.09

1.11

0.12 0.09 0.06 0.08

0.59 0.11 0.11 0.06 0.08

0.60 0.08 0.17 0.07 0.11

3.13 1.27 0.90 0.17

4.66 1.36 0.23 0.19

2.32 0.67 0.20 0.09

1. , 1

0.40 0.11 0.08

0.59 0.27 0.12 0.08

0.60 0.19 0.17 0.11

109

Unit

(oz)

Recov. Cun. R.

(X) (X)

1.58 9.20 9.20 2.39 13.94 23.14 9.82 57.16 80.30 3.38 19.70 10r.00

17.18 100.00

2.43 0.68 4.n

10.88 18.75

12.96 3.60

25.43 58.01

100.00

24.43 8.83

40.92

12.96 16.56 41.99

100.00

24.43 33.26 74.18

2.22 0.80 3.71 2.34 25.82 100.00 9.07 100.00

1.13 0.30 4.15

13.57 3.64

49.71

13.57 17.21 66.92

2.76 33.08 100.00 8.36 100.00

0.51 6.69 6.69 0.20 2.60 9.28 3.07 40.42 49.70 3.82 50.30 100.00 7.59 100.00

0.41 3.63 3.63 0.20 1.n 5.40 6.89 61.79 67.19 3.66 32.81 100.00

11. 15 100.00

0.51 0.25 0.25 134.17 134.17 33.13 74.23 12.46 5.59 7.72

100.00

74.23 86.69 92.28

35.89 17.38 17.62 0.32 2.20 5.56 60.60 29.34

109.55 53.04 206.55 100.00

13.25 0.67 58.90 2.97

481.95 24.28 1431.11 72.09 1985.21 100.00

1.6.96

100.00

0.67 3.63

27.91 100.00

0.09 0.07 0.45

3.52 0.50 0.28 0.05 0.15

0.88 0.45

3.52 1.06 0.38 0.15

2.49 3.45

44.63

2.35 1.49 6.84 3.85

14.53

16.17 10.26 47.07 26.50

100.00

100.00

16.17 26.43 73.50

100.00

Page 123: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Appendix A

Sile Sfze Df.t. Strellll CUI) CI)

0·38 8.69

38·53 1.91

53·75 4.62

75·106 8.55

106'150 10.17

150-212 13.68

+212 52.38

All 100.00

c .. , M2 T F

C

M1 M2 T

F

c .. , M2 T

f

c .. , M2 T

F

C

M1 M2 T

f

C

M1 M2 T

F

c .. , M2 T

F

C M1 M2 T

F

110

Cyclone underftow (Dec. 16, 1987)

.. a.. Yfeld c~. J. G,.__ c~. G. Unit R.cov. CUI!. R. (1) CI) (1) (oz/sU (oz/st) (oz) (1) (1)

0.20 1.62

24.55 109.65

0.15 0.15 111.20 111.20 16.35 39.45 39.45 1.19 1.34 9.26 20.46 11.02 26.60 66.05

11.05 19.39 0.40 1.78 7.22 17.42 8:3.47 80.61 100.00 0.09 0.41 6.85 16.53 100.00

136.02 100.00 0.41 41.44 100.00

0.40 3.42 1.30

1.11 1.11 59.87 59.87 66.31 22.86 22.86 9.47 10.51 21.15 25.20200.31 69.07 91.93

23.99 36.11

0.77 5.63

37.16 ')5.45 19.01

22.99 33.56 66.44 100.00

100.00

0.87 0.87 6.33 7.19

41.75 48.94 51.06 100.00

100.00

0.44 0.20 2.90

94.79 1.32 0.41 0.18 1.17

8.25 10.11 3.49 95.42 2.90 13.29 4.58 100.00

290.03 100.00

94.79 82.00 70.31 70.31 12.56 8.32 7.13 77.44 2.20 17.12 14.68 92.12 1.17 9.19 7.88 100.00

116.63 100.00

1.75 1.1a 1.1a 40.94 40.94 48.19 55.56 55.56 10.23 6.1S 8.06 79.68 53.61 61.67 56.98 38.33 100.00

148.64 100.00

0.96 0.41 0.26 0.87

1.19 1.99

54.24 14.04

1.27 1.27 26.50 6.03 7.29 0.56

36.36 43.66 0.42 56.34 100.00 0.38

149.16 100.00 0.74

6.80 6.61 7.62 63.17 1.25 21.98 25.34 88.51 0.87 9.97 11.49 100.00

116.75 100.00

26.50 33.58 45.62 45.62 5.06 3.35 4.54 50.16 1.20 15.27 20.75 70.91 0.74 21.41 29.09 100.00

73.61 100.00

3.94 13.61

1.45 5.02

1.45 11.39 11.39 16.55 25.81 25.81 6.47 1.39 3.64 6.98 10.88 36.68

80.11 29.55 36.02 173.48 63.98 100.00 271.14 100.00

70.70 92.52

213.17 1977.10

3.00 3.00 3.93 6.94 9.06 15.99

14.01 100.00 2353.49 100.00

41.30 90.00

2.08 4.52

2.08 6.60

417.12 21.00 27.60 1440.38 72.40 100.00 1989.49 100.00

0.40 0.45 0.64

2.19 0.32 0.37 0.18 0.26

9.50 1.70 0.40 0.22 0.52

0.98 11.82 18.43 55." 0.64 28.79 44.89 100.00

64.14 100.00

2.19 6.58 25.02 25.02 1.13 1.24 4.71 29.73 0.70 3.35 12.75 42.48 0.26 15.12 57.52 100.00

26.29 100.00

9.50 19.72 37.94 37.94 4.15 7.68 14.78 52.72 1.30 8.41 16.19 68.91 0.52 16.16 31.09 100.00

51.98 100.00

,

Page 124: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix A 111

~ BaIl mill discharge (test 2 double sluice feed, Dec. 16, 1987)

..."..

Size Size Dist. Stream MISS field c..-. Y. Gredt tu..G. Unit Rec:ov. CLill. R.

CIII!) CX,

0-38 17.39

38-53 3.46

53-75 6.83

75-106 10_84

106-150 12.10

150-212 14.63

+212 34.76

TOTA 100.00

C M1 M2 T F

C

M1 M2 T F

C M1 M2 T

F

(II' (X, CX, (oz/sU (oz/sU (oZ) (X, (X,

0.68 0.47 0.47 101.63 101.63 47.36 69.92 69.92 0.92 0.63 1.10 7.29 47.lU 4.60 6.79 76.71

23.76 16.28 17.38 0.36 3.33 5.86 8.65 85.36 120.56 82.62 100.00 145.92 100.00

0.12 0.68

0.68 9.91 14.64 100.00 67.73 100.00

0.24 0.37 0.37 202.71 202.71 74.47 58.83 58.83 1.51 2.40 2.17 1.29 28.00 3.10 2.45 61.28

13.14 20.11 22.88 1.10 4.35 22.02 11.40 78.68 50.38 17.12 100.00 0.35 1.27 26.99 21.32 100.00 65.33 100.00 1.27 126.58 100.00

0.17 4.60

0.59 3.50

0.59 100.26 100.26 58.80 68.84 68.84 4.09

42.34 32.25 36.34 83.59 63.66 100.00

131.30 100.00

1.56 15.71 5.45 6.38 75.21 0.39 0.14 0.85

2." 12.58 14.72 89.94 0.85 8.59 10.06 100.00

85.42 100.00

C 2.41 1.63 1.63 21.99 21.99 45.59 62.19 62.19 M1 19.00 12.84 14.47 0.58 3.67 1.45 10.16 72.36 Ml T F

C

M1 M2 T F

C M1 M2 T F

C M1 M2 T

F

53.33 36.04 50.51 73.22 49.49 100.00

147.96 100.00

3.19 14.32 52.45 79.61

149.63

3.16 21.36

"5.78

2.13 9.51

35.05 53.24

100.00

1.09 7.37

39.94

2.13 11.70 46.76

100.00

'.09 8.46

48.40 149.60 51.60 100.00 289.90 100.00

33.52 2.34 2.34 56.05 3.92 6.26

184.89 12.93 19.19 1155.80 80.81 100.00 1430.26 100.00

0.37 0.14 0.73

13.57 0.60 0.36 0.09 0.52

13.12 1.36 0.29 0.09 0.40

2.12 1.05 0.37 0.15 0.26

1.31 13.34 18.19 90.55 0.73 6.93 9.45 100.00

13.57 2.96 1.01 0.52

13.12 2.87 0.74 0.40

2.12 1.45 0.72

73.30 100.00

28.93 5.74

12.62 4.79

52.08

14.30 10.00 11.46

55.55 11.02 24.23 9.20

100.00

35.48 24.81 28.44

55.55 66.57 90.80

100.00

35.48 60.29 88.73

4.54 11.27 100.00 40.30 100.00

4.97 19.42 19.42 4.11 16.08 35.50 4.78 18.70 54.20

0.26 11.72 45.80 100.00 25.58 100.00

C 30.61 1.54 1.54 11.56 17.56 27.09 53.09 53.09 M1 107.80 5.42 6.96 1.05 4.70 5.67 11.12 64.20 HZ 481.43 24.21 31.18 0.37 1.34 8.95 17.54 81.75 T 1368.50 68.82 100.00 0.14 0.51 9.31 18.25 100.00 F 1988.40 100.00 0.51 51.03 100.00

Page 125: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix A 112 1

Grinding data balancing output

Final results

CIRCULATING LOAD (%): 299.4

PRODUCT IDENTIFICATION 1. ROD MILL DISCHARGE 2. BALL MILL DISCHARGE 3. CYCLONE UNDERFLOW 4. CYCLONE OVERFLOW

UNADJUSTED SIZE DATA MESH MICRONS 1 2 3 4 70 +212 54.9 34.8 52.4 2.8 100 181 5.6 14.6 13.7 8.3 150 128 4.3 12.1 10.2 10.9 200 91 4.4 10.8 8.6 11.8 270 64 4.4 6.8 4.6 11.8 400 46 3.1 3.5 1.9 7.9 -400 -38 23.3 17.4 8.7 46.4

( ADJUSTED SIZE DATA MESH MICRONS 1 2 3 4 70 +212 54.9 34.8 52.2 2.8 100 181 5.6 14.6 13.7 8.3 150 128 4.3 12.3 10.1 10.9 200 91 4.5 10.9 8.5 11.8 270 64 4.4 7.0 4.5 11.7 400 46 3.1 3.5 1.9 7.9 -400 -38 23.2 16.9 9.1 46.6

CYCLONE EFFICIENCY CURVE MESH MICRONS RECOVERY TO THE UNDERFLOW 70 +212 98.22 100 181 83.21 150 128 73.50 200 91 68.40 270 64 53.55 400 46 41.86 -400 -38 37.00

(

Page 126: An Investigation of Gold Recovery in the Grinding and Gravit y

,

i ,

1 f

Appendix A 113

JWBASIC output

BalI mill simulation results for total man

TITLE: mestoDwi

TAU PLUG FLOW = 1.00, TAU SMALL = 0.00, TAU large = 0.00

BREAK AGE FUNCTION

Size (Jlm) 725 0.02 513 0.02 0.02 363 0.02 0.02 0.02 256 0.02 0.02 0.02 0.03 181 0.02 0.02 0.02 0.03 0.03 128 0.02 0.02 0.02 0.03 0.03 0.05 91 0.02 0.02 0.02 0.03 0.03 0.05 0.09 64 0.02 0.02 0.02 0.03 0.03 0.05 0.09 0.19 46 0.02 0.02 0.02 0.03 0.03 0.05 0.09 0.19 0.44

Size(Jlm) Class Feed% Meas.Prod% Calc.Prod% Sel. FUIlC

1025 1 7.14 2.24 2.25 1.1567 725 2 9.47 3.73 3.75 1.2660 513 3 12.66 7.74 7.74 0.9146 363 4 12.66 10.27 10.29 0.7194 256 5 10.45 10.80 10.81 0.5554 181 6 13.68 14.63 14.62 0.3290 128 7 10.17 12.20 12.10 0.2587 91 8 8.55 10.84 10.84 0.1533 64 9 4.62 6.83 6.83 0.0947 46 10 1.91 3.46 3.48 0.1259

-

Page 127: An Investigation of Gold Recovery in the Grinding and Gravit y

Appcndix A 114

JWBASIC output

BalI mill simulation results for gold

TITLE: mestonwi

TAU PLUG FLOW = 1.00, TAU SMALL = 0.00, TAU large = 0.00

BREAKAGE FUNCTION

Size(pm) 725 0.02 513 0.02 0.02 363 0.02 0.02 0.02 256 0.02 0.02 0.02 0.03 181 0.02 0.02 0.02 0.03 0.03 128 0.02 0.02 0.02 0.03 0.03 0.05 91 0.02 0.02 0.02 0.03 0.03 0.05 0.09 64 0.02 0.02 0.02 0.03 0.03 0.05 0.09 0.19 46 0.02 0.02 0.02 0.03 0.03 0.05 0.09 0.19 0.44

Size(pm) Class Feed% Meas.Prod% Calc.Prod% Sel. Func 1025 1 1.86 0.58 0.59 1.1567 725 2 2.46 0.97 0.96 1.2816 513 3 3.29 2.01 2.00 0.9224 363 4 3.29 2.67 2.68 0.7194 256 5 2.72 2.81 2.82 0.5554 181 6 8.76 6.22 6.23 0.5398 128 7 7.53 7.56 7.56 0.3212 91 8 7.44 7.53 7.53 0.2880 64 9 5.41 6.25 6.25 0.2079 46 10 5.54 3.91 3.91 0.6960

Page 128: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix A 115

Fresh feed tonnage

Data Time Read Data Tonnage (st) (t/h)

13:19 32016.8 13:42 32066.3 117

Dec. 171987 13:57 32099.7 121 14:57 32145.0 124 14.36 32186.8 120 13:59 34129.3 14:13 34161.8 125

Dec.181987 14:39 ~j4215.6 113 15:03 34266.6 115 15:17 34299.8 129 15:32 34335.8 131

Average 122

........

Page 129: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

Appcndix n

Appendix B

Experimental Results of the 76 cm Knelson Concentrator

116

Page 130: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix D

Test 1 (April, 13, 1987): 76 cm Knelson concentratc

(19 cm Knelson rOllgher feed)

11i

Size Size Dlst. Streem "ass Yleld CUI. Y. Grade CUI. G. Unit Recov. CUI!. R. (",,) (l)

0-38 1.40

38-53 1.14

53-75 3.30

75-106 8.43

106-150 14.04

150-212 11.32

212-300 19.01

+300 33.76

AU 100.00

C

M1 , F

C

M1 M2 , F

C M1 Ml , F

C M1 Ml

(g) (1) (1) (oz/st) (oz/st) (oz) (1) (1)

0.41 1.28 1.28 14410.00 14410.00 18457.04 61. al 6I.al 1.10 3.44 4.72 240.69 4087.99 827.11 3.08 71.91

30.50 95.28 100.00 79.06 261.17 7533.05 28.09 100.00 32.01 100.00

1.31 2.30

3.39 5.68

261.11 26817.21 100.00

3.39 22946.14 22946.14 17617.80 81.43 81.43 9.01 426.11 8833.14 2425.09 2.54 al.97

3.10 7.66 16.73 81.19 4125.92 627.24 0.66 84.63 33.10 al.21 100.00 176.10 953.94 14664.12 15.37 100.00 40.41 100.00 953.94 95394.25 100.00

1.61 2.11 2.11 22993.38 22993.38 48575.44 61.04 61.04 8.50 11.15 13.27 1215.50 4683.59 13556.89 17.04 78.07

13.20 17.32 30.59 438.21 2279.51 7589.96 9.54 87.61 52.90 69.41 100.00 142.02 795.80 9858.10 12.39 100.00 76.21 100.00 795.80 79580.39 100.00

0.17 0.88 0.88 22299.44 22299.44 19681.96 43.94 43.94 20.40 20.70 21.58 646.48 1532.14 13379.52 29.87 13.81 31.60 32.06 53.64 177 .26 722.34 5682.68 12.69 86.50

, 45.10 46.36 100.00 130.47 447.93 6048.98 13.50 100.00 F 98.57 100.00 447.93 44793.14 100.00

C M1 M2 , F

c

0.41 0.48 0.48 19556.44 19556.44 9296.58 32.08 32.08 13.90 14.06 14.53 925.37 1534.74 13009.65 44.89 76.97 31.50 31.86 46.39 102.94 551.49 3279.67 11.32 88.28 53.00 53.61 100.00 63.34 289.81 3395.39 11.72 100.00 98.87 100.00 289.81 28981.29 100.00

0.58 0.58 0.58 19330.21 19330.27 11247.55 43.38 43.38 M1 10.40 10.43 11.02 1090.65 2054.13 "379.17 43.88 87.26 M2 , F

C M1 Ml

18.40 18.46 29.47 37.74 791.31 696.65 2.69 89.95 70.30 70.53 100.00 36.96 259.30 2606.63 10.05 100.00 99.68 100.00

0.81 8.20 6.40

0.87 8.20 6.40

259.30 25930.00 100.00

0.87 22504.28 22504.28 19584.60 77.68 77.68 9.07 336.59 2462.93 2760.87 10.95 88.64

15.41 65.30 1471.02 418.01 1.66 90.29 , 84.50 84.53 100.00 28.95 252.10 2447.01 9.71 100.00 F 99.97 100.00 252.10 25210.49 100.00

C M1 Ml , F

C M1 Ml , F

38.10 4.80 4.80 4130.75 4130.75 19838.85 81.30 81.30 28.50 3.59 8.40 283.02 7.484.20 1016.77 4.17 85.41

144.70 18.24 26.64 61.75 825.29 1126.34 4.62 90.08 582.00 73.36 100.00 32.98 244.02 2419.56 9.92 100.00 793.30 100.00 244.02 24401.52 100.00

51.38 2.18 2.18 8555.02 8555.02 18659.75 61.61 61.61 210.05 8.92 11.10 718.63 2258.72 6408.13 21.16 82.76 439.01 18.64 zeI.14 95.94 903.16 1788.04 5.90 88.67

1655.12 70.26 100.00 48.85 302.88 3432.54 11.33 100.00 2355.56 100.00 302.88 30288.46 100.00

Page 131: An Investigation of Gold Recovery in the Grinding and Gravit y

r

î

l

Appcndix B 118

Test 1 (April, 13, 1987)

71lrm Knelson feed (test 1 double sluice concentrate) Sin Size Dlst. Streem Na.1 Yield CUI. J. Gr8de CW1. G. Unit Recoy. Cun. R. (un) (X) (g) (X) (X) (oz/lt) (oz/lt) (oz) (X) ua

0-36 15.89

38·53 7.71

53-75 5.30

75-106 6.09

106-150 12.42

150-212 13.00

212-300 13.55

+300 26.02

AU 100.00

C M1 M2 T F

C M1 M2 T F

C

M1 M2 T

F

C M1

"2 T F

c

"' "2 T

F

C

M1

"2 T F

C M1

"2 T F

C M1 M2 T F

0.30 0.30 0.30 51.04 51.04 15.45 44.22 44.22

1.30 1.31 1.61 3.26 12.22 4.28 12.24 56.46

4.00 4.04 5.65 0.73 4.01 2.95 8.43 64.90

93.50 94.35 100.00 0.13 0.35 12.27 35.10 100.00

99.10 100.00 0.35 34.94 100.00

0.50 2.80

0.52 2.89

0.52 106.75 106.75 55.03 25.22 25.22 3.40 4.36 19.89 12.64 5.79 31.01

67.30 69.31 72.78 26.40 27.22 100.00 97.00 100.00

2.06 0.29 2.f8

2.89 142.65 65.37 96.38 2.18 7.89 3.62 100.00

218.21 100.00

0.70 0.70 0.70 16.67 16.67 11.74 9.43 9.43 3.00 3.02 3.72 3.26 5.80 9.84 7.90 17.34

82.30 82.80 86.52 1.09 1.30 90.50 72.70 90.04 13.40 13.48 100.00 99.40 100.00

0.50 0.52 0.52 4.90 5.07 5.59

68.10 10.50 76.09 23.10 23.91 100.00 96.60 100.00

0.92 1.24

7.56 4.50 0.64 0.21 0.77

1.24 12.40 9.96 100.00 124.48 100.00

7.56 3.91 5.07 5.07 4.78 22.83 29.58 34.65 0.95 45.40 58.84 93.49 0.77 5.02 6.51 100.00

77.16 100.00

0.30 0.31 0.31 31." 31.11 9.50 16.36 16.36 3.60 3.67 3.97 2.64 4.83 9.68 16.66 33.01

71.00 72.30 76.27 0.50 0.72 36.08 62.09 95.10 23.30 23.73 100.00 98.20 100.00

0.12 0.58

0.58 2.85 4.90 100.00 58.11 100.00

0.70 0.70 0.70 40.00 40.00 28.06 56.'l 56.23 11.90 11.92 12.63 0.54 2.73 6.44 12.90 69.13 66.50 66.63 79.26 0.20 0.60 13.33 26.71 95.84 20.70 20.74 100.00 0.10 0.50 2.07 4.16 100.00

99.80 100.00 0.50 49.90 100.00

0.40 0.40 0.40 35.00 35.00 14.01 22.27 22.27 3.80 3.80 4.20 6.56 9.27 24.95 39.66 61.93

19.10 19.12 23.32 0.25 1.88 4.78 7.60 69.53 76.60 76.68 100.00 99.90 100.00

0.25 0.63

0.63 19.17 30.47 100.00 62.92 100.00

3.45 0.61 0.61 110.00 170.00 103.54 73.27 73.27 23.00 4.06 4.67 5.00 26.52 20.30 14.37 87.63 90.00 15.89 20.56 0.35 6.29 5.56 3.94 91.57

450.00 79.44 100.00 0.15 1.41 11.92 8.43100.00 566.45 100.00 1.41 141.32 100.00

C 24.56 0.50 0.50 82.68 82.68 41.23 44.48 44.48

M1 220.58 4.48 4.98 3.19 11.15 14.27 15.40 59.87 HZ 1923.69 ]9.05 44.03 0.70 1.88 27.35 29.51 89.38

T 2756.87 55.97 100.00 0.18 C.93 9.84 10.62 100.00

F 4925.70 100.00 0.93 92.69 100.00

Page 132: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix D 119

Test 1 (April, 13, 198i)

Four 76cm Knelson tails combincd

Size Size Dist. Stream Yield CUII. Y. Grade CUII. G. Unit Recov. Cun. R. (l1li) (X) (X) (X) (oz/st) (oz/st) (oz) (X) (X)

C 0.40 0.40 4.26 4.26 1.69 16.42 16.42 0·38 18.14 M1 4.26 4.65 1.14 1.41 4.87 47.48 63.90

T 95.34 100.00 0.04 0.10 3.70 36.10 100.00

C 0.49 0.49 4.211 4.20 2.07 9.53 9.53 M1 3.17 3.66 1.15 1.56 3.64 16.77 26.30

38·53 4.33 M2 16.20 19.86 0.47 0.67 7.58 34.88 61. 18 T 80.14 100.00 O. " 0.22 8.44 38.82 100.00

C 0.63 0.63 3.68 3.68 2.32 8.64 8.64 M1 4.05 4.68 0.82 1.20 3.32 12.37 21.01

53·75 5.71 M2 23.89 28.57 0.40 0.53 9.48 35.37 56.37 T 71.43 100.00 0.16 0.27 11.70 43.63 100.00

C 1.90 1.90 3.56 3.56 6.77 19.10 19.10 M1 8.10 10.00 0.87 1.38 7.05 19.90 39.00

75·106 9.19 M2 22.76 32.76 0.43 0.72 9.78 27.59 66.59 T 67.24 100.00 0.18 0.35 11.84 33.41 100.00

C 0.85 0.85 1.78 1.78 1.51 4.34 4.34 M1 6.32 7.17 0.89 0.99 5.61 16.09 20.43

106·150 10.41 M2 39.54 46.71 0.40 0.49 15.6'; 44.86 65.28 T 53.29 100.00 0.23 0.35 12.1 1 34.72 100.00

C 1.27 1.27 1.52 1.52 1.93 5.76 5.76 M1 10.93 12.20 1.23 1.26 13.49 40.28 46.03

150·212 14.79 M2 14.83 27.02 0.49 0.84 7.27 21.70 67.73 T 72.98 100.00 0.15 0.33 10.81 32.27 100.00

C 0.76 0.76 6.93 6.93 5.27 11.73 11. 73 M1 4.80 5.56 1.90 2.59 9.11 20.29 32.03

212·300 14.29 M2 18.54 24.10 0.59 1.05 10.96 24.43 56.46 T 75.90 100.00 0.26 0.45 19.54 43.54 100.00

C 1.20 1.20 7.10 7.10 8.55 35.73 35.73 M1 7.28 8.48 0.49 1.43 3.58 14.95 50.68

+300 23.14 M2 11.42 19.90 0.19 0.72 2.14 8.92 59.60 T 80.10 100.00 0.12 0.24 9.fJ7 40.40 100.00

C 0.85 0.85 4.26 4.26 3.62 13.25 13.25 M1 6.20 7.05 1.02 1.41 6.33 23.17 36.42

All 100.00 M2 15.58 22.63 0.42 0.73 6.48 23.74 60.17 T 77.37 100.00 0.14 0.27 10.87 39.83 100.00

........

Page 133: An Investigation of Gold Recovery in the Grinding and Gravit y

. 1 .

r

Appendix n

Size Size Dist. Stre_

(L.fII) (X)

0·38 15.61

38-53 3.97

53-75 4.96

75-106 8.01

106-150 10.52

150-212 14.39

212-300 15.34

+300 27.19

AU 100.00

C

Ml r F

C

Ml M2 r F

C

Ml M2 T

F

C

Ml M2 T F

C

Ml M2 T

F

C

M1 M2 T

F

C

Ml M2 T

F

C

M1 M2 T

F

C

Ml M2 T

F

Test 1 (April, 13, 1987)

76cm Knelson tails # 1

120

Mess (II)

Yield CL.fII. Y. Grade CL.fII. G. Unit Recov. Cun. R.

(X) (X) (oz/st) (oZ/st) (oz) (X) (X)

0.46 0.46 0.46 3.29 3.32 3.78

95.39 96.22 100.00 99.14 100.00

0.55 0.60 0.60 2.65 2.91 3.52

13.10 14.41 17.92 74.64 82.08 100.00 90.94 100.00

0.91 0.91 0.91 3.49 3.51 4.42

21.37 21.47 25.89 73.75 74.11 100.00 99.52 100.00

0.73 0.73 4.20 4.22

33.99 34.12 60.69 60.93 99.61 100.00

0.53 3.96

0.53 3.97

0.73 4.95

39.07 100.00

0.53 4.50

38.31 38.38 42.87 57.03 57.13 100.00 99.83 100.00

0.67 0.67 0.67 4.90 4.90 5.58

19.75 19.77 25.35 74.58 74.65 100.00 99.90 100.00

0.50 0.50 0.50 3.85 3.85 4.35

16.43 16.42 20.77 79.26 79.23 100.00

100.04 100.00

1.90 0.66 0.66 23.50 8.12 8.78 37.20 12.86 21.64

226.70 78.36 100.00 289.30 100.00

14.11 117.58 400.64

1787.67

0.61 /).61 5.07 5.68

17.27 22.95 77.05 100.00

2320.00 100.00

6.66 5.10 0.01 0.21

7.69 2.20 2.18 0.17 0.56

3.21 1.00 0.42 0.58 0.58

5.89 3.40 0.66 0.15 0.50

5.78 1.66 0.27 0.45 0.46

6.09 3.90 0.49 0.41 0.63

4.67 4.58 0.20 0.75 0.82

2.66 0.32 0.28 0.21 0.24

4.77 2.18 0.43

0.31 0.45

6.66 3.09 14.74 14.74 5.29 16.91 80.67 95.41 0.21 0.96 4.59 100.00

20.96 100.00

7.69 4.65 8.29 8.29 3.15 6.42 11.45 19.74 2.37 31.46 56.11 75.85 0.56 13.54 24.15 100.00

56.07 100.00

3.21 2.93 5.05 5.05 1.46 3.51 6.05 11.10 0.60 9.02 15.53 26.63 0.58 42.61 73.37 100.00

58.07 100.00

5.89 3.77 1.05 0.50

5.78 2.14

4.32 8.60 8.60 14.34 28.58 37.18 22.38 44.61 81.79 9.14 18.21 100.00

50.18 100.00

3.07 6.70 6.70 6.57 14.35 21.05

0.47 10.44 22.80 43.86 0.46 25.71 56.14 100.00

45.79 100.00

6.09 4.09 6.48 6.48 4.16 19.11 30.31 36.79 1.30 9.63 15.27 52.06 0.63 30.24 47.94 100.00

63.06 100.00

4.67 2.33 2.84 2.84 4.5917.6321.4324.26 1.12 3.28 3.99 28.26 0.82 59.03 71.74 100.00

82.27 100.00

2.66 1.75 7.28 7.28 0.50 2.60 10.83 18.10 0.37 3.60 14.99 33.10 0.24 16.06 66.90 100.00

24.01 100.00

4.77 2.90 6.39 6.39 2.46 11.07 24.36 30.75 0.93 7.46 16.41 47.16 0.45 24.01 52.84 100.00

45.44 100.00

,

Page 134: An Investigation of Gold Recovery in the Grinding and Gravit y

........

Appendix n

Size Size Dlst. Stream (lII1) (X)

0-38 16.55

38-53 3.98

53-75 5.31

75-106 8.60

106-150 11.01

150-212 14.57

212-300 14.60

+300 25.37

All 100.00

C

M1 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

f

C

M1 M2 T

C

M1 M2 T

F

C

M1 M2 T

Test 1 (April, 13, 1987)

7fkm Knc>lson tails #2

121

Mass Yield ClII1. Y. Grade Curn. G. UnIt Recov. Cum. R.

(g) (X) (X) (oz/st) (oz/st) (oz) 0:> cr.>

0.56 3.67

94.85 99.08

0.57 0.57 3.70 4.27

95.73 100.00 100.00

0.63 2.82

0.67 2.99

0.67 3.66

17.95 19.06 22.72 72.n n.28 100.00 94.17 100.00

1.34 1.35 1.35 5.06 5.12 6.47

24.80 25.07 31.54 67.72 68.46 100.00 98.92 100.00

1.26 6.94

43.43 47.12 98.75

1.54 6.85

45.70 44.96 99.05

1.58

7.78 17.11 73.15

1.28 7.03

43.98 47.72

100.00

1.55 6.92

46.14 45.39

100.00

1.59 7.81

17.18 73.43

99.62 100.00

1.28

8.30 52.28

100.00

1.55 8.47

54.61 100.00

1.59 9.40

26.57 100.00

0.92 0.92 0.92 4.46 4.48 5.41

12.24 12.30 17.70 81.91 82.30 100.00 99.53 100.00

2.90 0.48 0.48 32.40 5.36 5.84 69.20 11.45 17.29

499.90 82.71 100.00 604.40 100.00

23.04 132.43 435.43

1807.19

0.96 5.52

18.16 75.36

2398.10 100.00

0.96 6.48

24.64 100.00

3.91 0.36 0.04 0.07

4.17 0.62 0.19 0.12

0.18

2.72 0.58 0.29 0.12

0.22

1.62 0.80 0.35 0.13

0.29

2.18 1.08 0.37 0.14 0.34

2.59 2.25

0.53 0.16 0.43

6.18 3.14 0.74 0.11 0.38

16.12 0.73 0.21

0.14

0.26

4.81 1.33 0.39 0.11 0.28

3.91 0.83 0.07

4.17 1.27

0.36 0.18

2.72

1.03 0.44 0.22

1.62 0.93 0.44

0.29

2.18

1.28 0.51 0.34

2.59

2.31 1.16

0.43

6.18

3.66 1.63

0.38

16.12

1.99 0.81

2.21 1.33 3.83 7.37

2.79

1.&

29.97 18.09 51.94

100.00

15.90 10.58

29.97 48.06

100.00

15.90

26.49 3.62 20.65 47.14

9.27 52.86 100.00 17.54 100.00

3.68 16.64 16.64

2.97 13.40 30.05

7.27 32.84 62.89 8.22 37.11 100.00

22.14 100.00

2.07

5.62 15.54

b.20 29.43

3.39 7.47

17.06

6.35

34.28

4.11 17.57

9.10

11.75

7.02

19.10

52.80

21.07

100.00

9.89

21.79

49.78

18.54 100.00

9.66 41.32

21.40

27.62

42.53 100.00

5.71

14.07

9.10

9.05

37.94

7.73

3.91 2.40

15.06

37.09

23.99

23.86 100.00

30.18

15.27

9.38

7.02

26.12 78.93

100.00

9.89

31.68

81.46

100.00

9.66 50.97

72.38

100.00

15.06

52.15

76.14

47.85

30.18 45.44

54.82

0.26 11.58 45.18 100.00

4.81 1.85 o.n 0.28

25.63 100.00

4.62

7.37

7.01 8.64

16.71

26.65

25.37

31.27

27.64 100.00

16.71

43.36

68.73

100.00

Page 135: An Investigation of Gold Recovery in the Grinding and Gravit y

Appcndix n

SlZe

(~)

Size Dlst. Stream

(X)

0-38 17.30

38-53 3.76

53-75 5.09

75-106 8.69

106-15iJ 11.95

150-212 15.34

212-300 15.02

+300 22.85

AU 100.00

C

Ml T

F

C Ml 142 T

F

C

Ml 142 T

F

C

Ml 142 T F

C

Ml 142 T F

C

Ml 142 T F

C Ml 142 T

F

C

Ml M2 T

F

C Ml M2 T

F

Test 1 (April, 13, 1987)

76cm Knelson tails #'J Mass Yleld

(X)

C~_ Y. Grade Cun_ G.

(g) (X) (Ol/St) (oz/st)

0.30 0_30 0_30 11.67 11.67 4.37 4.41 4.71

94.43 95.29 100.00 99.10 100.00

0.31 0.47 0.47 2.15 3.25 3.71 9.37 14.15 17.86

54.41 82.14 100.00 66.24 100.00

0.44 2.44

20.91 66.13

0.49 2.71

23.25 73.54

89.92 100.00

0.49 3.20

26.46 100.00

0.74 0.74 0.74 3.44 3.45 4.19

36.67 36. n 40.96 58.89 59.04 100.00 99.74 100.00

0.62 6.16

35.57 57.23 99.58

0.50 5.42

22.79 71.11

0.62 6.19

35.72 57.47

100.0a

0.50 5.43

22.83 71.24

0.62 6.81

42.53 100.00

0.50 5.93

28.76 100.00

99.82 100.00

0.58 4.81 8.37

84.71

0.59 0.59 4.88 5.47 8.50 13.97

86.03 100.00 98.47 100.00

8.90 28.20 39.20

325.60

2.21 7.02 9.75

81.02 401.90 100.00

7.08 64.39

247.69 1378.46 1697.62

0.42 3.79

14.59 81.20

100.00

2.21 9.23

18.98 100.00

0.42 4.21

18.80 100.00

0.40 0.06 0.11

7.53 0.75 0.29 0.14 0.22

9.61 1.38 0.40 0.14 0.28

3.26 0.89 0.41 0.16 0.30

1.18 0.88 0.48 0.19 0.34

0.88 1.24 0.50 0.10 0.26

0.51 1.82 0.38 0.10 0.21

6.30 0.46 0.19 0.12 0.29

5.06 0.88 0.41 0.11 0.21

1.12

0.11

7.53 1.60 0.56 0.22

9.61 2.64 0.67 0.28

3.26 1.31

0.50 0.30

1.18

0.91 0.55 0.34

0.88 1.21

0.6'5 0.26

0.51 1.68 0.89 0.21

6.30

1.86 1.00 0.29

5.06 1.30 0.61 0.21

122

UnIt (oz)

Recov. Cum. R.

(X) (X)

3.53 32.08 1.76 16.01 5.72 51. 91

11.01 100.00

3.52 16.34 2.43 11.29 4.10 19.03

32.08 48.09

100.00

16.34 27.64 46.66

11.50 21.56

53.34 100.00

4.70 3.74 9.30

10.30

100.00

16.77

13.35 33.17 36.71

28.04 100.00

2.42 3.07

15.07

8.06 10.23 50.23

16.77 30.12 63.29

100.00

8.06 18.29 68.52

9.45 31.48 100.00 30.01 100.00

0.73 5.44

17.17 10.92 34.':7

0.44 6.73

11.42 7.12

2.14 15.89 50.11 31.86

100.00

1.71 26.18 44.40 27.71

25.71 100.00

1.43 42.29 15.36

2.14 18.03 68.14

100.00

1.71 27.90

72.29 100.00

1.43

43.72 59.08

0.30 8.89 3.23 8.60 40.92 100.00

21.02 100.00

13.94 3.23 1.85 9.72

48.50 11.23 6.45

33.82 28.74 100.00

2.11 3.34

5.99 9.07

20.52

18.68 18.80

27.12 35.40

100.00

48.50 59.73

66.18 100.00

18.68 37.48 64.60

100.00

Page 136: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix n

Size (un)

Slze Oist. Stream (X)

0-38 19.99

38-53 4.88

53-75 6.40

75-106 10.03

106-150 12.30

150-212 14.73

212-300 13.51

+300 18.15

TOTA 100.00

C

Ml T

F

C

Ml M2 T

F

C

Ml M2 T

F

C

Hl M2 T

F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T F

C

Ml M2 T

F

Test 1 (April, 13, 1987)

Four 76cm J\nf'l"on tails #4 Mass (g)

Yleld

ex>

0.34 0.34

4.63 4.69 93.66 94.96

98.63 100.00

0.33 0.39

2.79 3.28

13.84 16.25

68.19 80.08 85.15 100.00

0.27 0.27

4.31 4.32

24.15 24.22

CI.I11. Y.

eX)

0.34

5.04 100.00

0.39

3.66 19.92

100.00

0.27

4.59

28.81

70.99 71.19 100.00

99.72 100.00

1.70 3.09 3.09

6.57 11.93 15.01

1.27 45.54

55.08

0.70 6.66

2.31 82.68

100.00

0.70

6.67

17.32 100.00

0.70

7.38

38.36 38.44 45.82

54.06 54.18 100.00

99.78 100.00

1.62 1.64 1.64

16.55 16.75 18.39

8.31 8.41 26.80

72.32 73.20 100.00

98.80 100.00

1.13 0.83

7.02 5.15

37.07 27.21

91.03

136.25

3.80 25.80

37.60

249.50

66.81

100.00

1.20

8.15

11.87

78.78

316.70 100.00

1.07

0.83

5.98

33.19

100.00

1.20

9.35

21.22 100.00

1.07 18.81

140.90

252.05

1341.88

8.03 9.11

14.37 23.48

76.52 ,00.00

1753.64 100.00

Grade CI.JI1. G.

(oz/st) (oz/st)

0.43

1.11 0.04

0.09

0.88 US 0.33

0.07 0.15

1.08

0.75 0.45

0.09

0.21

3.86

0.67

0.48 0.20

0.38

0.83

0.68 0.40

0.23 0.33

0.63

0.80 0.44

0.10

0.25

9.96

0.89

0.65 0.31

0.51

6.65 0.47

0.15

0.09

0.21

3.77 0.76

0.43

0.13

0.26

0.43

1.06 0.09

0.88 1.31

0.51 0.15

1.08

0.77

0.50

0.21

3.86

1.32

1.21 0.38

0.83

0.69

0.45

0.33

0.63

0.79

0.68

0.25

9.96

2.15

0.92

0.51

6.65 1.26

0.64

0.21

3.77 1.12

0.70 0.26

Unit

(oz)

Recov. Cum. R.

(%) (%)

0.15 1.70 1.70

5.19 59.91 61.61 3.32 38.39 100.00

8.66 100.00

0.34 2.23 2.23 4.45 29.04 31.27

5.33 34.77 66.05 5.21 33.95 100.00

15.33 100.00

0.29 1.41 1.41

3.23 lS. 57 16.99 10.80 52.10 69.09

6.41 30.91 100.00 20.73 100.00

11 .91 31. 77 31. 77

7.94 21.18 52.95

1.11 2.95 55.90 16.54 44.10 100.00

37.50 100.00

0.58 1. 78 1. 78 4.53 13.82 15.60

15.49 47.22 62.83

12.19 37.17 100.00 32.79 100.00

, .04

13.42 "3.68

7.32

4.08 4.08

52.70 56.78 14.47 71.25

28.75 100.00

25.46 100.00

8.26

4.60

17.68

20.38

50.92

7.97

3.83

1.78

7.09

16.22 16.22

9.04 25.25

34.73 59.98

40.02

100.00

38.57 18.52

8.61

34.30

100.00

38.57 57.09

65.70

100.00

20.67 100.00

4.05

6.11

6.22

9.61

15.58 15.58

23.51 39.09

23.95 63.03

36.97 100.00

25 99 100.00

Page 137: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix B

Si~e Slze Dist. Stream

(un) 0"

0-38 13.82

38-53 5.37

53-75 10.19

75-106 18.19

106-150 22.28

150-212 30.15

Ali 100.00

C

Mf M2 M3 T F

C

Ml M2 M3 T

F

C

Ml M2 M3 T F

C

Ml M2 M3 T F

C Ml M2 M3 T

F

C

Ml M2 M3 T F

c Ml M2 M3 T F

Test 1 (July, 1987)

76cm Knelson Feed

124

Mass (g)

Yleld Cum. Y. Grade Cun. G. Unit

(oz) Recov. Cum. R.

(X) (X) (oz/st) (oZ/st) (X) (X)

0.19 1.60 0.94

0.19 1.62 0.95

0.19 118.24 118.24 22.75 8.86

3.68

29.55 29.55 1.81 2.77

4.70 4.76 7.53

5.47 3.86 0.99 0.40 0.77

91.30 92.47 100.00 98.73 100.00

0.13

6.30 38.60 7.80

0.23 11.36

0.23 11.59

69.57 81.16 14.06 95.22

2.65 4.78 100.00

666.65 3.19 2.38 1.98 1.65 3.94 55.48 100.00

0.40 17.90 55.80 5.62

18.80

0.41 18.17 56.64 5.70

19.08

0.41 236.52 18.57 4.12 75.21 2.51 80.92

100.00 98.52 100.00

1.56 0.88 3.39

0.42 5.16

44.80 29.80 19.30 99.48

2.13 9.87

53.20 119.80 43.70

228.70

3.07 12.73

233.30 34.90 26.10

0.42 0.42 139.87 5.19 5.61 1.92

45.03 50.64 1.28 29.96 80.60 0.82 19.40 100.00 0.59

100.00 1.63

0.93 0.93 152.00 4.32 5.25 1.42

23.26 28.51 1.34 52.38 80.89 19.11 100.00

100.00

0.99 0.99

4.11 75.23 11.25 8.42

5. la 80.33 91.58

100.00

0.92 0.87 2.44

310.10 100.00

155.51 1.09 0.62 0.61 0.55 2.17

6.91 60.70

476.00 234.46 263.63

1041. 70

0.66 5.83

0.66 165.85 6.49 2.63

45.69 52.18 22.51 74.69

1.21 0.90 0.57 2.15

25.31 100.00

100.00

17.44 12.76

11.51 4.n

41.07 45.84

5.32 4.71 6.12 51.96 0.77 36.99 48.04 100.00

77.00 100.00

666.65 16.60

156.21 36.22

39.67 9.20

39.67 48.87

4.41 165.59 4.05 27.84

42.06 90.93 7.07 98.00

3.94 7.88 2.00 100.00 393.74 100.00

236.52 9.20 4.16 3.98 3.39

96.03 74.86

142.16 8.90

16.79

28.35 22.10 41.97 2.63 4.96

338.74 100.00

139.87 59.05 12.30 9.96 2.50 57.64 1.88 24.56 1.63 11.45

162.67

152.00 141.57 28.15 6.13 6.27 31. 17 2.81 2.44

155.51 31.09 2.55 2.31 2.17

48.19 16.62

243.68

153.96 4.47

46.6<. 6.87 4.63

36.30 6.12

35.44 15.10

7.04

100.00

58.09 2.51

12.79 19.78 6.82

100.00

71.09 2.07

21.54 3.17 2.14

216.57 100.00

165.85 19.31 3.46 2.69 2.15

110.01 15.32 55.37 20.33 14.43

215.46

51.06 7.11

25.70 9.43 6.70

100.00

28.35 50.45 92.42 95.04

100.00

36.30 42.43 77.86 92.96

100.00

58.09 60.61 73.40 93.18

100.00

71.09 73.1S 94.69 97.86

100.00

51.06 58.17 83.87 93.30

100.00

Page 138: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix n 125

Test 2 (July, 19Si)

.'" Three 76cm Knelson tails combined (#2, #3, #4)

Size Size Dist. Stream Yield CI.III. Y. Grade Cun. G. UnIt Recov. Cun. R. Cun) CX) CX) CX) CoZ/st) (oz/st) (oz) (~) (~)

C 1.37 1.37 199.02 199.02 272.66 80.19 80.19 Ml 5.42 6.79 3. " 42.64 16.86 24.71 104.90

0-38 13.82 "'2 43.96 50.75 0.32 5.98 14.07 20.62 125.52 T 49.25 100.00 0.74 3.40 36.45 53.43 178.95

C 3.65 3.65 19.25 19.25 70.26 60.26 60.26 M1 13.01 16.66 0.53 4.63 6.90 5.91 66.17

38-53 5.37 M2 37.06 53.72 0.29 1.64 10.75 9.22 75.39 T 46.28 100.00 0.62 1.17 28.69 24.61 100.00

C 2.66 2.66 12.00 12.00 31.92 46.79 46.79 Ml 11.68 14.34 0.67 2.77 7.83 1 :1 58.27

53-75 10.19 M2 37.85 52.19 0.31 0.99 11.73 1i .20 75.47 T 47.81 100.00 0.35 0.68 16.73 24.53 100.00

C 1.82 1.82 7.81 7.81 14.21 28.31 28.31 M1 8.75 10.57 0.52 1.78 4.55 9.06 37.37

75-106 18.19 M2 38.17 48.74 0.30 0.62 11.45 22.81 60.18 T 51.26 100.00 0.39 0.50 19.99 39.82 100.00

C 2.76 2.76 4.86 4.86 13.41 29.48 29.48 M1 10.79 13.55 0.76 1.60 8.20 18.02 47.51

106-150 22.28 M2 28.60 42.15 0.39 0.78 11. 15 24.52 72.03 T 57.85 100.00 0.22 0.45 12.73 27.97 100.00

C 2.37 2.37 3.74 3.74 8.86 26.24 26.24 Ml 5.67 8.04 1.07 1.86 6.07 17.96 44.19

150-212 30.15 M2 29.76 37.80 0.32 0.65 9.52 28.19 72.38 T 62.20 100.00 0.15 0.34 9.33 27.62 100.00

C 2.32 2.32 22.87 22.87 53.06 58.96 58.96 M1 8.34 10.66 0.96 5.73 8.01 8.90 67.85

All 100.00 M2 34.21 44.87 0.33 1.61 11.29 12.54 80.40

T 55.13 100.00 0.32 0.90 17.64 19.60 100.00

~

Page 139: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Appendix D 126

Test 2 (July, 1987) 76 cm Knelson tan #1

Size Size Dist. Stream Mass Yield Cum. Y. Grade Cun. G. Unit Recov. Cun. R. e un) (X)

0-38 13.82

38-53 5.37

53·75 10.19

75-106 18.19

106·150 22.28

150'212 30.15

ALI 100.00

C MI M2 r f

c MI M2 T

F

C

MI M2 T

f

C

MI M2 T

F

C

MI M2 T

F

c MI M2

(g) eX) ex) (oZ/st) (oZ/st) (oz) (X) ex)

1.16 4.37 4.37 118.88 118.88 519.57 72.72 72.72 3.40 12.81 17.18 2.55 32.14

10.68 40.24 57.42 1.56 10.71 Il.30 42.58 100.00 2.34 7.14 26.54 100.00 7.14

32.67 62.57 99.63

4.57 77.30 8.76 86.05

13.95 100.00 714.45 100.00

0.59 3.29 6.15

1.85 10.34 19.32

1.85 709.75 709.75 1315.59 81.09 2.74 3.25

81.09 83.83 87.08

12.19 4.30 111.57 44.45 31.51 2.73 44.83 52.75

21.80 68.49 100.00 3.06 16.22 209.58 12.92 100.00 31.83 100.00 16.22 1622.36 100.00

1.71 4.18 4.18 97.89 97.89 409.57 73.17 73.17 5.05 12.36 16.54 5.34 28.75 65.92 Il.78 84.95

12.00 29.36 45.90 1.80 11.51 52.85 9.44 94.39 22. Il 54.10 100.00 0.58 5.60 31.38 5.61 100.00 40.87 100.00 5.60 559.72 100.00

3.00 3.84 3.84 44.96 44.96 172.48 63.94 63.94 17.94 22.94 26.78 0.76 7.09 17.44 6.46 70.41 19.38 24.79 51.57 2.40 4.84 59.49 22.05 92.46 37.87 48.43 100.00 0.42 2.70 20.34 7.54 100.00 78.19 100.00 2.70 269.75 100.00

3.44 3.39 3.39 20.05 20.05 67.93 62.23 62.23 13.99 13.78 17.17 30.76 30.30 47.46 53.34 52.54 100.00

101.53 100.00

5.57 3.99 3.99 12.40 8.89 12.89 57.83 41.47 54.36

1.16 0.53 0.18 1.09

4.99 0.86 0.22

4.89 15.98 2.11 16.06 1.09 9.19

109.17

4.99 19.93 2.14 7.65 0.68 9.12

14.64 14.71 8.42

100.00

47.51 18.23 21.75

76.87 91.58

100.00

47.51 65.74 87.49

T 63.65 45.64 100.00 0.12 0.42 5.25 12.51 100.00 F 139.45 100.00 0.42 41.95 100.00

C 39.45 3.79 3.79 62.49 62.49 236.66 71.96 71.96 MI M2 T

F

140.73 347.44 514.08

1041.70

13.51 33.35 49.35

100.00

17.30 50.65

100.00

1.68 1.02 0.72 3.29

14.99 22.65 5.79 34.01 3.29 35.55

328.87

6.89 10.34 10.81

100.00

78.85 89.19

100.00

1 '~

Page 140: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix n

Size Size Dist. Stre8m (un) (X)

0·38 13.82

38·53 5.37

53·75 10.19

75·106 18.19

106-150 22.28

150-212 30.15

All 100.00

C

M1 M2 T F

C M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T F

C M1 M2 T F

C M1 M2 T F

C

M1 M2 T

F

127

Test 2 (July, 1987) 76 cm Knelson tait #2

Mass Yield CUI!. Y. Grade Cun. G. Unit Recov. Cum. R

(g) (X) (X) (oz/st) (oz/st) (oz) (%) (%)

0.23 1.01 1.01 681.76 681.76 688.94 82.70 82.70 0.71 3.12 4.13 4.69 170.35 14.61 1.75 84.46 5.58 24.52 28.65 0.63 25.09 15.32 1.84 86.30

16.24 71.35100.00 1.60 8.33114.17 13.70100.00 22.76 100.00 8.33 833.05 100.00

0.60 2.44 2.44 1.10 4.47 6.90 6.98 28.34 35.24

15.95 64.76 100.00 24.63 100.00

0.65 1.35 1.35 4.30 8.95 10.30

13.43 27.94 38.24 29.68 61.76 10U.00 48.06 100.00

2.22 1.99 1.99 13.15 11.82 13.81 52.90 47.53 61.34 43.02 38.66 100.00

111.29 100.00

6.30 4.24 4.24 16.51 11.10 15.34 35.21 23.68 39.02 90.68 60.98 100.00

148.70 100.00

3.50 2.34 2.34 8.70 5.82 8.16

40.26 26.92 35.07 97.11 64.93 100.00

149.57 100.00

7.44 0.59 0.42 0.47 0.63

9.05 0.28 0.31 0.30 0.42

3.10 0.27 0.11 0.45 0.32

O.n 0.52 0.19 0.29 0.31

1.22 0.76 0.46 0.25 0.36

7.44 18.12 28.80 28.80 3.00 2.61 4.15 32.95 0.92 11.76 18.69 51.64 0.63 30.44 48.36 100.00

62.93 100.00

9.05 12.24 29.29 29.29 1.43 0.61

2.51 5.99 35.28 8.52 20.39 55.67

0.42 18.53 44.33 100.00 41 . 79 100. 00

3.10 0.68 0.24

6.17 19.30 19.30 3.19 9.97 29.27 5.23 16.35 45.62

0.32 17.40 54.38 100.00 31.99 100.00

0.77 3.26 10.45 10.45 0.59 5.71 18.49 28.94 0.35 4.50 14.41 43.35 0.31 17.68 56.65 100.00

31.22 100.00

1 .22 2.84 7.92 7.92 0.89 4.42 12.32 20.25 0.56 12.38 34.51 54.76 0.36 16.23 45.24 100.00

35.88 100.00

25.22 82.91

2.42 2.42 41.38 41.38 100.16 68.42 68.42 7.96 10.38 0.71 10.19 5.62 3.84 72.26

310.38 29.80 40.18 623.20 59.82 100.00

1041.71 100.00

0.31 0.52 1.46

2.86 9.30 6.36 78.62 1.46 31.30 21.38 100.00

146.38 100.00

Page 141: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

Appendix n

Size (un)

0-38

Size Dilt_ Stream (X)

13.82

C M1 M2 T

f

Test 2 (July, 1987) 76 cm Knelson tait #3

Masi (g)

Yield

(X) Cum. Y. Grade Cum. G.

(X) (oz/st) (oz/st) Unit (oz)

128

Recov. CIJII. R. (X) (X)

0.20 0.61 0.61 115.69 115.69 70.09 72.89 72.89 2.06 6.24 6.85 1.15 11.28 7.15 7.43 80.32

17.84 54.04 60.89 0.22 1.46 11.89 12.36 92.68 12.91 39.11 100.00 0.18 0.96 7.04 7.32 100.00 33.01 100.00 0.96 96.17 100.00

C 1.30 5.18 5.18 12.60 12.60 65.23 61.62 61.62

38-53 5.37

53-75 10.19

75-106 18.19

106'150 22.28

150·212 30.15

All 100.00

M1 4.70 18.72 23.89 0.26 2.93 4.77 4.51 66.13 M2 T

F

C

Ml M2 T

F

C

M1 M2 T

f

C

M1 M2 T F

C

M1 M2 T f

C

Ml HZ T f

8.91 35.48 59.38 10.20 40.62 100.00 25.11 100.00

2.14 3.47 3.47 10.33 16.74 20.20 24.84 40.25 60.45 24.41 39.55 100.00 61.72 100.00

2.85 4.17

1.99 2.91

1.99 4.89

40.81 28.43 33.32 95.70 66.68 100.00

143.53 100.00

4.92 3.32 3.32 20.45 13.80 17.12 52.25 35.25 52.37 70.60 47.63 100.00

148.22 100.00

4.70 3.19 3.19 8.90 6.05 9.24

56.12 38.13 47.37 77.46 52.63 100.00

147.18 100.00

28.94 2.78 2.78 93.73 9.00 11.78

395.83 38.00 49.77 523.20 50.23 100.00

1041.10 100.00

0.28 0.64 1.06

6.52 0.42 0.25 0.36 0.54

5.94 0.50 0.43 0.26 0.42

2.86 0.70 0.25 0.09 0.32

3.40 1.16 0.28 0.09 0.33

8.29 0.72 0.28 0.18 0.49

1.35 9.86 9.32 75.44 1.06 26.00 24.56 100.00

105.87 100.00

6.52 22.61 41.91 41.91 1.47 7.03 13.03 54.95 0.66 10.06 18.65 73.60 0.54 14.24 26.40 100.00

53.94 100.00

5.94 11.78 27.76 27.76 2.70 1.44 3.39 31.15 0.76 12.23 28.80 59.95 0.42 17.00 40.05 100.00

42.45 100.00

2.86 9.49 29.65 29.65 1.12 9.66 30.17 59.82 0.53 8.81 21.53 87.35 0.32 4.05 12.65 100.00

32.01 100.00

3.40 10.84 32.59 32.59 1.93 7.01 21.08 53.67 0.60 10.68 32.09 85.76 0.33 4.74 14.24 100.00

33.27 100.00

8.29 23.02 46.64 46.64 2.51 6.49 13.15 59.79 0.81 10.60 21.49 81.28 0.49 9.24 18.72 100.00

49.36 100.00

j , j

1

i i i l i

Page 142: An Investigation of Gold Recovery in the Grinding and Gravit y

......

Appendix B 129

Test 2 (July, 1987) 76 cm Knelson tait #4

Size Size Di.t. Stre.m MI" Yield Cun. Y. Grlde Cun. G. Uni t Reco\(. Cum. R (un) (X)

0-38 13.82

38·53 5.37

53-75 10.19

75-106 18.19

106-150 22.28

150-212 30.15

AU 100.00

C

M1 M2 T

F

C

M1 M2 T

F

(g) (X) (X) (oz/st) (oz/st) (oz) (~) (%)

0.38 1.21

1.93 6.15

1.93 85.78 85.78165.80 76.99 76.99 8.09 3.71 23.32 22.83 10.60 87.60

9.56 48.63 56.71 8.51 43.29 100.00

19.66 100.00

1.06 3.49 3.49 4.38 14.43 17.92

12.81 42.21 60.13 12.10 39.87 100.00 30.35 100.00

0.30 0.28 2.15

3.58 14.59 6.77 94.37 2.15 12.12 5.63 100.00

215.34 100.00

28.31 28.31 98.88 66.51 66.51 0.70 6.08 10.10 6.80 73.31 0.26 1.99 10.97 7.38 80.69 0.72 1.49 28.71 19.31 100.00 1.49 148.66 100.00

C 2.17 2.90 2.90 15.94 15.94 46.28 52.65 52.65 M1 7.86 10.52 13.43 1.03 4.25 10.84 12.33 64.98 M2 T

F

C

M1 M2 T

F

C

Mt M2 T

F

C

Mt M2 T F

C Ml M2 T

F

31.09 41.61 55.04 0.34 1.29 14.15 16.10 81.08 33.59 44.96 100.00 0.37 0.88 16.64 18.92 100.00 74.71 100.00 0.88 87.90 100.00

2.43 1.64 1.64 11.83 11.83 19.37 30.73 30.73 15.04 10.14 11.78 0.67 2.22 6.79 10.78 41.50

56.88 73.97

148.32

2.58 13.57 41.25 91.38

148.78

2.94 8.06

40.29 97.93

38.35 50.13 49.87 100.00

100.00

1.73 1.73 9.12 10.85

27.73 38.58 61.42 100.00

100.00

1.97 1.97 5.40 7.37

27.00 34.37 65.63 100.00

149.22 100.00

0.37 0.46 0.63

11.76 0.95 0.57 0.25 0.60

5.53 1.19 0.27 0.13 0.33

0.81 0.63

11.76 2.67 1.16 0.60

5.53 2.35 0.72 0.33

14.19 22.51 64.01 22.69 35.99 100.00 63.05 100.00

20.39 34.07 34.07 8.62 14.40 48.46

15.80 26.40 74.86 15.05 25.14 100.00 59.86 100.00

10.89 32.87 32.87 6.41 19.35 52.22 7.29 22.02 74.24 8.53 25.76 100.00

33.11 100.00

21.14 2.03 2.03 21.83 21.83 44.29 54.35 54.35

85.44 8.20 10.23 359.60 34.52 44.75 575.52 55.25 100.00

1041.70 100.00

1.21 0.36 0.27 0.81

5.30 9.89 12.14 66.49 1.49 12.35 15.15 81.64 0.81 14.96 18.36 100.00

81.49 100.00

Page 143: An Investigation of Gold Recovery in the Grinding and Gravit y

Appcndix D 130

Test 3 (Dec., 1987, llpsi)

\. Four 7f'cm Knelson feeds combined

Size Size Dfst. Stre .. Yield Cun. Y. Grade CLIn. G. Unit Recev. CLIn. R.

(un) (X) (X) (X) (ez/st) (oz/st) (oz) (X) (%)

C 0.80 0.80 23.72 23.72 18.95 47.71 47.71 M1 5.18 5.98 1.29 4.29 6.70 '6.87 64.59

0-38 11.14 M2 9.34 15.32 0.23 1.81 2.14 5.40 69.99 T 84.68 100.00 0.14 0.40 11.92 30.01 100.00

C 1.34 1.24 16.27 16.27 19.82 30.36 30.36 M1 4.80 6.14 1.81 5.00 1.11 " .91 42.28

38-53 4_32 M2 12.21 18.35 1.18 2.46 12.81 19.13 62.00 T 81.65 100.00 0.33 0.65 24.80 38.00 100.00

C 0.97 0.97 38.25 38.25 37.02 45.36 45.36 M1 9.45 10.42 0.18 4.26 1.35 9.01 54.36

53-75 6.99 M2 18.32 28.14 0.51 1.91 10.39 12.13 67.10 T 11.25 100.00 0.38 0.82 26.86 32.90 100.00

C 0.99 0.99 30.53 30.53 30.36 39.53 39.53 M1 6.01 7.00 0.13 4.96 4.31 5.69 45.22

75-106 8.84 M2 29.02 36.03 0.68 1.51 19.61 25.53 70.74 T 63.91 100.00 0.35 0.11 22.48 29.26 100.00

C 1.02 1.02 40.22 40.22 41.20 58.08 58.08 M1 6.92 7.95 0.51 5.68 3.95 5.56 63.64

106-150 9.68 M2 26.11 34.11 0.50 1.71 13.01 18.34 81.97 T 65.89 100.00 0.19 0.71 12.19 18.03 100.00

C 0.91 0.91 28.86 28.86 26.20 50.82 50.82 M1 6.18 7.09 1.04 4.61 6.44 12.49 63.30

150-212 15.13 M2 22.51 29.66 0.44 1.44 10.01 19.42 82.72 T 10.34 100.00 0.13 0.52 B.91 17.2B 100.00

C 0.55 0.55 19.94 19.94 10.90 40.26 40.26 Ml 4.14 5.29 0.93 2.90 4.42 16.33 56.59

+212 31.30 M2 9.66 14.94 0.28 1.21 2.70 9.98 66.58 T 85.05 100.00 0.11 0.21 9. :5 33.42 100.00

C 0.80 0.80 26.91 26.91 21.60 45.86 45.86 M1 5.10 6.50 0.95 4.15 5.41 11.49 57.35

AH 100.00 M2 15.66 22.16 0.41 1.55 7.29 15.41 12.82 T 77.83 100.00 0.16 0.41 12.Bo 27.1B 100.00

Page 144: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix B

Size Size Dist. Stream (un) (X)

0-38 0.75

38-53 0.96

53-75 3.96

75-106 9.16

106·150 12.44

150-212 20.13

212-300 20.42

+300 32.19

AU 100.00

C M1

T F

C M1 M2 T F

C

Ml M2 T F

C

M1 M2 T F

C

M1 M2 T

F

C

Ml M2 T F

C

Ml M2 T F

C

M1 M2 T F

C

Ml M2 T F

Test 3 (Dec., 1987, llpsi)

76cm Knelson concentrate

131

M8 ••

(X) Yield

(X) CUI!. Y. Grade CUI! G.

(ozlst) Untt

(oz) Recov. Cum. R.

(X) (oz/lt) (t) (%)

4.85 20.38 20.38 3496.07 3496.07 71243.46 67.44 15.55

17.01 9.36 9.59

39.33 40.29

23.80 100.QO

1.70 9.31

10.46 9.22

5.54 30.34 34.08 30.04

30.69 100.00

6.04 24.46 63.07 33.82

4.74 19.20 49.51 26.55

127.39 100.00

5.54 22.82 51.73 19.15 99.24

7.30 21.35 31.40

5.58 22.99 52.13 19.30

100.00

7.31 21.37 37.44

59.71 100.00

1468.30 16422.43 1056.36 17970.17

417.58 445.98

1056.36 105636.07 100.00

5.54 20589.40 20589.40 114050.09 35.87 119.83 3280.43 36~5.06

69.96 107.28 1734.50 3656.43 100.00 870.25 1474.86 26144.39

77.33 2.46 2.48

17.73 1474.86 147485.97 100.00

4.74 12340.74 12340.74 58511.73 23.94 111.35 2533.17 2138.02 73.45

100.00 15.16 835.93 750.56

124.25 646.99 3298.64

90.44 3.30 1. 16 5.10

646.99 64698.94 '00.00

5.58 28.58 BO.70

100.00

7.31 28.68 66.12

4753.48 34.70 9.38

57.56 289.34

4753.48 26535.96 956.49 797.92 344.75 488.94 289.34 '''0.72

28933.54

2335.86 17070.53 613.05 512.75 270.76 320.12

91.71 2.76 1.69 3.84

100.00

93.71 2.81 1. 76

67.44 82.99

100.00

77.33 79.79 82.27

100.00

90.44 93.74 94.90

100.00

91.71 94.47 96.16

100.00

93.71 96.53 98.29

33.84 33.88 100.00 99.89 100.00

2335.86 23.99 B.55 9.22

182.16 182.16 312.35 1.71 100.00

1.33 8.65

39.98 49.87

1.33 8.66

40.05 49.95

99.83 100.00

1.73 8.37

1.73 8.36

18215.75 100.00

1.33 11394.66 11394.66 15180.70 10.00 81.61 1589.26 707.16

50.05 16.68 330.82 668.00 100.00 4.23 167.67 211.31

90.54 4.22 '5.98 1.26

167.67 16767.17 100.00

1.73 10.09

5194.33 68.93

5194.33 946.84

14.38 247.61

8975.42 576.21 434.90

86.33 5.54 4.18

90.54 94.76 98.74

100.00

86.33 91.87 96.05 30.28 30.24 40.33

59.n 59.67 100.00 100.12 100.00

6.88 103.97

103.97 410.52 3 95 100.00

50.50 3.64 3.64 63.70 4.59 8.22

238.40 11.17 25.39 1035.90 74.61 100.00 1388.50 100.00

5896.55 112.22

6.50 11.85

229.56

10397.05 100.00

5896.55 21445.84 2670.08 514.81 869.18 111.52 229.56 884.08

22956.24

93.42 2.24 0.49 3.85

100.00

117.25 358.94

1023.69 1751.99 3251.87

3.61 11.04

31.48 53.88

3.61 5626.31 5626.31 20286.52 89.89 3.57 1.81 4.73

100.00

14.64 46.12

100.00

72.96 12.98 19.81

225.68

1440.34 466.15 225.68

805.32 408.47

1067.26 22567.57 100.00

93.42 95.66 96.15

100.00

89.89 93.46 95.27

100.00

Page 145: An Investigation of Gold Recovery in the Grinding and Gravit y

............ -----------------Appcndix il

(~

Size Size Dist. Streem (l1li) (1)

C

0·311 17.12 Ml T

C Ml

311·53 4.05 M2 T

C Ml

53·75 6.65 M2 T

C

( Ml 75·106 8.52 M2

T

C Ml

106·150 9.78 M2 T

C Ml

150'212 14.59 M2 T

C Ml

+212 39.29 M2 T

C Ml

Ail 100.00 M2 T

{

Test 3 (Dec., 1987, Ilpsi)

Four 76cm Knclson tails combined

Yield CIIII. Y. Grade Cun. G. Unit

(X) (X) (oz/st) (oz/st) (OZ)

o.n 0.72 5.73 5.73 4.15 6.63 7.35 0.22 0.76 1.43

92.65 100.00 0.07 0.12 6.09

1.00 1.00 5.18 5.18 5.18 3.88 4.88 0.43 1.41 1.68

14.16 19.05 0.21 0.51 2.91 80.95 100.00 0.09 0.17 7.08

0.99 0.99 7.78 7.78 7.68 3.67 4.66 0.65 2.16 2.39

23.70 28.36 0.24 0.55 5.60 71.64 100.00 0.11 0.23 7.63

1.28 1.28 5.81 5.81 7.43 7.94 9.22 0.50 1.23 3.94

32.66 41.88 0.30 0.51 9.92 58.12 100.00 0.14 0.29 8.07

2.25 2.25 2.69 2.69 6.06 9.24 11.49 0.47 0.91 4.35

29.87 41.37 0.32 0.48 9.51 58.63 100.00 0.13 0.27 7.41

1.38 1.38 3.60 3.60 4.98 6.35 7.74 0.85 1.34 5.39

30.76 38.50 0.22 0.44 6.64 61.50 100.00 0.13 0.25 7.70

0.82 0.82 2.59 2.59 2.14 4.23 5.06 0.42 0.78 1.78 8.86 13.92 0.24 0.43 2.10

86.08 100.00 0.06 0.12 5.58

1.09 1.09 3.87 3.87 4.22 5.75 6.84 0.48 1.02 2.74

15.86 22.71 0.26 0.49 4.06 77.30 100.00 0.08 0.111 6.56

Recov. Cun. R. (~) m

35.58 35.58 12.21 47.79 52.21 100.00

30.75 30.75 9.97 40.72

17.24 57.96 42.04 100.00

32.97 32.97 10.27 43.24 24.02 67.25 32.75 100.00

25.30 25.30 13.43 38.73 33.79 72.52 27.48 100.00

22.18 22.18 15.90 38.08 34.80 72.88 27.12 100.00

20.14 20.14 21.83 41.97 26.87 68.84 31.16 100.00

18.45 18.45 15.38 33.83 18.08 51.91 48.09 100.00

24.00 24.00 15.60 39.60 23.08 62.68 37.32 100.00

132

Page 146: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix B

Test 3 (Dec., 1987, llpsi)

76cm Knelson feed #1

133

Size Size Dist. Stre.m Mass Yield CUI. Y. Grade Cum. G. UnIt Recov. Cum. R. (LIlI) (X)

0-]8 16.50

38-53 5.39

53-75 6.57

75-106 9.07

106-150 10.22

150-212 15.21

+212 37.03

AU 100.00

(g) (X) (X) (oz/st) (oz/st) (oz) (X) (X)

C

M1 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T F

1.33 0.89 0.89 4.30 2.89 3.79

143.10 96.21 100.00 148.73 100.00

1.58 1.06 1.06 8.26 5.53 6.59

25.37 16.99 23.58 114.13 76.42 100.00 149.34 100.00

1.45 0.97 0.97 10.86 7.27 8.24 45.60 30.52 38.76 91.49 61.24 100.00

149.40 100.00

4.52 1.51 1.51 24.92 8.34 9.85

106.48 35.63 45.49 162.90 54.51 100.00 298.82 100.00

5.41 1.80 1.80 19.12 6.37 8.17 96.55 32.15 40.31

179.26 59.69 100.00 300.34 100.00

22.48 22.48 20.10 69.61 69.61 0.37 5.59 1.08 3.73 73.34 0.08 0.29 7.70 26.66 100.00 0.29 28.88 100.00

30.37 30.37 32.13 44.88. 44.88 0.83 5.57 4.59 6.41 51.30 0.86 2.18 14.61 20.41 71.71 0.27 0.72 20.25 28.29 100.00 0.72 71.58 100.00

40.33 40.33 39.14 60.13 60.13 0.42 5.12 3.02 4.65 64.78 0.36 1.37 10.99 16.88 81.66 0.20 0.65 11.94 18.34 100.00 0.65 65.10 100.00

19.49 19.49 29.48 47.70 47.70

0.57 3.47 4.75 7.69 55.39 0.46 1.11 16.39 26.52 81.92 0.21 0.62 11.18 18.08 100.00 0.62 61.80 100.00

12.35 0.50 0.41 0.07 0.43

12.35 22.24 51.98 51.98 3.11 3.18 7.44 59.42 0.96 13.18 30.81 90.23 0.43 4.18 9.77 100.00

42.78 100.00

C

Ml M2 T

2.19 0.49 0.49 36.49 36.49 17.78 50.70 50.70

F

C

Ml

14.09 3.13 3.62 95.80 21.31 24.93

337.42 75.07 100.00 449.50 100.00

12.20 55.40

0.62 2.82

0.62 3.45

M2 64.00 3.26 6.71 T 1830.20 93.29 100.00 F 1961.80 100.00

1.32 0.37 0.07 0.35

10.69 0.86 0.47 0.17 0.26

6.05 4.15 11.83 62.53 1.20 7.89 22.49 85.02 0.35 5.25 14.98 100.00

10.69 2.63

35.07 100.00

6.64 25.11 25.11 2.43 9.18 34.28

1.58 1.53 5.79 40.08 0.26 15.86 59.92 100.00

26.47 100.00

C 48.53 0.89 0.89 19.83 19.83 17.73 46.65 46.65 MI 227.04 4.18 5.08 0.70 4.07 2.91 7.66 54.30

M2 753.96 13.89 18.97 0.44 1.41 6.11 16.08 70.38 T 4398.47 81.03 100.00 0.14 0.38 11.26 29.62 100.00 F 5428.00 100.00 0.38 38.01 100.00

Page 147: An Investigation of Gold Recovery in the Grinding and Gravit y

, l' r

l

Appcndix il

Size (un)

Size Dist. Stream (X)

0-38 16.50

38-53 5.39

53-75 6.57

75-106 9.07

106- 150 10.22

150-212 15.21

+212 37_03

Ail 100.00

C

Ml

"2 T

F

C

"" M2 T

F

C

M1 M2 T f

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T f

c

"" M2 T

F

Test 3 (Dec., 1987, llpsi)

76cm Knelson feed #2

"' ... (g)

Yfeld (X)

Cun. G.

(X) Grlde Cun. G.

(oz/st) (oz/st)

0.20 0.14 0.14 47.40 47.40 2.63 1.78 1.91

25.91 17.50 19.41 119.34 80.59 100.00 148.08 100.00

0.14 0.16 0.16 3.06 3.51 3.67

11.n 13.50 17.17 72.24 82.83 100.00 87.21 100.00

0.44 0.35 0.35 5.82 4.69 5.05

36.53 29.46 34.51 81.20 65.49 100.00

123.99 100.00

0.57 4.52

50.83

0.38 3.04

34.22

0.38 3.43

37.65

4.44 7.47 0.18 0.90 0.05 0.21 0.21

130.21 130.21 3.58 9.12 1.09 2.81 0.09 0.56 0.56

94.13 94.13 0.75 7.31 0.53 1.52 0.22 0.67

0.67

73.94 9.03 1.78

Unit (oz)

Recov. (%)

134

C\MI1.R

(%)

6.40 30.40 30.40 7.88 3.15 3.63

21.05

20.90 12.54 14.71 7.46

55.61

33.40 3.52

15.61 14.08 66.62

28.37 2.56

35.93

37.41 14.96 17.23

100.00

37.59 22.56 26.45 13.41

100.00

50.14 5.28

23.44

67.82 82.77

100.00

37.59 60.14 86.59

100.00

50.14 55.42 78.86

21. 14 100.00 100.00

31.88 2.87

40.37

31.88 34.75 75.13

92.62 62.35 100.00 148.54 100.00

73.94 0.84 1.05 0.36 0.89

0.89 22.14 24.87 100.00 89.00 100.00

1.46 0.98 0.98 42.25 42.25 41.26 50.23 50.23 9.29 6.21 7.19 0.71 6.35 4.38 5.33 55.56

34.53 23.09 30.28 0.72 2.06 16.63 20.24 75.81 104.24 69.72 100.00 0.29 0.82 19.87 24.19 100.00 149.52 100.00 0.82 82.13 100.00

2.09 15.66 47.93

233.63

0.70 5.23

0.70 43.96 43.96 30.70 62.89 62.89 5.93 0.50 5.61 2.59 5.31 68.20

16.01 21.94 78.06 100.00

299.31 100.00

9.52 121.08 168.35

1414.20

0.56 7.07 9.83

82.55

0.56 7.62

17.45 100.00

1713.15 100.00

27.19 2n.65 927.69

4195.47

0.50 0.50 5.12 5.62

17.09 22.71 n.29 100.00

5428.00 100.00

0.56 0.09 0.49

9.08 0.33 0.29 0.10 0.18

35.35 0.81 0.57 0.13 0.41

1.92 0.49

9.08 0.97 0.59 0.18

35.35 3.89 1.39 0.41

8.89 6.63

18.21 13.59

48.81 100.00

86.41 100.00

5.05 27.92 27.92 2.33 12.91 40.83 2.85 7.84

15.77 43.40

18.07 100.00

17.71 4.14 9.71 9.88

42.73 10.00 23.42 23.84

41.43 100.00

56.60 100.00

42.73 52.74 76.16

100.00

Page 148: An Investigation of Gold Recovery in the Grinding and Gravit y

, >

Appendix B

Size (un)

Size Dist. Stream (X)

0-38 17.77

38-53 3.25

53-75 7.40

75-106 8.61

106-150 9.13

150-212 16.24

C

M1 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1

Tcst 3 (Dcc., 1987, I1psi)

76cm Knelson fccd #3

Mess (g)

Yield (X)

CUI!. Y. (X)

Grade (oz/st)

Cl.I1l. G.

(oz/st) Unit

(OZ)

Recov.

(%)

Cum. R.

<'~)

1.46 0.97 0.97 22.27 22.27 21.69 64.11 8.21

64.11 72.32 20.83 13.89 14.86 0.20 1.65 2.78

127.66 85.14 100.00 149.95 100.00

0.11 0.34

2.00 1.42 1.42 12.25 4.39 3.13 4.55 1.96

20.26 14.43 18.97 1.32 113.80 81.03 100.00 140.45 100.00

0.64 0.94

0.34 9.36 27.68 100.00 33.83 100.00

12.25 17.44 18.47 18.47 5.18 6.13 6.49 24.95 2.25 19.04 20.16 45.11 0.94 51.86 54.89 100.00

94.47 100.00

2.82 1.66 1.66 20.69 20.69 34.44 32.18 32.18 2.73 34.92

15.49 50.40 8.77 5.18 6.84

42.53 25.11 31.95 115.26 169.38

4.72 35.30 85.22

173.27 298.51

5.72 29.38 80.35

183.49

68.05 100.00

1.58 11.83 28.55 58.04

100.00

1.91 9.83

26.88 61.38

298.94 100.00

6.21 22.27

112.63

1.38 4.95

25.05

100.00

1.58 13.41 41.96

100.00

1.91 11.74 38.62

100.00

1.38 6.33

31.39 308.47 68.61 100.00 449.58 100.00

15.40 0.95 0.95 86.60 5.35 6.30

0.57 5.46 2.93 0.66 1.69 16.57 0.78 1.07

19.25 0.69 0.52 0.40 0.76

21.42 0.52 0.41 0.37 0.80

15.22 1.47 0.45 0.17

0.51

1.07

19.25 2.88 1.27 0.76

21.42 3.93 1.48 0.80

15.22 4.47 1.26 0.51

53.08 107. 01

30.43 8.16

14.85 22.93 76.37

40.98 5.11

11.02 22.71

49.60 100.00

39.85 10.68 19.44 30.02

100.00

51.34 6.40

13.81 28.45

79.82 100.00

21.02 7.28

11.27

41.02 14.21 22.00

11.66 22.76 51.24 100.00

19.93 44.48 9.98 22.28

100.00

39.85 50.54 69.98

100.00

51.34 57.74 71.55

100.00

41.02 55.23 77.24

100.00

44.48 66.76

+212 37.60 M2 145.70 9.00 15.31

20.94 1.87 0.29 0.15 0.45

20.94 4.74 2.12 0.45

2.61 5.83 72.59

AU 100.00

T 1370.30 84.69 100.00 F

C

M1 M2 T

F

1618.00 100.00

53.70 334.00 638.65

1.24 7.69

14.70

1.24 8.92

23.62 3319.65 76.38 100.00 4346.00 100.00

19.62 0.91 0.47 0.23 0.56

19.62 3.50 1.62

12.28 27.41 100.00 44.80 100.00

24.24 7.01 6.94

43.25 12.52 12.39

43.25 55.77 68.16

0.56 17.84 31.84 100.00 56.04 100.00

Page 149: An Investigation of Gold Recovery in the Grinding and Gravit y

1 Appendix n

She (un)

Size Dist. StrelM (X)

0·38 16.50

38·53 5.39

53·75 6.57

75·106 9.07

106·150 10.22

150·212 15.21

+212 37.03

AU 100.00

C

M1 M2 T

F

C

M1 M2 T F

C M1 M2 T F

C M1 M2 T F

C M1 M2 T F

C M1 M2 T

F

C M1 M2 T

F

C M1 M2 T F

136

Test 3 (Dec., 1987, 11psi)

76cm Knelson feed #4

Ma .. (g)

Yield (X)

Cum. Y. Grade Cun. G. (X) (oz/st) (oz/st)

Unit

(oz) Recov. eum. R.

(%) (%)

1.52 4.62

1.02 3.10

1.02 23.12 4.12 3.06

18.28 12.26 16.38 124.66 83.62 100.00 149.08 100.00

2.19 1.95 1.95 6.85 6.10 8.04

10.42 9.27 11.32 92.91 82.68 100.00

112.37 100.00

0.27 0.22 0.55

8.93 1.15 0.91 0.26 0.54

23.12 23.57 8.03 9.48 2.22 3.25

43.09 17.34 5.94

43.09 60.43 66.37

0.55 18.40 33.63 100.00 54.70 100.00

8.93 17.39 32.26 32.26 3.03 7.01 13.00 45.25 1.90 8.44 15.65 60.90 0.54 21.08 39.10 100.00

53.93 100.00

1.41 21.96

0.93 14.52

0.93 42.51 42.51 39.62 49.17 15.58 5.64

29.61 100.00

49.17 64.75 70.39

15.45 0.87 3.38 12.56 9.55 6.31 21.76

118.36 18.24 100.00 151.28 100.00

1.29 0.88 0.88 5.88 4.00 4.88

36.77 25.01 29.89 103.07 10.11 100.00 141.01 100.00

0.72 0.31 0.81

35.95 0.82 0.59 0.36 0.75

2.61 0.81

35.95 7.14 1.65 0.75

4.55 23.86 80.59

31.55 42.23 3.28 4.39

14.63 19.59 25.24 33.79 74.70 100.00

100.00

42.23 46.62 66.21

100.00

0.61 8.84

38.33 100.50 148.28

0.41 5.96

25.85 67.78

100.00

0.41 111.89 111.89 46.03 67.13 67.13

2.61 0.88 23.92 8.03 74.26 24.93

6.37 32.22

100.00

0.88 8.91

33.84 197.05 66.16 100.00 297.84 100.00

9.20 0.32 0.32 109.37 3.75 4.07

15.48 332.45 11.41 2462.60 2913.62

38.34 291.91 861.30

4236.45 5428.00

84.52 100.00 100.00

0.71 0.71 :i.38

15.87 18.05

100.00

6.08 21.95

100.00

0.56 0.47 0.10

0.68

7.75 1.91 0.68

32.69

3.34 12.15 6.44

67.95

28.64

4.91 17.88 9.48

100.00

72.65 90.52

100.00

32.69 1.06 0.42

4.17 8.51 1.41 10.47

50.06 14.88 18.30

50.06 64.93 83.23

0.15 0.57 0.57

32.88 32.88 0.85 0.26 0.08 0.23

32.84 1.09

0.41 0.15 0.48

3.33 1.07 0.23

32.84 4.78 1.62 0.48

9.59 16.77 100.00 57.22 100.00

10.3B 45.38 45.3B 3.19 13.95 59.32 2.97 12.97 72.29 6.34

22.88

23.20 5.88 6.55

12.08 47.71

27.71 100.00

48.20 12.22 13.61 25.96

100.00

100.00

48.20 60.43 74.04

100.00

Page 150: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix D

Sile (t.III)

0-38

38-53

53-75

75-106

106-150

150-212

+212

Ali

Size Dist. Stream eX)

15.99

4.70

6.45

9.47

9.94

14.80

38.65

100.00

C

Ml T

F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml MZ T

F

C

Ml M2 T

F

C

Ml M2 T

F

Test 3 (Dec., 1987, llpsi)

76cm Knelson tai! # 1

13ï

Mass

(g)

Yield e~)

Ct.III. Y. Grade Ct.III. G. Unit

(OZ)

Recov. (un. R.

00 00 <~) (oz/st) (oz/st)

1.29 Z2.84

0.88 15.56

0.88 16.44

122.63 83.56 100.00 146.76 100.00

1.46 0.98 0.98 6.43 4.34 5.32

27.31 18.42 23.74 113.06 76.26 100.00 148.26 100.00

1.55 11.62 27.67

106.31

1.05 1.05 7.90 8.95

18.80 27.75 72.25 100.00

147.15 100.00

5.42 29.89 91.21

170.27

1.83 10.07 30.73 57.37

1.83 11.90 4Z.63

100.00 296.79 100.00

9.38 26.72 78.57

3.15 8.96

26.35

3.15 lZ. 1 1 38.46

183.50 61.54 100.00 298.17 100.00

6.64 21.26 81.68

1.4a 1.48 4.75 6.23

18.24 24.47 338.28 75.53 100.00 447.86 100.00

4.00 58.90

137.60

0.26 0.26 3.82 4.07 8.91 12.99

1343.30 87.01 100.00 1543.80 344.71

42.49 289.52 551.21

3124.78 4008.00

1.06 7.22

13.75 77.96

100.00

1.06 8.28

22.04 100.00

4.40 0.10 0.05 0.10

5.19 0.54 0.22 0.11 0.20

7.43 0.34 0.20 0.12 0.23

Z.85 0.35 0.26 0.22 0.29

1.46 0.54 0.28 0.11 0.24

2.48 0.77 0.30 0.10 0.20

1.28 0.40 0.33 0.06 0.10

2.82 0.34 0.28 0.08 0.16

4.40 0.33 0.10

5.19 1.40 0.49 0.20

7.43 1.17 0.51 0.23

2.85 0.73 0.39 0.29

1.46 0.78 0.44

3.87 40.55 1.49 15.66

40.55 56.21

4.18 43.79 100.00 9.54 100.00

5.11 2.36 4.05 8.01

26.18 12.08 20.75

26.18 38.26 59.01

40.99 100.00 19.53 100.00

7.83 2.68 3.76 8.67

34.14 34.14 11.67 45.81 16.40 62.20 37.80 100.00

22.94 100.00

5.21 3.52 7.99

12.62

17. 7~ 12.01 27.23 43.01

29.35 100.00

4.60 4.84 7.38

19.49 20.52 31.29

17.75 29.76 56.99

100.00

19.49 40.01 71.29

0.24 6.77 28.71 100.00

2.48 1.18 0.52

23.58 100.00

3.68 18.07 18.07 3.66 17.95 36.03 5.47 26.87 62.90

0.20 7.55 37.10 100.00

1.28 0.46 0.37 0.10

2.82 0.66 0.42 0.16

20.36 100.00

0.33 1.53 2.90 5.22

3.32 3.32 15.30 18.62 29.04 47.66 52.34 100.00

9.98 100.00

2.99 2.47 3.85 6.61

15.92

18.77 15.51 24.21 41. 52

100.00

18.77 34.28 58.48

100.00

Page 151: An Investigation of Gold Recovery in the Grinding and Gravit y

{

Appcndix n

She (un)

0-38

38-53

53-75

75-106

106-150

150-212

+212

All

Size Dist. Strellll

CX)

16.89

3.69

6.40

8.01

9.10

13.60

41.65

100.00

C M1 T f

C

M1 M2 T f

C M1 M2 T

f

C M1 M2 T f

C

M1 M2 T

f

C M1 M2 T

f

C

M1 M2 T

F

C

M1 M2 T

f

Test 3 (Dec., 1987, Ilpsi)

76cm I<nelson tail #2

138

Mass Yield Cum. Y. Grade Cum. G. Un1t Recov. Cum. R.

Cg) CX) (X) (oz/st) (oz/st) (oz) (%) eX)

1.35 0.91 0.91 12.80 8.59 9.49

134.94 90.51 100.00 149.09 100.00

1.10 1.01

23.19 115.53

1.15 1.15 4.79 5.95

15.72 21.67 78.33 100.00

147.49 100.00

1.11 4.95

31.84

0.74 3.32

25.35

0.74 4.06

29.41 105.38 70.59 100.00 149.28 100.00

4.40 1.47 1.47 22.81 7.64 9.11

106.22 35.58 44.69 165.15 55.31 100.00 298.58 100.00

6.44 2.15 2.15 33.63 11.25 13.40 93.99 31.44 44.85

164.86 55.15 100.00 298.92 100.00

6.99 1.56 1.56 39.35 8.76 10.32

151.92 33.83 44.14 250.87 55.86 100.00 449.13 100.00

31.20 1.89 1.89 147.50 8.93 10.82 261.30 16.19 21.01

1205.20 n.99 100.00

1651.20 100.00

63.10 1.57 1.57 340.04 8.46 10.03 782.55 19.47 29.49

2834.31 70.51 100.00 4020.00 100.00

5.51 0.14 0.07 0.12

5.32 0.41 0.18 0.11 0.19

11.82 0.74 0.18 0.14 0.26

5.34 0.41 0.29 0.19 0.32

2.76 0.46 0.30 0.17 0.30

2.98 0.64 0.21 0.09 0.22

1.61 0.29 0.13 0.06 0.12

3.02 0.36 0.20 0.09 0.18

5.51 0.65 0.12

5.32 1.36 0.50 0.19

11.82 2.77 0.54

4.99 39.96 39.96 1.16 9.28 49.25 6.34 50.75 100.00

12.48 100.00

6.13 1.98 2.83 8.22

31.99 31.99 10.33 42.32 14.77 57.09 42.91 100.00

19.17 100.00

8.79 2.44 4.56

34.23 9.52

17.77

34.23 43.75 61.52

0.26 9.88 38.48 100.00 25.68 100.00

5.34 7.86 24.71 24.71 1.21 3.13 9.84 34.55 0.48 10.32 32.42 66.97 0.32 10.51 33.03 100.00

31.82 100.00

2.76 5.95 19.88 19.88 0.83 5.18 17.29 37.17 0.46 9.43 31.51 68.68 0.30 9.38 31.32 100.00

29.94 100.00

2.98 4.64 21.01 21.01 1'J.99 5.61 25.37 46.38 0.39 7.10 32.14 18.52 0.22 4.75 21.48 100.00

1.61 0.52 0.29

22.10 100.00

3.04 25.89 25.89 2.59 22.04 47.93 2.10 17.91 65.84

0.12 4.01 34.16 100.00 11.75 100.00

3.02 4.74 26.59 26.59 0.77 0.40

3.02 16.94 43.54 3.99 22.36 65.89

0.18 6.08 34.11 100.00 17.83 100.00

, •

Page 152: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix B

Sbe (un)

Size Dist. StreMi CX)

0-38 16.97

38-53 3.87

53-75 7.06

75-106 8.40

106-150 8.69

150-212 15.96

+212 39.07

AU 100.00

C

M1 T F

C

M1 M2 T F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

Ml M2 T

F

C M1 M2 T

F

C

Ml M2 T

F

Test 3 (Dcc., 1987, I1psï)

76cm Knclson taïl #3

139

M ••• (g)

Yield (X)

Cun. Y.

(X) Grade Cun. G. Unit

(oz)

Recov. C\ITI. R.

0.79 6.08

0.79 6.86

1.17

9.03 138.40 93.14 100.00 148.60 100.00

1.28 4.35

15.46

1.28 5.63

21.10

1.91 6.49

23.06 117.66 78.90 100.00 149.12 100.00

3.12 11.53 29.74

2.08 7.68

19.81

2.08 9.76

29.56 105.76 70.44 100.00 150.15 100.00

3.92

24.68 89.91

181.40 299.91

1.31

8.23 29.98 60.48

100.00

7.88 2.63 33.06 11.02

87.29 29."

1.31

9.54 39.52

100.00

2.63 13.65 42.76

171.66 57.24 100.00 299.89 100.00

7.36 1.66 1.66

32.20 144.35

259.63 443.54

3.40

35.00 91.40

1513.10

7.26 32.54

58.54 100.00

0.21

2.13 5.56

92.10 1642.90 100.00

43.31 229.97

615.82 3384.89

4274.00

1.01 5.38

14.41

79.20 100.00

8.92 41.46

100.00

0.21 2.34 7.90

100.00

1.01 6.39

20.80

100.00

CoZ/st) (oz/st) (%) (%)

5.24

0.29 0.06 0.11

4.58 0.43 0.23 0.08 0.1S

4.25 0.41 0.21 0.10 0.23

6.32 0.41 0.35 0.09 0.28

3.24 0.51 0.29 O.OS 0.27

3.96 0.66 0.21

0.10 0.24

1.37 0.48 0.31 0.06 0.08

4.09 0.47 0.26

0.07 0.16

5.24 0.86 0.11

4.58 1.37 0.53 0.18

4.25 1.22 0.54 0.23

6.32

1.22 0.56 0.28

3.24 1.04 0.53

4.12 35.91 1.77 15.41

35.91

51.32 5.59 48.68 100.00

11. 48 100 . 00

5.87 33.35 33.35 1.86 10.56 43.91 3.56 20.21 64.12 6.31 35.88 100.00

17.59 100.00

8.84 38.17 38.17 3.11 13.43 51.61 4.1617.9769.57 7.04 30.43 100.00

23.15 100.00

8.27

3.37 10.49 5.44

27.58

29.97

12.24 38.05

29.97

42.21 80.26

19.74100.00 100.00

8.51 31.68 31.68 5.62 20.93 52.60 8.44 31.42 84. 02

0.27 4.29 15.98 100.00 26.87 100.00

3.96 6.58 27.67 27.67

1.27 0.44

0.24

1.37

0.56 0.38 0.08

4.09 1.04

0.50

0.16

4.79

6.83

5.56 23.76

0.28 1.02 1.72 5.07

20.16

28.76 23.40

100.00

3.49

12.63 21.30 62.57

8.10 100.00

4.14 2.53

3.81 5.39

15.87

26. Il 15.93

24.01

33.95 100.00

47.84

76.60

100.00

3.49

16.12 37.43

100.00

26.11 42.04

66.05 100.00

Page 153: An Investigation of Gold Recovery in the Grinding and Gravit y

1 ,1 3 J,

Appendix il j

140

(V Test 3 (Dec., 1987, 11psi)

76cm Knelson tail #4

Size Size Dist. Stream Yield Cun. Y. Grade Cun. G. UnIt Recov. Cun. R.

(un) (X) (X) (X) (oz/st) (oz/st) (oz) (X) (%)

C 0.73 0.73 16.86 16.86 38.86 38.86 38.86 M1 6.70 7.44 1.33 2.86 8.89 27.97 66.83

0-38 16.02 M2 15.48 22.91 0.23 1.08 3.50 11.01 77.84 T 77.09 100.00 0.09 0.32 7.04 22.16 100.00

C 0.40 0.40 125.97 125.97 50.07 41.18 41.18 M1 5.45 5.85 5.42 13.61 29.52 24.27 65.45

38-53 3.62 M2 13.27 19.12 0.46 4.48 6.09 5.01 70.46 T 80.88 100.00 0.44 1.22 35.93 29.54 100.00

C 0.50 0.50 11.38 11.38 35.33 51.13 51.13 M1 10.89 11.39 1.03 4.09 11.19 16.19 67.32

53-75 7.21 M2 26.81 38.20 0.37 1.48 9.86 14.27 81.59 T 61.81 100.00 0.21 0.69 12.72 18.41 100.00

C 0.65 0.65 54.30 54.30 35.30 44.83 44.83 M1 15.60 16.25 0.73 2.87 11.33 14.38 59.21

75-106 10.12 M2 26.34 42.59 0.48 1.39 12.54 15.92 75.14

( T 57.42 100.00 0.34 0.79 19.58 24.86 100.00

C 0.95 0.95 60.96 60.96 57.92 67.08 67.08 M1 7.98 8.93 0.75 7.16 6.00 6.95 14.03

106·150 11.36 M2 29.43 38.36 0.36 1.95 10.74 12.44 86.47 T 61.64 100.00 0.19 0.86 11.68 13.53 100.00

C 1.25 1.25 25.42 25.42 31.65 50.93 50.93 M1 6.39 7.63 1.55 5.44 9.89 15.91 66.84

150-212 14.73 M2 20.34 27.98 0.60 1.92 12.28 19.15 86.59 T 72.03 100.00 0.12 0.62 8.33 13.41 100.00

C 0.47 0.47 56.66 56.66 26.63 52.63 52.63 M1 4.05 4.52 1.90 7.59 7.72 15.25 67.88

+212 36.94 M2 13.78 18.31 0.41 2.19 5.72 11.30 79.18 T 81.10 100.00 0.13 0.51 10.54 20.82 100.00

C 0.69 0.69 44.80 44.80 30.91 50.92 50.92 M1 6.98 7.67 1.36 5.27 9.47 15.60 66.52

All 100.00 M2 18.92 26.58 0.46 1.85 8.72 14.36 80.88 T 73.42 100.00 0.16 0.61 11.61 19.12 100.00

(

Page 154: An Investigation of Gold Recovery in the Grinding and Gravit y

-

Appendix B 141

Test 3 (Dcc., 198ï, 60 psi)

Thr('{' 76cm Knd.,on fe('d~ rornhinf'd (#2, #3, #4) Size Size Dist. Stream (1.111) (X)

0-38 0.83

38-53 0.95

53-75 3.97

75-106 9.09

106-150 12.91

150-212 20.92

212-300 17.95

+300 33.37

AU 100.00

C

M1 T

F

C M1 M2 T

F

C

M1 M2 T F

C

M1 M2 T

F

C M1 M2 T F

C

M1 M2 T

F

C

M1 M2 T F

C M1 M2 T

F

C

M1 M2 T

F

Hass (;)

Yield ex)

CUII. Y. Grade CI.II1. G.

(X) (oz/st) (oz/st)

Unlt

(oz)

Recov. Cum. R. (%) (%)

0.80 6.10 6.10 8707.51 8707.51 53094.57 82.18 82.18 2.93 22.33 28.43 103.48 1948.84 2310.84 3.58 85.76 9.39

13.12

71.57 100.00

100.00 128.53 646.04

646.04 9198.84

64604.24

0.76 6.46 6.46 18026.32 18026.32 116496.59 2.45 20.83 27.30 101.41 4345.31 2112.60 3.89 33.08 60.37 123.15 2032.04 4073.55 4.66 39.63 100.00 469.47 1412.86 18603.23

14.24

100.00 100.00

82.45 82.45 1.~0 83.95 2.88 86.83

13.17 100.00 11.76 100.00 1412.86 141285.98 100.00

'i.99 8.64

39.03 15.26

3.07 13.31

3.07 1670S.40 16708.40 51216.46 86.39 86.39 16.37 54.03 3171.83 719.04 1.21 87.61

60.12 76.49 23.51 100.00

64.92 100.00

20.50 260.12 592.82

695.06 1232.46 2.08 89.69 592.82 6114.44 10.31 100.00

59282.40 100.00

3.67 3.70 3.70 8483.17 8483.17 31374.83 89.98 89.98

14.66 14.77 18.47

78.62 100.00

31.20 1723.44 460.87

663.98 1.32 91.30

59.68 60.14 21.22 99.23

2.71 18.12 43.95 34.79

21.38 100.00

2.72 1S.20 44.14 34.94

99.57 100.00

11.04 110.73 348.68

2.12 7249.58 20.92 35.42 65.06 13.30

100.00 i'4.85 218.31

413.40 348.68 2367.92

34867.60

1249.58 19731.21 973.99 644.56 322.21 587.06 218.31 868.27

1.90 93.21 6.79

100.00 100.00

90.38 90.38 2.95 93.33 2.69 96.02 3.98 100.00

21831.10 100.00

1.91

7.78 30.83 59.40

99.92

1.91

7.79 30.85 59.45

100.00

1.91 7424.73 7424.73 14192.59 92.31 92.31 94.21

97.40 9.70 37.66 1493.73 293.21 1.91

1.66 7.24

24.59

66.51

40.55 100.00

15.88 6.72

153.75

1.66 1.66 8655.80 7.24 8.90 57.24

24.59 33.49 25.38

66.51 100.00 9.64

100.00 100.00 160.48

18.20 22.50 82.20

617.30

2.46 3.04

11.11

83.40

740.20 100.00

40.26 141.04 469.35

2.44 8.55

28.44

2.46 5.50

16.60 100.00

3286.10

371.25 50.S1

32.61

124.92

2.44 7060.31

10.99 82.51 39.43 22.03

999.49 60.57 100.00 31.85 204.87 1650.14 100.00

369.29 153.75

489.97 399.49

15375.26

8655.S0 14368.63 1661.02 414.45 460.05 160.45

624.09 641.16

3.19 2.60

100.00

100.00

89.53 89.53 2.58 92.12 3.89 96.00 4.00 100.00

16048.33 100.00

3286.10 1674.70 588.58 124.92

8079.85 1128.50 564.25

2719.56

64.68 9.03 4.52

21.77

12492.15 100.00

7060.31 17225.64

1631.98 705.25 470.65 626.72

84.0B

3.44

3.06

64.68 73.71 78.23

100.00

84.0B

87.52

90.58

204.87 1929.42 9.42 100.00

20487.04 100.00

Page 155: An Investigation of Gold Recovery in the Grinding and Gravit y

(

Page 156: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix B }·13

Test 3 (Dec., 1987,6 psi)

Four 76cm Knelson tails combincd

SlZe Size Dist. Stream Yield c~. Y. Grade C~. G. Unit Recov. ClITI. R.

(X) (X) (X) (oz/st) (oz/st) (oz) (~) (~)

C 1.27 1.27 4.61. 4.61. 5.88 24.10 34.10

0·38 16.12 Ml 10.58 11.85 0.46 0.91 4.89 28.39 62.49

T 88.15 100.00 0.07 0.17 6.47 37.5~ 100.00

C 2.02 2.02 5.66 5.66 11.42 46.96 46.96

Ml 10.99 13.00 0.38 1.20 4.17 17.14 64.10

38-53 3.28 M2 13.87 26.87 0.23 0.70 3.13 12.86 76.97

T 73.13 100.00 0.08 0.24 5.60 23.03 100.00

C 2.29 2.29 3.11 3.11 7.12 19.35 19.35

Ml 20.21 22.50 0.72 0.97 14.62 39.71 59.06

53-75 8.27 M2 20.03 42.53 0.28 0.65 5.69 15.45 74.52

T 57.47 100.00 0.16 0.37 9.38 25.48 100.00

C 2.40 2.40 3.69 3.69 8.84 25.34 25.34

Ml 18.93 21.33 0.48 0.84 9.18 26.32 51.65

75-106 9.92 H2 36.53 57.86 0.31 0.51 11.38 32.62 84.28

T 42.14 100.00 0.13 0.35 5.48 15.72 100.00

C 3.13 3.13 2.83 2.83 8.84 23.48 23.48

Ml 15.56 18.68 0.81 1. 15 12.61 33.49 56.97

106-150 10.07 M2 24.74 43.43 0.35 0.69 8.63 22.91 79.88

T 56.57 100.00 0.13 0.38 7.57 20.12 100.00

C 1. 75 1.75 4.53 4.53 7.93 25.19 25.19

Ml 6.21 7.96 1.40 2.09 8.71 27.67 52.85

150-212 16.75 M2 21.01 28.97 0.34 0.82 7. la 22.79 75.65

T 71.03 100.00 0.11 0.31 7.67 24.35 100.00

C 1.25 1.25 3.13 3.13 3.90 14.30 t4.30

Ml 5.52 6.n 0.54 1.02 2.97 10.87 25.17

+212 35.59 M2 6.40 13.17 0.24 0.64 1.55 5.67 30.84

T 86.83 100.00 0.22 0.27 18.88 69.16 100.00

C Ln 1.n 3.61 3.61 6.39 22.24 22.24

Ml 10.24 12.01 0.67 1. 10 6.83 23.77 46.02

AIl 100.00 M2 14.15 26.16 0.31 0.67 4.33 15.09 61. 1 1

T 73.84 100.00 0.15 0.29 11. 1 i' 38.89 100.00

Page 157: An Investigation of Gold Recovery in the Grinding and Gravit y

(

( ...

(

Appendix D

Test 3 (Dcc., 1987, 6 psi)

76cm Knelson {eed #2

Sile Sile Dist. Stream Ma55 (LIlI) Cl> Cg>

Yietd

CX) Cun. Y. Grade

Cl) (oz/st) Cun. G.

Coz/st)

0-38 16.59

+38-53 3.82

+53-75 7.41

+75-106 11.02

+106-150 12.37

+150-212 14.34

+212 34.46

A" 100.00

C

Ml M2 T

F

C M1 M2 T

F

C M1 M2 T

F

C

M1 M2 T

F

C

Ml M2 T

F

C

Ml M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

0.56 0.38 0.38 56.51 56.51 8.16 5.57 5.96 2.1S 5.67

72.64 49.63 55.59 0.11 0.70 65.01 44.41 100.00 0.05 0.41

146.37 100.00 0.41

0.58 0.55 0.55 122.20 122.20 9.77

22.39 9.21 9.75

21.10 30.85 73.39 69.15 100.00

106.13 100.00

1.21 0.81 0.81 27.71 43.21 77.17

149.30

18.56 28.94

19.37 48.31

51.69 100.00 100.00

1.11 0.77 0.77 42.39 29.39 30.16 26.05 18.06 48.22 74.69 51.78 100.00

144.24 100.00

1.93 ~6.65

42.63 87.30

148.51

8.39 24.47 63.21

202.80

1.30 11.21 28.71 58.78

100.00

2.81 8.19

21. 15 67.86

1.30 12.51 41.22

100.00

2.81 10.99 32.14

100.00 298.87 100.00

13.80 82.68

260.99 1534.50

0.73 0.73 4.37 5.10

13.79 18.89 81.11 100.00

1891.97 100.00

28.02 267.27 657.95

1731.42

1.04 9.96

24.51 64.49

2684.67 100.00

1.04 11.00 35.51

100.00

0.82 0.48 0.20 0.98

90.63 0.51 0.45 0.21 1.07

52.69 0.62 0.34 0.13 0.72

27.88 0.80 0.32 0.11 0.61

6.80 1.05 0.43 0.09 0.43

27.10 1. 17 0.31 0.11 0.38

28.81 0.91 0.42 0.11 0.57

7.62 2.74 0.98

90.63 4.28 1.98 1.07

52.69 1.95 1.34 0.72

27.88 3.61 1.32 0.61

6.80 2.52 1.14 0.43

27.10 4.88 1.54 0.38

28.81 3.56 1.39 0.51

Unit (oz)

21.62 12.15 5.21

Recov. CI.Jll. R. (X) (%)

52.47 52.47 29.49 81.96 12.65 94.61

2.22 5.39 100.00 41.21 100.00

66.78 67.94 67.94 7.55

10.13 13.83 98.28

73.45 9.37

13.02 10.85

106.70

40.54 18.22 6.05 6.73

11.55

36.23 8.91 9.19 6.17

60.50

19.08 8.60 9.09 5.77

7.68 75.63 10.30 85.93 14.07 100.00

100.00

68.84 68.84 8.78

12.21 77.62 89.83

10.17 100.00

100.00

56.67 56.67 25.47 82.13 8.46 90.59 9.41 100.00

100.00

59.88 14.73 15.18 10.20

100.00

44.85 20.21 21.38 13.56

59.88 74.62 89.80

100.00

44.85 65.06 86.44

100.00 42.53 100.00

19.76 5.11 4.28 8.92

51.91 51.91 13.43 65.34 11.23 76.57 23.43 100.00

38.07 100.00

30.07 9.10

10.23 7.11

56.66 17.15 12.80 13.39

56.51 100.00

56.66 73.81 86.61

100.00

144

Page 158: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix B

Size (un)

0·38

38·53

53·75

75·106

106-150

150-212

+212

AIL

Size Dist. Stre8m (X)

15.44

3.42

7.00

9.22

10.34

15.13

39.45

100.00

C

M1 T

f

C

M1 M2 T

f

C

M1 MZ T f

C M1 M2 T

f

C M1 M2 T F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

Test 3 (Dcc., 1987, 6 psi)

76cm Knelson (eecl #3

MISS

(g)

Yield ua

Cun. Y. Grade ClIII. G.

<X) (oz/st) (oz/st)

2.70 24.25

122.05 149.00

1.22 14.09 24.02

109.77

1.81 1.81 16.28 18.09 81.91 100.00

100.00

0.82 0.82 9.45 10.27

16.11 26.38 73.62 100.00

149.10 100.00

1.41 11.10 43.83

0.95 7.45

29.42

0.95 8.40

37.81 92.66 62.19 100.00

149.00 100.00

9.67 0.22 0.15 0.33

33.41 0.50 0.45 0.61 0.84

38.19 0.70 0.35 0.37 0.75

9.61 1.16 0.33

33.47 3.12 1.49 0.84

38.19 4.99 1.38 0.75

1·15

Uni t

(oz)

Recov. Cun. R.

(%) ('.)

17.52 3.52

12.29 33.32

21.39 4.10 1.25

44.91

52.58 10.55 36.87

100.00

32.51 5.58 8.61

53.31 84.24 100.00

36.70 5.18

10.30

49.01 6.92

13.75

52.58 63.13

100.00

32.51 38.08 46.69

100.00

49.01 55.94 69.69

22.10 30.31 100.00 74.88 100.00

2.21 24.03 48.40 75.23

1.47 1.47 29.43 29.43 43.40 54.84 54.84 16.03 17.51 32.29 49.80 50.20 100.00

149.87 100.00

3.41 28.62 34.38 83.20

2.28 19.13 22.98 55.61

2.28 21.41 44.39

100.00 149.61 100.00

3.14 18.07 65.97

212.95 300.13

4.00 64.00

297.50 1713.40 2148.90

54.35 494.90

931.59 4080.17 5561.00

1.05 6.02

21.98 70.95

100.00

0.19 2.98

1.05 7.07

29.05 100.00

0.19 3.16

13.84 17.01 82.99 100.00

100.00

0.98 0.98 8.90 9.88

16.75 26.63 73.37 100.00

100.00

3.05 1.38 0.19

9.94 15.50 10.29

12.56 61.41 19.59 87.00 13.00 100.00

0.62 0.48 0.21 0.19 79. 13 100. 00

18.48 18.48 42.11 2.40 1.39 0.69

9.18 10.34 7.51

60.90 60.90 13.28 14 96 10.86

74.19 89.14

100.00

0.48 0.45 0.14 0.69 69.14 100.00

23.83 23.83 24.93 1.21 0.42 0.12 0.50

50.92 3.53 0.35 0.18 0.39

22.59 0.92 0.40 0.19 0.51

4.56 1.43 0.50

50.92 6.32 1.46 0.39

22.59 3.06 1.39 0.51

1.29 9.23 8.16

49.61

9.48 10.51 4.85

14.52 39.36

22.08 8.18 6.18

13.11 50.15

50.25 50.25 14.70 18.61 16.45

100.00

24.08 26.11 12.31 36.90

100.00

43.50 16.12 13.35 27.02

100.00

64.94 83.55

100.00

24.08 50.79 63.10

100.00

43.50 59.63 72.98

100.00

Page 159: An Investigation of Gold Recovery in the Grinding and Gravit y

t

Appendix n

Test 3 (Dec., 1987, 6 psi)

76cm I{ne1son {ccd #4

Sue (IJII)

Size Dist. Stream (X)

Mass (g)

Yield (x>

CIIII. Y. Grade CIIII. G.

(X) (oz/st> (oz/st)

0·38 15.44

38'53 3.42

53·75 7.00

75·106 9.22

106·150 10.34

150·212 15.13

+212 39.45

Ali 100.00

C Ml M2 T F

C

Ml M2 T

F

C

Ml M2 T F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T F

0.52 0.37 0.37 13.74 3.46 2.48 2.86 4.01 8.55 6.14 8.99 0.72

126.82 91.01 100.00 0.08 139.35 100.00 0.26

0.12 0.12 0.12 441.14 1.57 1.57 1.69 33.63 1.92 1.94 9.63 0.44

90.16 90.37 100.00 0.47 1.52 99.77 100.00

13.74 5.28 2.16 0.26

441.14 62.56 11.36 1.52

0.16 12.65 35.21 96.07

0.11 0.11 140.36 140.36 8.78 8.89 1. 72 3.45

24.44 33.33 0.33 1.16 66.67 100.00 0.13 0.47

144.09 100.00

0.25 12.11 39.23

0.18 8.49

27.50

0.18 8.66

36.16 91.08 63.84 100.00

142.67 100.00

0.47

163.33 1.01 0.52 0.48 0.82

163.33 4.29 1.42 0.82

0.16 1.16

48.75 97.55

0.11 0.11707.28707.28 0.79 0.89 3.77 89.04

33.02 33.92 0.36 2.69 66.08 100.00 0.25 1.08

147.62 100.00

1.68 16.91 56.98

0.56 5.67

19.12

0.56 6.24

25.35 222.49 74.65 100.00 298.06 100.00

10.79 99.84

309.77 1832.90 2253.30

20.63 251.48 956.23

4332.65

0.48 4.43

13.75

81.34 100.00

0.37 4.52

17.20 77.91

5561.00 100.00

0.48

4.91 18.66

100.00

0.37 4.89

22.09 100.00

1.08

73.26 2.09 0.81 0.13 0.78

80.70 1.72 0.50 0.12 0.62

96.36 2.28 0.52 0.16 0.68

73.26 8.52 2.70 0.78

80.70 9.42 2.85 0.62

96.36

9.41 2.49 0.68

Unit (oz)

5.13 9.94 4.39 6.83

26.28

53.06 52.91 3.49

42.47

146

Recov. CIIII. R.

eX) (X)

19.51 37.83 16.69 25.97

100.00

34.92 34.83 2.30

19.51 57.34 74.03

100.00

34.92 69.75 72.05

27.95 100.00 151.94 100.00

15.59 15.10 8.06 8.67

32.87 32.87 31.85 64.71 17.01 81.72 18.28 100.00

47.42 100.00

28.62 8.57

14.30 30.64

34.85 10.44 17.41

34.85

45.28 62.69

37.31 100.00 82.13 100.00

76.66 2.96

11.72 16.52

71.07 71.07 2.75 73.82

10.87 84.68 15.32 100.00

107.87 100.00

41.29 11.83 15.39

52.79 15.12 19.68

52.79 67.92 87.59

9.70 12.41 100.00 78.21 100.00

38.64 7.62 6.87 9.35

62.49

35.75 10.30

8.93 12.81

61.84 12.?0 11.00 14.97

100.00

52.74 15.19 13.18 18.89

67.79 100.00

61.84 74.03 85.03

100.00

52.74 67.93 81.11

100.00

Page 160: An Investigation of Gold Recovery in the Grinding and Gravit y

, ,

Appendix D

Size (un)

Size Dist. Stream (X)

0-38 15.85

38-53 5.08

53-75 8.48

75-106 10.64

106·15011.49

150·212 16.24

+212 32.23

Ali 100.00

C

M1 T

F

C

Ml M2 T f

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T F

C

Ml M2 T

f

C

Ml M2 T

F

Test 3 (Dec., 1987, 6 psi)

76cm I<nelson tail #1

Mass (g)

Yield (X)

CI.II1. Y.

(X)

1.81 1.22 1.22 11.67 7.84 9.06

135.34 90.94 100.00 148.82 100.00

6.55 4.42 4.42 16.10 10.86 15.28 21.97 14.82 30.11

103.59 148.21

8.15 27.29 33.n

69.89 100.00

100.00

5.46 5.46 18.28 23.74 22.62 46.35

80.10 53.65 100.00 149.31 100.00

20.15 56.41 86.26

135.26 298.08

18.53 35.92 77.70

6.76 18.92 28.94 45.38

100.00

6.23

6.76 25.68 54.62

100.00

6.23 12.07 18.29 26.10 44.40

165.50 55.60 100.00 297.65 100.00

12.70 2.83 2.83 23.04 5.13 7.95 96.37 21.44 29.40

317.32 70.60 100.00 449.43 100.00

8.30 0.61 0.61 33.20 2.46 3.07 52.90 3.92 6.99

1256.10 1350.50

125.24 352.74 568.72

3168.30 4215.00

93.01 100.00

100.00

2.97 8.37

13.49 75.17

100.00

2.97 11.34 24.83

100.00

Grade C\III. G (oz/st) (oz/st)

6.04 0.15 0.08 0.16

2.98 0.30 0.20 0.09 0.26

1.83 0.36 0.27 0.11 0.29

1.61 0.40 0.30 0.13 0.33

1.60 0.45 0.32 0.12 0.30

2.89 0.77 0.40 0.12 0.29

2.59 0.98 0.53 0.39 0.42

2.30 0.45 0.34 0.22 0.31

6.04 0.94 0.16

2.98 1.08 0.64 0.26

1.83 0.70 0.49 0.29

1.61 0.72 0.50 0.33

1.60 0.84 0.53 0.30

2.89 1.52 0.70 0.29

2.59 1.30 0.87 0.42

2.30 0.93 0.61 0.31

Unit

(OZ)

7.35 1.18 7.28

Recoll. (X)

tH

C\III. R. (Xl

46.51 46.51 7.44 53.96

46.04 100.00 15.80 100.00

13.18 3.26 2.96 6.29

25.70

51.30 12.68

11.54 24.48

100.00

34.89 23.05 21.39

51.30 63.98 75.52

100.00

34.89 57.94 79.33

9.96 6.58 6.11 5.90 20.67 100.00

28.55 100.00

10.88 7.57 8.68

5.90 33.03

9.96 5.43 8.35

32.95 22.92 26.28 17.86

100.00

33.05 18.02 27.72

32.95 55.86 82.14

100.00

33.05 51.07 78.78

6.39 21.22 100.00

30. " 100.00

8.18 28.37 28.37 3.95 13.70 42.07 8.58 29.76 71.83 8.12 28.17 100.00

28.82 100.00

1.59 3.80 3.80 2.41 5.75 9.55 2.08 4.96 14.51

35.81 41.89

6.82 3.76 4.61

16.19 31.39

85.49 100.00

21. 74 11.97 14.70 51.60

100.00

100.00

21. 74 33.71 48.40

100.00

Page 161: An Investigation of Gold Recovery in the Grinding and Gravit y

(

r

Appendix B

Size Size Oist. Stream (un) ex)

0-38 16.58

38-53 3.14

53-75 9.08

75-106 10.10

106-150 10.00

150-212 17.05

+212 34.04

All 100.00

C

Ml T

F

c Ml M2 T

f

C

Ml 142

T

F

C

Ml 142

T

F

C

Ml 142 T

F

C

Ml 142

T

F

C Ml 142 T

F

C Ml 142

T

F

148

Test 3 (Dec., 1987,6 psi)

76cm Knelson tail #2

Mass Yleld Cum. Y. Grade Cum. G. Unit Recov. ClMII. R. (g) (~) (X) Coz/st) (oz/st) (OZ) 00 (X)

2.36 16.,9

127.67

1.61 11.13 87.25

146.32 100.00

2.34 18.36

1.68 13.15

1.61 12.75

100.00

1.68 14.83

18.77 13.45 28.28 100.10 71.72 100.00 139.57 100.00

3.41 34.95 27.44 82.80

148.60

6.17 86.73 61.28

2.29 2.29 23.52 25.81 18.47 55.72

100.00

2.06 28.99 20.48

44.28 100.00

2.06 31.05 51.53

145.00 48.47 100.00 299.18 100.00

5.87 46.51 69.07

1.96 15.57 23.12

1.96 17.53 40.65

177.30 59.35 100.00 298.75 100.00

5.02 20.03 87.91

1. 12 4.46

19.59

1.12 5.58

25.17 335.74 74.83 100.00 448.70 100.00

3.20 0.22 0.22 15.20

13.90 1452.00 1484.30

53.41 445.54 452.21

3508.85 4460.00

1.02 0.94

97.82 100.00

1.20 9.99

10.14

1.24

2.18 100.00

1.20 11.19 21.33

78.67 100.00 100.00

3.15 0.23 0.09 0.15

5.55 0.45 0.30 0.09 0.25

0.90 0.65 0.32 0.16 0.32

3.90 0.55 0.46 0.16 0.41

2.31 1.02 0.45 0.14 0.39

7.03 1.95 0.37 0.09 0.30

3.24 0.30

0.25 0.27

0.28

3.48 0.68 0.39 0.18 0.29

3.15 0.60 0.15

5.55 1.03 0.68 0.25

5.08 33.6' 33.67 2.59 7.42

17.19 49.14

15.09 100.00

9.30 5.92

36.63 23.31

50.86 100.00

36.63 59.94

4.07 16.05 75.99 6.10 24.01 100.00

25.39 100.00

0.90 2.06 6.46 6.46 0.67 15.29 47.93 54.39 0.53

0.32

3.90 0.77 0.65 0.41

2.31 1.16 0.76

5.91 8.64

31.89

8.04 15.94 9.42 7.75

18.53 27.08

100.00

19.54 38.73 22.89

72.92 100.00

19.54 58.27 81. 16

18.84 100.00 41.16 100.00

4.54 15.88 10.40

11.69 40.89 26.79

11.69 52.58 79.37

0.39 8.01 20.63 100.00

7.03 2.97 0.95

38.83 100.00

7.87 8.70

7.25

26.06 28.84 24.02

26.06 54.91 78.93

0.30 6.36 21.07 100.00 30.18 100.00

3.24 0.70 2.53 2.53 0.81 0.57 0.28

3.48 0.98 0.70 0.29

0.31

0.23 26.41

27.65

4.17 6.79 3.97

13.87 28.80

, .11

0.85 3.64 4.48

95.52 100.00 100.00

14.47 14.47 23.58 13.79

38.05 51.85

48.15 100.00 100.00

Page 162: An Investigation of Gold Recovery in the Grinding and Gravit y

, ,. ,

Appendix B

Sile (un)

0-38

38-53

53-75

75-106

106-150

150-212

+212

All

Size Dist. Stream (~)

15.64

3.11

7.58

8.88

9.03

15.89

39.86

100.00

C

Ml T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

Ml M2 T

F

C

Hl M2 T

F

C

Ml M2 T

F

Test 3 (Dec., 1987, 6 psi)

76cm Knelson tail #3

Mass (g)

1.46

15.92

131.49 148.87

2.67

16.08

21.28

107.27

Yield m

0.98 10.69

88.33

100.00

1.81

10.92

14.45

72.82

Cun. Y. ();)

0.98 11.67

100.00

11.53

147.30 100.00

1.81

12.73 27.18

100.00 18.64

3.01

24.72

36.09

86.58

2.00 2.00

16.44 18.44

24.00 42.43 57.57 100.00

150.40 100.00 35.01

6.49

73.25 83.41

138.48

301.63

7.14

57.64

70.03

165.40

300.21

5.04

28.21

102.00

2.15

24.28

27.65 45.91

100.00

2.38

19.20

23.33

55.09

100.00

1.12

6.27

22.68

2.15

26.44 54.09

100.00

33.82

2.38

21.58

44.91

100.00

25.87

1.12 7.39

30.07

Grade Cun. G. (oz/st) (oz/st)

5.09 0.68 0.08

0.19

5.41

0.41

0.20 0.06 0.21

4.51

0.38

0.35 0.11 0.30

3.64

0.39

0.25

0.12

0.29

3.37 1.15

0.35

0.14

0.46

5.09 1.05 0.19

5.41

1.12

0.63 0.21

4.51

0.83

0.56 0.30

3.64

0.65 0.45

0.29

3.37 1.39

0.85

0.46

6.13

1.99 0.72

1 19

Unit

(OZ)

Recov. ClJ11. R.

(X) (%)

5.00 26.40 7_30 38.60

6.62 35.01

18.92 100.00

r, .80 46.34

4.45 21.06

2.59 13.66 4.01 18.94

26.40

64.99

100.00

64.85

46.34

67.40

81.06

100.00 21_15 100.00 74.64

9.02

6.21 8_40

6.33

30.10 30.10

20.74 50.83

28.03 78.87 21. 13 100.00

29.96 100.00 72.71

7.83

9.47

6.91

5.28

29.50

8.01

22.08

8.16

7.71

45.97

6.87

7.54 7.03

26.55

";'.11 23.4 ..

17.90

100.00

17.43 48.03

17.76

16.78

100.00

23.08

26.32

23.60

26.55

58.66 R?10

100.00

66.22

17.43 65.46

83.22

100.00

70.23

23.08

49.40

73.00

314.48 69.93 100.00

6.13

1.25

0.31

0.12 0.30

0.30 8.04 27.00 100.00

449.73 100.00 17.13

18.00

194.80

267.90

1369.70

0.97

10.53

14.48 74.02

1850.40 100.00

63.54

588.25

772.45

3341. 75

4766.00

1.33

12.34

16.21

70.12

100.00

0.97

11.50

25.98 100.00

1.33 13.68

29.88

100.00

1.0'.

0.46 0.15 0.17

0.20

3.51

0.63

0.25

0.13

0.25

1.04

0.51

0.31 0.20

3.51 0.91

0.55

0.25

29.79 100.00 62.80

1.01

4.54 2.10

12.21

~.02

('4.01

10.41

60.56

20.17 100.00

5.02

29.03

39.44 100.00

4.69 18.42 18.42

7.76

4.03

8.95

25.43

30.52

15.85

35.20 100.00

48.95

64.80

100.00

Page 163: An Investigation of Gold Recovery in the Grinding and Gravit y

(

Appcndix C

Sue (~)

0·38

38·53

53·75

75·106

106·150

Sue D1St. Stream (X)

16.19

2.99

8.16

10.18

10.28

C

MI T

F

C

Ml M2 T

C

Ml M2 T

F

C

MI M2 T

C

MI M2 T F

150·212 17.15

C

MI M2 T

+212 35.05

Ail 100.00

C

MI M2 T F

C

MI M2 T

Test 3 (Dcc., 1987, 6 psi)

76cm Knelson taU #4

150

Mass

(g)

Yield

(X) CI.II1. Y. Grade CI.II1. G. Unit

(oz)

Recov. (X)

Cun. R. (%) (X) (oz/st) (oz/st)

1.86 16.32

1.25

10.94 1.25

12.19 131.00 87.81 100.00 149.18 100.00

2.18 1.69 1.69 12.89 9.97 11.66 17.52 13.55 25.20 96.71 74.80 100.00

129.30 100.00

2.46 31.28 27.17 88.61

1.65 20.92 18.17 O:~.26

149.52 100.00

6.30 1.62 43.65 Il.23

197.84 50.89 140.97 36.26 388.76 100.00

9.91 3.31 43.67 14.60 n.51 25.92

167.95 56.16 299.04 100.00

2.11 7.33

1.65 22.57 40.74

100.00

1.62 12.85 63.74

100.00

3.31 17.92 43.84

100.00

2.11 9.44

9.46 32.96 93.39

313.56 20.78 30.22 69.78 100.00

449.37 100.00

31.30 2.06 2.06 91.50 6.03 8.10 86.70 5.n 13.81

1307.10 86.19 100.00 1516.60 100.00

86.06 426.42 666.23

3175.28 4354.00

1.98 9.79

15.30 72.93

100.00

1.98

l'.n 27.07

100.00

5.10

0.53 0.07 0.18

7.63 0.34 0.21 0.08 0.25

4.86 0.98 0.22 0.21 0.45

5.69 0.54 0.30 0.12 0.35

3.36 0.55 0.31 0.14 0.35

4.02 1.41 0.33 0.12 0.34

3.65 0.58 0.32 0.17 0.27

4.17 0.73 0.30 0.13 0.30

5.10

0.99 6.35 5.77

35.64 32.34

35.64 67.98

0.18 5.71 32.02100.00 17.83 100.00

7.63 12.86 51.35 51.35 1.39 3.38 13.50 64.85 0.76 2.82 Il.26 76.10 0.25 5.98 23.90 100.00

4.86 1.26 0.80 0.45

5.69 1.19 0.48 0.35

3.36 1.07 0.62 0.35

25.04 100.00

8.00 20.50 4.00

12.15

17.91 45.92 8.95

27.21 44.65 100.00

9.23 6.06

15.27 4.35

34.91

11. 12 8.03 8.04 7.58

34.77

26.43 17.37 43.73 12.46

100.00

31.98 23.10 23.11 21.81

100.00

17.91 63.83 n.79

100.00

26.43 43.80 87.54

100.00

31.98 55.08 78.19

100.00

4.02 8.47 25.14 25.14 1.99 10.34 30.69 55.83

0.85 0.34

3.65 1.36 0.93 0.27

4.17 1.31 0.74 0.30

6.86 20.35 76.18 8.02 23.82 100.00

33.69 100.00

7.53 3.50 1.80

14.22 27.05

8.24 7.15 4.60 9.68

29.67

27.84 12.93 6.66

52.56 100.00

27.78 24.10 15.50 32.62

100.00

27.84 40.78 47.44

100.00

27.78 51.88 67.38

100.00

Page 164: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix C

Appendix C

Experimental Results of the Pinched Sluices

151

Page 165: An Investigation of Gold Recovery in the Grinding and Gravit y

{

Appendix C

Size (un)

Size Oist. Stream (X)

0·38 14.76

lB·53 4.23

+53·75 6.60

75·106 8.86

106·150 11.26

150·212 15.41

212·300 14.18

+300 24.69

AIl 100.00

C M1 M2 Ml T

f

C

N1 M2 Ml T

F C M1 M2 Ml T F

C

M1 M2 Ml T

F

C M1 M2 Ml T

F

C

M1 M2 Ml T

F C

M1 M2 M3 T

F

C M1 N2 T

F C M1 M2 Ml T f

Test 1 (April ]:J. ]987)' Double sluice feed

Mass Yield CI.III. Y. Grade C~. G. unit Recov. CIIII. R. (1) ex) (1) (OZ/It) (Ol/It) (oz) (X) ex)

0.25 1.28 6.00 0.00

0.17 0.86 4.03 0.00

0.17 81.08 81.08 13.60 3l.34 33.34

141.50 149.03

0.53 3.94

10.76

94.95 100.00

0.36 2.64 1.21 8.13

1.03 5.05 5.05

100.00

0.36 2.99

10.20 18.33

100.00

4.67 1.75 0.00 0.17 0.41

159.59 2.26 0.92 0.66 0.67 1.29

17.16 4.01 4.88 7.05 4.88 0.00 0.41 16.14

40.80 159.59 56.61 20.91 5.97 6.79 6.63 4.07 5.36 1.29 54.72

129.35

9.83 17.27 0.00

39.56 100.00 43.81

4.61 5.13 4.15

42.30 100.00

43.17 60.44 60.44

100.00

43.81 48.42 53.55 57.70

100.00 12.13

121.90 149.26

1.10

81.61 100.00

0.74 0.74 78.88 78.88 58.24 64.28 64.28

6.45 4.33 5.07 14.96 10.04 15.11 23.09 15.50 30.61

103.39 69.39 100.00

0.81 12.18 3.51 3.87 68.15 0.46 4.39 4.62 5.10 73.24 0.40 2.31 6.20 6.84 80.09 0.26 0.91 18.04 19.91 100.00

148.99 100.00 1.10 0.74 9.08 6.07

0.91 90.60 100.00 0.14 79.54 79.54 58.51 66.01 66.01 6.81 0.16 9.21 4.61 5.21 71.21

29.69 19.86 26.66 25.04 16.75 43.41 84.62 56.59 100.00

0.44 2.70 8.74 9.86 81.07 0.36 1.79 6.03 6.80 87.87 0.19 0.89 10.75 12.13 100.00

149.53 100.00 0.89 88.64 100.00

0.87 0.65 0.65 9.13 6.81 7.46

23.41 17.46 24.91 25.97 19.37 44.28

n.~ n.~ 46.~ 58.n ~." 1.07 7.26 7.28 9.13 67.90 0.63 2.62 11.00 13.79 81.69 O.lB 1.64 7.36 9.23 90.92

74. n 55. n 100.00 0.13 134.10 100.00 0.80

1.64 0.52 0.52 60.29 11.49 3.63 4.15 1.41 22.29 7.05 11.20 1.08 40.n 12.89 24.09 0.40

240.10 75.91 100.00 0.10 316.29 100.00 0.57

0.78 0.27 0.27 91.24 6.29 2.20 2.47 2.02

13.96 4.89 1.36 0.59 39.50 13.82 21.18 0.21

225.20 78.82 100.00 0.11 285.73 100.00 0.44

12.00 1.25 1.25 25.72 27.80 2.89 4.13 0.50

0.80 7.24 9.08 100.00 79.76 100.00

60.29 31.26 54.88 54.88 8.82 5.34 9.38 64.26 3.95 7.61 13.36 n .62 2.05 5.16 9.05 86.67 0.57 7.59 13.33 100.00

56.96 100.00 91.24 24.91 56.85 56.85 11.86 4.45 10.15 67.00 4.38 2.88 6.58 73.58 1.66 2.90 6.63 80.21 0.44 8.61 1~.79 100.00

43.81 100.00 25.72 32.04 63.25 63.25 8.10 1.44 2.85 66.10

80.50 8.36 12.49 0.38 2.94 3.18 6.27 72.36 842.90 87.51 100.00 0.16 0.51 14.00 27.64 100.00 963.20 100.00 0.51 50.66 100.00 26.24 0.65 0.65 53.56 53.56 34.91 56.58 56.58

137.15 366.82 360.73

3.41 4.07 9.13 13.20 8.98 22.11

3127.07 n.83 100.00 4018.00 100.00

1.21 0.66 0.36 0.11 0.62

9.61 3.42 2.18

4.11 6.00 3.20

6.66 63.24 9.71 72.95 5.19 78.14

0.62 13.51 21.86 100.00 61.81 100.00

152

Page 166: An Investigation of Gold Recovery in the Grinding and Gravit y

......

Appendix C 153

Test 1 (April 13, 1987): DOllhl(' !llllice concentratc

Size Size Dilt. Stre .. M... Yfeld CUI. Y. Gr" CUI. G.

(g) (X) (1) (oz/lt) (ollat)

Unit (oz)

Rec:ov. CIn. R. ( .. ) (X)

0·31 15.89

31·53 7.71

53·75 5.30

75·106 6.09

106·150 12.42

150·212 13.00

212·300 13.55

+300 26.02

All 100.00

C M1 M2 T

f

C M1 M2 T f

C M1 M2 T f

C

M1 Ml T f

C

M1 Ml T f

C M1 Ml T

f

C M1 M2 T F

C M1 Ml T

f

Cl) ex)

0.30 1.30

0.30 1.31

0.30 51.04 51.04 15.45 44.22 44.22 1.61 3.26 12.22 4.28 12.24 56.46

4.00 4.04 5.65 93.50 94.35 100.00 99.10 100.00

0.73 0.13 0.35

4.01 2.95 8.43 64.90 0.35 12.27 35.10 100.00

34.94 100.00

0.50 0.52 0.52 106.75 106.75 55.03 25.22 25.22 2.80 2.89 3.40 4.31 19.89 12.64 5.79 31.01

67.30 69.31 72.78 2.06 2.89 142.65 65.37 96.38 26.40 27.22 100.00 0.29 2.18 7.89 3.62 100.00 97.00 100.00 2.18 218.21 100.00

0.70 0.70 0.70 16.67 16.67 11.74 9.43 9.43 3.00 3.02 3.12 3.26 5.80 9.84 7.90 17.34

82.30 82.80 86.52 1.09 1.30 90.50 72.70 90.04 13.40 13.48 100.00 99.40 100.00

0.50 0.52 0.52

0.92 1.24

7.56

1.24 12.40 9.96 100.00 124.48 100.00

7.56 3.91 5.07 5.07 4.90 5.07 5.59 4.50 4.78 22.83 29.58 34.65

68.10 70.50 76.09 0.64 0.95 45.40 58.84 93.49 23.10 23.91 100.00 0.21 0.77 5.02 6.51 100.00 96.60 100.00 0.77 77.16 100.00

0.30 0.31 0.31 31.11 31.11 9.50 16.36 16.36 3.60 3.67 3.97 2.64 4.83 9.68 16.66 33.01

71.00 72.30 76.27 0.50 0.72 36.08 62.09 95.10 23.30 23.73 100.00 0.12 0.58 2.85 4.90 100.00 91.20 100.00 0.58 58.11 100.00

0.70 0.70 0.70 40.00 40.00 28.06 56.23 56.23 11.90 11.92 12.63 0.54 2.73 6.44 12.90 69.13 66.50 66.63 79.26 0.20 0.60 13.33 26.71 95.84 20.70 20.74 100.00 99.80 100.00

0.40 0.40 0.40 3.80 3.80 4.20

19.10 19.12 23.32 76.60 7'.~ 100.00 99.90 100.00

0.10 0.50

35.00 6.56 0.25 0.25 0.63

0.50 2.07 4.16 100.00

35.00 9.27 1.88 0.63

49.90 100.00

14.01

24.95 4.78

19.17

22.27 22.27 39.66 61.93

7.60 69.53 30.47 100.00

62.92 100.00

3.45 0." 0.61 170.00 170.00 103.54 73.27 13.27 23.00 4.06 4.67 5.00 26.52 20.30 14.37 87.63 90.00 15.19 20.56 0.35 6.29 5.56 3.94 91.57

450.00 79.44 100.00 566.45 100.00

0.15

1.41 1.41 11.92 8.43 100.00

141.32 100.00

C 24.56 0.50 0.50 12.68 12.68 41.23 44.48 44.48

f111 220.58 4.48 4.98 3.19 ".15 Ml 1923.69 39.05 44.03 0.70 1.88

T f

2756.87 55.97 100.00 4925.70 100.00

0.18 0.93

0.93

14.27 15.40 59.87 27.35 29.51 89.38 9.84 10.62 100.00

92.69 100.00

Page 167: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix C

Size (un)

Size Dist. Stre~ (X)

0-38 18.29

38-53 4.87

53-75 7.16

15'106 8.39

106·150 11.40

150·212 13.33

212·300 13.38

+300 23.17

All 100.00

C M1 T F

c M1 M2 r F

c M1 M2 T

c M1 M2 T

c M1 M2 T

f

C

M1 M2 T

C

M1 M2 T

C

M1 M2 T

F

C M1 Ml T

F

Test 1 (April 13, 1987): Double sluice tai1

Mau (II)

1.86

Yield CI.III_ Y.

(X) (X)

1.34 1.34 20.25 14.55 15.19

117.03 84.11 100.00 139.14 100.00

Grade C~. G.

(oz/st) (oz/st)

5.02 0.15 0.06 0.14

5.02 0.56 0.14

Unit (oz)

Recov. eun. R. (~a ex>

6.71 48.13 48.13 2.18 15.66 63.79 5.05 36.21 100.00

13.94 100.00

0.98 5.n

0.96 5.58

0.96 28.27 28.27 27.02 45.99 45.99 6.53 0.51 4.57 2.85 4.84 50.84

23.52 22.94 29.47 n.31 70.53 100.00

102.53 100.00

0.26 0.33 0.59

1.22 5.96 10.15 60.99 0.59 22.92 39.01 100.00

58.75 100.00

0.65 2.22

0.42 1.44

0.42 86.60 86.60 36.40 46.32 46.32 1.86 1.18 20.53 1.70 2.16 48.48

25.98 16.80 18.66 125.78 81.34 100.00 154.63 100.00

0.57 0.38 0.79

2.56 9.58 12.19 60.67 0.79 30.91 39.33 100.00

78.59 100.00

2.02 13.10

1.41 1.41 39.06 39.06 55.05 66.75 66.75 9.14 10.55 0.15 5.86 6.82 8.27 15.01

36.41 2~.41 35.96 91.78 64.04 100.00

143.31 100.00

0.37 0.18 0.82

1.98 9.40 11.40 86.41 0.82 11.21 13.59 100.00

82.48 100.00

2.42 10.03 33.91 91.70

1.15 7.26

24.56 66.42

100.00

1.15 28.14 28.14 49.33 66.53 66.53 9.02 0.58 5.94 4.23 5.70 n.24

138.06

4.76 16.96 49.~9

226.82 298.23

1.92 6.62

24.33 2n.12

1.60 5.69

16.66 76.06

100.00

0.63 2.17 7.98

89.22

33.58 100.00

1.60 7.28

23.94 100.00

0.63 2.80

10.78 100.00

304.99 100.00

45.50 76.50 81.60

839.90

4.36 4.36 7.33 11.69 7.82 19.51

80.49 100.00 1043.50 100.00

0.50 0.13 0.74

18.54 2.50 0.48 0.21 0.67

32.81 0.97 0.64 0.20 0.45

10.30 0.32 0.20 0.11 0.57

1.96 0.74

18.54 6.02 2.16 0.67

32.81 8.13 2.59 0.45

12.28 16.56 8.30 11.20

74.14 100.00

29.58 43.89 14.23 21.11 8.00 11.87

15.59 23.13 67.40 100.00

20.66 45.64 2.10 4.65 5.11 11.28

17.40 38.44 45.26 100.00

88.80 100.00

43.89 65.00 76.87

100.00

45.64 50.28 61.56

100.00

10.30 44.91 4.04 2.35 2.50 1.56 0.57 8.45

78.42 78.42 4.10 82.51 2.73 85.24

14.76 100.00 57.27 100.00

88.39 1.95 1.95 16.70 16.70 32.51 59.40 59.40 335.01 7.38 9.33 560.93 12.35 21.68

3555.97 78.32 100.00 4540.30 100.00

0.60 0.43 0.16 0.55

3.96 1.95

4.44 5.28

8.10 67.51 9.64 77.15

0.55 12.51 22.85 100.()O 54.73 100.00

154

Page 168: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix C

Sile Sile Dist. Stream (l1li) (X)

0-38 17.39

38-53 3.46

53-75 6.83

75-106 10.84

106-150 12.10

150-212 14.63

+212 34.76

TOTA 100.00

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

Ml M2 T

F

C

M1 M2 T

F

Test 2 (Dec.16, 198i): Double sluice fcccl

Mass (II)

Yield CUI. Y. Gr" CUI. G. Uni t Recoy. CLIII. R.

(X) (X) (Ol/St) (OZ/It) (oz) (X) (X)

0.68 0.92

23.76 120.56 145.92

0.47 0.63

16.28 82.62

100.00

0.47 101.63 101.63 47.36 69.92 4.60 6.79

69.92 76.71 115.36

1.10 7.29 47.38 17.38 0.36 3.33 !».86 8.65

100.00 0.12 0.68 0.68

9.91 14.64 67.73 100.00

100.00

0.24 1.57

13.14 50.38 65.33

0.37 2.40

20.11 77.12

100.00

0.37 202.71 202.71 74.47 58.83 58.83 61.28 78.68

2.77 1.29 28.00 3.10 2.45 22.88 1.10 4.35 22.02 17.40

26.99 21.32 126.58 100.00

100.00 0.35 1.27 1.27

100.00

0.77 4.60

0.59 3.50

0.59 100.26 100.26 58.80 68.84 68.84 4.09 1.56 15.71 5.45 6.38 75.21

42.34 32.25 36.34 &3.59 63.66 100.00

131.30 100.00

2.41 19.00 53.33

1.63 12.84 36.04

1.63 14.47 50.51

73.22 49.49 100.00 147.96 100.00

3.19 2.13 2.13 14.32 9.57 11.70 52.45 35.05 46.76 79.67 53.24 100.00

149.63 100.00

0.39 0.14 0.85

27.99 0.58 0.37

2.11 12.511 14.72 119.94 0.85 8.59 10.06 100.00

85.42 100.00

27.99 3.67 1.31

45.59 7.45

13.34

62.19 62.19 10.16 72.36 18.19 90.55

0.14 0.73 6.93 9.45 100.00 0.73 73.30 100.00

13.57 13.57 28.93 55.55 55.55 0.60 0.36 0.09 0.52

2.96 5.74 11.02 66.57 1.01 12.62 24.23 90.80 0.52 4.79 9.20 100.00

52.08 100.00

3.16 1.09 1.09 13.12 13.12 14.30 35.48 35.48 21.36 7.37 8.46 1.36 2.87 10.00 24.81 60.29

115.78 39.94 48.40 0.29 0.74 11.46 28.44 88.73 149.60 51.60 100.00 0.09 0.40 4.54 11.27 100.00 289.90 100.00 0.40 40.30 100.00

33.52 56.05

2.34 3.92

2.34 6.26

184.89 12.93 19.19 1155.80 80.81 100.00 1430.26 100.00

30.67 1.54 1.54 107.80 5.42 6.96 481.43 24.21 31.18

1368.50 68.82 100.00 1988.40 100.00

2.12 1.05 0.37 0.15 0.26

2.12 1.45

4.97 1V.42 19.42 4.11 16.08 35.50

0.72 4.78 18.70 54.20 0.26 11.72 45.80 100.00

25.58 100.00

17.56 17.56 27.09 53.09 53.09 1.05 4.70 5.67 11.12 64.20 0.37 1.34 8.95 17.54 111.75 0.14 0.51 9.31 18.25 100.00 0.51 51.03 100.00

155

Page 169: An Investigation of Gold Recovery in the Grinding and Gravit y

(

( ...

Appendix C

Test 2 (Dec.l6, 1987): Double sluice concentrate

Size Size Dist. Stre_ Mass

(II)

Yield Cu.. Y. Grlde Cu.. G. Unit Recov. CIIII. R. (oz) (X) (X) (",,) (X)

0-38 14.18

38-53 2.52

53-75 3.99

75-106 11.89

106-150 11.26

150-212 13_98

+212 42.18

AU 100.00

(X) (X) (OZ/It) (OZ/It)

C

M1 M2

0.23 0.16 0.16 117.52 117.52 18.47 47.17 47.17 0.70 0.48 0.64 13.17 38.98 6.30 16.09 63.26

82.23 56.20 56.84 0.16 0.59 8.99 22.96 l6.l2 T 63.15 43.16 100.00 0.13 0.39 5.40 13.78 100.00 F 146.31 100.00 0.39 39.16 100.00

C 0.40 0.84 0.84 138.54 138.54 115.76 66.27 66.27 M1 M2 T

F

C

M1 M2

1.66 3.41 4.30 14.97 31.27 35.58 30.84 64.42 100.00 47.87 100.00

0.51 0.68 0.68 3.48 4.65 5.33

31.00 41.41 46.74

2.16 29.21 0.29 3.79

9.92 9.07

5.68 71.94 5.19 77.14

0.62 1.75

1.75 39.94 22.86 100.00 174.69 100.00

51.04 51.04 34.77 50.33 50.33 0.78 7.20 3.60 5.22 55.55 0.33 1.11 13.67 19.78 75.33

T 39.87 53.26 100.00 0.32 0.69 17.04 24.67 100.00 F 74.86 100.00 0.69 69.08 100.00

C 1.20 0.80 0.80 86.49 86.49 68.99 74.98 74.98

M1 M2 T

F

10.74 7.14 7.94 66.79 44.40 52.34 71.69 47.66 10C1.oo

150.42 100.00

0.88 0.20 0.17 0.92

9.48 1.61

6.28 8.88

6.83 81.80 9.65 91.45

0.92 7.86 8.55 100.00 92.02 100.00

C

Ml Ml

3.06 2.05 2.05 20.89 20.89 42.n 59.61 59.61 11.86 7.93 9.97 1.66 5.60 13.16 18.36 77.97 52.4735.0745.04 0.27 1.45 9.4713.2191.18

T 82.23 54.96 100.00 0.12 O. n 6.32 8.82 100.00 F 149.62 100.00 0.72 71.67 100.00

C 4.21 1.52 1.52 26.87 26.87 40.80 64.61 64.61 Ml 12.60 4.54 6.06 M2 102.17 36.85 42.91 T 158.29 57.09 100.00 F 277 .27 100.00

C 135.80 6.39 6.39 Ml 92.60 4.35 10.74 Ml 273.71 12.87 23.61 T 1624.40 76.39 100.00 F 2126.51 100.00

C M1 Ml T

F

65.60 3.30 3.30 90.49 4.55 7.86

600.43 30.22 38.07 1210.45 61.93 100.00 1986.98 100.00

1.05 7.52 4.77 7.56 n.17

0.29 1.31 10.83 17.16 89.33 0.12 0.63 6.74 10.61 100.00 0.63 63.14 100.00

18.05 18.05 115.27 83.07 83.07 1.85 11.48 8.06 5.81 88.87 0.25 5.36 3.22 2.32 91.19 0.16 1.39 12.22 8.81 100.00 1.39 138.76 100.00

22.49 22.49 74.26 74.95 74.95 1.66 10.42 7.58 7.65 82.60 0.23 2.33 7.04 7.11 89.71 0.16 0.99 10.20 10.29 100.00 0.99 99.08 100.00

156

Page 170: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix C

Size Size Diat. Stream (LIlI) (X)

0·38 17.20

38·53 3.76

53·75 1.02

75·106 10.86

106·150 12.30

150·212 15.01

+212 33.85

All 100.00

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T F

C M1 M2 T

F

C

M1 HZ T F

C

M1 M2 T

F

Test 2 (Dec.16, 1987): Double sluicc tail

Ma55 (g)

Yield CWII. Y. Gr" CWII. G. Unit Recov. Cum. R. (X) (X) (oz/at) (oz/at) (oz) (X, CX,

0.47 0.34 0.34 5.28 3.85 4.19 ~2.98 16.76 20.95

108.39 79.05 100.00 137.1~ 100.00 5.29

25.70 1.01 0.19 0.08 0.22

25.70 3.03 0.76 0.22

8.81 3.89 3.18 6.32

22.20

39.66 39.66 17.52 57.18 14.34 71.52 28.48 100.00

100.00 74.62

0.63 4.49

0.86 6.13

0.86 66.99 66.99 57.57 63.14 63.14 6.98 0.70 8.86 4.29 4.70 67.85

16.4fi 22.46 29.44 51.72 70.56 100.00 73.30 100.00 12.75

0.63 0.22 0.91

2.58 14.15 15.52 83.36 0.91 15.17 16.64 100.00

91.18 100.00 83.62

1.30 0.96 0.96 54.20 54.20 51.88 64.79 64.79 11.96 1.81 9.76 33.19 24.44 34.20 89.37 65.80 100.00

135.82 100.00 1.93

2.24 13.39 50.41 82.56

148.60

2.46 12.27 44.70 90.05

1.51 9.01

33.92 55.56

100.00

1.65 1.21

29.90 60.24

1.51 10.52 44.44

100.00 1.03

149.41 100.00

1.65 9.85

39.76 100.00

1.91

3.78 13.21

110.30 170.67 298.02

52.81 91.51

176.01 1094.00 1414.33

39.32 126.34 441.59

1.27 4.45

1.27 5.72

37.01 42.73 57.27 100.00

100.00 13.54

3.73 3.73 6.47 10.20

12.44 22.65 n.35 100.00

100.00

1.98 1.98 6.36 8.34

22.57 30.91 1373.05 69.09 100.00 1987.30 100.00

0.53 0.41 0.18 0.80

23.08 0.53 0.37 0.14 0.60

15.38 0.75 0.45 0.10 0.51

6.95 0.95 0.29 0.09 0.29

4.20 0.51 0.06 0.25 0.39

10.53 0.66 0.30 0.16 0.43

5.79 4.62 5.77 70.56 2.00 11.13 14.65 85.21 0.80 11.84 14.79 100.00

23.08 3.76 1.17 0.60

15.38 3.19 1.13 0.51

6.95 2.28 0.56 0.29

4.20 1.86 0.17 0.39

10.53 3.00 1.03

80.07 100.00 52.77

34.79 4.13

12.55 7.78

59.85

25.30 6.16

13.46 6.02

55.13 7.90

20.97 13.00

100.00

49.67 12.09 26.42 11.83

58.13 66.03 87.00

100.00 32.96

49.67 61.76 88.17

100.00 50.94 100.00 51.92

8.81 30.65 30.65 4.23 14.71 45.36

10.84 4.87

28.75

15.68 3.30 0.75

19.34 39.07

20.84 4.11 6.80

37.71 16.93

100.00

40.14 8.45 1.91

49.50 100.00

48.28 9.61

15.76

83.07 100.00 13.82

40.14 48.59 50.50

100.00

48.28 57.95 73.71

0.43 11.35 26.29 100.00 43.17 100.00

15;

Page 171: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

Appendix C

Test 3 (Dec.16, 1987): Single sluice Ceecl

Size Slze Olst. Stream "ass (g)

field (X)

CUI. T. Grade CUI. G. Unit (oz)

Recov. CI.I1I. R.

(X) (1) (un) (X)

0·38 17.92

38·53 3.54

53·75 6.87

75·106 10.72

106·150 12.05

150·212 14.78

+212 34.11

AU 100.00

C M1 M2 T

F

C M1 M2 T

F

C M1 M2 T F

c M1 M2 T

F

c M1 M2 T F

c M1 M2 T

F

C

M1 M2 T

F

C

M1

(1) (OZ/It) (OZ/It)

0.42 0.30 0.30 101.63 101.63 30.19 46.66 46.66 3.07 2.17 2.47 7.29 18.64 15.83 24.46 71.12

41.13 29.09 31.56 0.36 1.79 10.47 16.19 87.31 96.76 68.44 100.00

141.38 100.00

0.12 0.65

0.65 8.21 12.69 100.00 64.71 100.00

0.38 0.57 0.57 123.5D 123.50 70.77 71. 71 71.71 2.60 3.92 4.49 0.70 16.36 2.74 2.78 74.49

15.79 23.81 28.31 0.47 2.99 11.19 11.34 85.83 47.54 71.69 100.00 0.20 0.99 13.98 14.17 100.00

66.31 100.00 0.99 98.69 100.00

1.10 5.75

0.82 4.29

0.82 81.47 81.47 66.90 68.03 61.03 5.11 0.85 13.79 3.63 3.69 71.71

42.23 31.52 36.64 84.88 63.36 100.00

133.96 100.00

0.39 0.25 0.98

2.26 12.29 12.50 84.21 0.98 15.52 15.79 100.00

98.34 100.00

1.38 5.81

0.93 3.91

0.93 30.37 30.37 28.23 42.64 42.64 4.84 1.03 6.66 4.03 6.09 48.73

67.91 45.75 50.59 73.35 49.41 100.00

148.45 100.00

0.58 0.15 0.66

1.16 26.53 40.08 88.80 0.66 7.41 11.20 100.00

66.20 100.00

1.87 5.82

1.25 3.90

1.25 21.39 21.39 26.77 36.50 36.50 5.15 3.52 7.16 13.71 18.70 55.19

55.41 37.09 42.24 16.30 57.76 100.00

149.40 100.00

0.52 0.24 0.73

1.42 19.29 26.30 81.49 0.73 13.57 18.51 100.00

73.34 100.00

1.75 9.93

0.60 3.39

0.60 36.45 36.45 21.80 48.82 48.82 3.99 1.74 6.94 5.91 13.23 62.05

84.61 28.92 32.92 196.24 67.08 100.00 292.53 100.00

12.16 45.49

1.69 6.33

1.69 8.03

109.43 15.24 23.26 551.20 76.74 100.00 718.28 100.00

0.41

0.08 0.45

5.11 1.05 0.22 0.10 0.26

1.20 0.45

5.11 1.91 0.80 0.26

11.71 26.23 88.28 5.23 11.72 100.00

44.66 100.00

8.64 32.84 32.84 6.65 25.27 58.11 3.35 12.74 70.84 7.67 29.16 100.00

26.32 100.00

20.82 87.02

1.05 4.37

1.05 23.83 23.83 24.94 46.73 46.73 5.42 1.92 6.15 8.41 15.76 62.49

M2 538.49 27.07 32.49 0.41 0.13 0.53

1.37 11.16 20.92 83.41 T 1342.95 67.51 100.00 0.53 8.16 16.59 100.00 F 1989.27 100.00 53.37 100.00

158

1 ~ 1

1 , 1

Page 172: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix C

Size Size Dist. Stream (un) (X)

0-38 16.69

38-53 3.64

53-75 6.97

75-106 10.55

106-150 12.00

150-212 14.55

+212 35.59

AU 100.00

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1 M2 T F

C M1 M2 T

F

C M1 Ml T

F

C M1 M2 T F

Test 3 (Dec.16, 1987): Single sluice concentrate

Mass Yield c~. Y. Gr. Clil. G. Uni t Recov. c~. R.

(II) (X) (X) (OZ/lU (OZ/It) (oz) (X) CX)

1.00 0.70 0.70 18.46 5.52 3.84 4.54 0.86

70.50 49.05 53.59 0.11 66.70 46.41 100.00 0.07

143.72 100.00 0.25

0.28 0.37 0.37 149.33 2.18 2.89 3.26 1.84

10.50 13.93 17.19 1.05 62.44 82.81 100.00 0.66 75.40 100.00 1.30

1.32 0.96 0.96 67.67 8.37 6.08 7.04 1.05

45.58 33.10 40.14 0.48 82.42 59.86 100.00 0.36

137.69 100.00 1.09

0.85 0.58 0.58 70.71 8.88 6.03 6.61

63.12 42.85 49.46 74.44 50.54 100.00

147.29 100.00

0.91 0.58 0.19 0.11

18.46 12.84 52.30 52.30 3.56 3.30 13.45 65.75 0.40 5.40 21.97 87.72 0.25 3.02 12.28 100.00

24.56 100.00

149.D ~.~ 42.64 42.64 18.63 5.32 4.09 46.73 4.39 14.62 11.24 57.97 1.30 54.66 42.03 100.00

130.05 100.00

67.67 64.87 59.70 59.70 10.12 6.35 5.85 65.54 2.17 15.89 14.62 BO.17 1.09 21.55 19.83 100.00

108.66 100.00

70.71 40.81 50.55 50.55 7.00 5.46 6.76 57.31 1.44 24.86 30.79 88.10 0.81 9.60 11.90 100.00

BO.72 100.00

1.46 0.98 0.98 17.26 17.26 16.84 33.27 33.27 7.78 5.20 6.18 2.19 4.57 11.39 22.50 55.n

54.12 36.18 42.36 0.38 0.99 13.75 27.16 82.92 86.21 57.64 100.00

149.57 100.00

0.15 0.51

3.07 1.06 1.06 31.01 7.09 2.44 3.50 1.84

83.81 28.88 32.38 0.42 196.27 67.62 100.00 0.11 290.24 100.00 0.57

56.40 3.83 3.83 61.50 4.17 8.00

184.61 12.52 20.52 1171.80 79.48 100.00 1474.31 100.00

15.99 1.37 0.31 0.13 0.81

37.79 1.89 1.89 21.98 85.39 4.27 6.16 1.36

570.39 28.53 34.69 0.35 1305.96 65.31 100.00 1999.54 100.00

0.17 0.68

0.51 8.65 17.08 100.00 50.63 100.00

31.01 32.80 57.51 57.51 10.65 4.48 7.86 65.37 1.53 12.24 21.47 86.84 0.57 7.51 13.16 100.00

57.03 100.00

15.99 61.15 75.42 75.42 8.36 3.45 0.81

5.71 3.as

7.05 82.47 4.79 87.26

10.33 12.74 100.00 81.08 100.00

21.98 41.55 60.96 60.96 7.69 5.82 8.53 69.49 1.65 9.98 14.64 84.13 0.68 10.82 15.87 100.00

68.16 100.00

159

Page 173: An Investigation of Gold Recovery in the Grinding and Gravit y

r ,

Appcndix C 160

Test 3 (Dec.16, 1987): Single sluice tail

Size (un)

Size Dist. StrelM (X)

Ma" (II)

Yield (X)

CUI. Y. Grade CIIII. G. Unit (oZ)

Recov. Cun. R.

0-38 17.51

38-53 3.45

53-75 6.68

75-106 11.14

106-150 12.05

150-212 15.15

+212 34.02

AU 100.00

C Ml M2 T F

C

Ml 142

0.66 4.80

52.03 91.09

148.58

0.22 1.2D

19.56

(X) (oz/lt) (OZ/It) <~) (1)

0.44 3.23

0.44 25.70 25.70 11.41 43.51 43.51 3.67 1.01 3.99 3.26 12.44 55.94

35.02 38.69 0.19 0.55 61.31 100.00 0.08 0.26

100.00 5.29 0.26

0.33 0.33 132.87 132.87 1.81 2.14 2.10 22.36

29.50 31.64 0.38 1.87

6.65 25.36 4.90 18.69

26.23 100.DD

44.D9 48.69 3.80 4.20

".21 12.38

81.31 100.00 74.62

48.69 52.89 65.27

T 45.32 68.36 100.00 0.46 0.91 11.44 34.13 100.00 F 66.3D 1DO.00 12.75 0.91 90.54 lDO.DO 83.62

C 1.32 1.01 1.01 68.16 68.16 69.06 12.10 12.10 141 6.60 5.D7 6.08 0.62 1'.sa 1.14 1.28 75.38 M2 T

F

C 141 142 T

f

C

Ml 142 T

F

C 141 142 T

F

C

Ml 142 T

F

C Ml 142 T

F

57.91 64.45

13D.28

1.23 8.12

66.09

44.45 50.53 49.47 100.00

100.00 1.93

0.83 0.83 5.50 6.33

44.75 51.08 12.25 48.92 100.00

147.69 100.00 1.03

0.23 0.27 0.96

51.61 0.74 0.41 0.13 0.12

1.63 0.96

51.61 7.43 1.28

1D.22 1D.67 86.05 13.16 11.95 10D.00 95.78 100.00 52.77

42.98 60.09 60.09 4.07 5.69 65.77

18.12 25.34 91.11 0.12 6.36 8.89 100.00

71.53 1DO.00 32.96

1.04 0.69 0.69 37.69 37.69 26.00 44.11 44.11 8.69 5.76 6.45 0.67 4.62 3.83 6.50 50.61

50.05 33.20 39.66 0.70 1.33 23.07 39.15 89.76 90.97 60.34 100.00

150.75 100.00 1.98

2.92 0.97 0.97 9.04 3.01 3.98

85.97 28.64 32.63 202.21 67.37 100.00 300.14 100.00 13.54

11.99 33.35 83.96

596.10 725.40

20.69 85.22

543.43

1.65 1.65 4.60 6.25

11.57 17.82 82.18 100_00

100.00

1.04 1.04 4.29 5.34

27.38 32.12 1335.35 67.28 100.00 1984.69 100.00

0.10 0.59

9.60 9.71 0.38 0.07 0.54

4.20 1.04 0.06 0.19 0.28

19.02 1.83 0.33 0.15

0.47

0.59 6.03 10.24 100.00 58.94 100.00 51.92

9.60 9.34 17.34 17.34 9.68 29.24 54.27 71.61 1.52 10.91 20.26 91.87 D.54 4.38 8.13 100.00

4.20 1.87 0.70 0.28

19.02 5.19 1.12

53.87 100.00 73.82

6.94 24.79 24.79 4.76 16.99 41.78 0.69 2.48 44.25

15.61 55.75 100.00 28.01 100.00

19.83 42.31 42.31 7.sa 16.80 59.1' 8.92 19.04 71.14

0.47 10.25 21.86 100.00 46.sa 100.00

Page 174: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix C 161

Test 4 (Dec. 18, 1987): Double sluice feed (without dilution watcr in fccd)

S;ze S;ze D;st. Stream Mass Yleld CUI. Y. Grede CUI. G. UnIt Recov. Cun. R. (un) (1)

0-38 19.03

38-53 4.27

53-75 7.82

75-106 11.02

106-150 12.72

150-212 15.52

212 29.62

AU 100.00

C M1 M2 T

F

C

M1 M2 T

F

C

M1 M2

(g) (X) (X) (OZ/It) (OZ/It) (oz) (X) (X)

0.26 0.18 0.18 44.97 44.97 4.76 3.37 3.56

21.74 15.41 18.97 114.34 81.03 100.00 141.10 100.00

2.76 0.31 0.13 0.33

4.95 1.18 0.33

0.60 0.73 0.73 97.71 97.71 3.90 4.74 5.47 0.89 13.79 9.74 11.84 17.30 0.58 4.75

68.05 82.70 100.00 0.77 1.46 82.29 100.00 1.46

8.29 25.49 25.49 9.31 28.65 54.14 4.78 14.70 68.83

10.13 31.17 100.00 32.50 100.00

71.24 48.82 48.82 4.19 2.87 51.70 6.81 4.66 56.36

63.68 43.64 100.00 145.92 100.00

3.60 2_42 2.42 16.82 11.29 13.71 31.14 20.91 34.62

8.69 0.69 0.71

8.69 20.99 22.65 22.65 2.10 7.79 8.41 31.06 1.26 14.84 16.02 47.08

T 97.39 65.38 100.00 0.75 0.93 49.04 52.92 100.00 F 148.95 100.00 0.93 92.66 100.00

C 4.81 2.11 2.81 11.34 11.34 31.82 44.05 44.05 M1 20.20 11.79 14.60 0.72 2.76 8.49 11.75 55.80 M2 T

F

C

M1 M2 T

F

C

M1 M2 T

F

C

M1

24.14 14.09 28.68 122.20 71.32 100.00 171.35 100.00

3.01 2.01 2.01 11.52 7.70 9.71 35.67 23.83 33.53 99.50 66.47 100.00

149.70 100.00

0.99 0.65 0.65 3.43 2.24 2.81

27.62 18.03 20.91 121.17 79.09 100.00 153.21 100.00

7.81 59.41

0.61 4_64

0.61 5.25

M2 143.77 11.24 16.49 T 1068.60 83.51 100.00 F 1279.59 100.00

0.52 1.66 0.35 0.72 0.72

12.60 12.60 0.81 3.30 0.59 1.38 0.20 0.59 0.59

37.33 37.33 4.82 12.10 0.47 2.07 0.13 0.53 0.53

3.96 1.38

7.33 10.14 65.94 24.60 34.06 100.00 72.24 100.00

25.33 42.64 42.64 6.73 11.33 53.97

14.06 23.66 77.63 13.29 22.37 100.00 59.42 100.00

24.12 45.28 45.28 10.79 20.26 65.54 8.47 15.91 81.44 9.89 18.56 100.00

53.27 100.00

2.42 10.94 10.94 4.83 21.87 32.81

3.96 1.04 0.28 0.14 0.22

0.63 3.15 14.25 47.06 0.22 11.69 52.94 100.00

22.08 100.00

C M1 M2 T

F

3.10 2.07 2.07 15.84 15.84 32.79 34.91 34.91 17.14 11.44 13.51 41.26 27.54 41.05 81.30 58.95 100.00

149.80 100.00

1.30 0.46 0.23 0.74

3.53 14.90 14.92 49.82 1.47 12.57 14.41 64.23 0.74 13.62 35.77 100.00

73.87 100.00

Page 175: An Investigation of Gold Recovery in the Grinding and Gravit y

\ '-

Appendix C 162

Test 4 (Dec. 18, 1987): Double sluice concentrate (without dilution water in feed)

Sile Size Dist. Stream Mass Yield Cum. Y. Grade Cum. G. Unit Aecov. Cun. R. (un) (X)

0-38 16.59

38-53 3.81

53-75 6.79

75-106 10.60

106·150 12.21

150-212 15.11

+212 34.89

All 100.00

C

M1 M2 T

F

C

MI M2 T

F

C

MI M2 T

F

C

M1 M2 T F

C

M1 M2 T

F

C MI M2

(g) (X) (X) (oz/st) (oz/st) (oz) (X) (X)

0.50 0.40 0.40 3.15 2.49 2.89

24.84 19.65 22.54 91.90 77.46 100.00

126.39 100.00

0.50 0.68 0.68 2.45 3.31 3.99

18.41 24.88 28.86 52.64 71.14 100.00 74.01l 100.00

2.40 1.81 1.81 7.58 5.73 7.54

35.29 26.67 34.21 87.07 65.79 100.00

132.34 100.00

2.18 1.46 1.46 ".56 7.76 9.23 57.68 38.74 47.97 77.48 52.03 100.00

148.90 100.00

2.42 1.67 1.67 8.94 6.16 7.83

45.76 31.55 39.38 87.92 60.62 100.00

145.04 100.00

47.73 2.90 0.64 0.07 0.44

155.17 1.94 0.50 0.32 1.46

26.35 3.76 0.32 0.34 1.00

42.78 0.66 0.48 0.22 0.98

36.96 1.06 0.78 0.17 1.03

47.73 18.88 9.04 7.23 1.72 12.58 0.44 5.42

44.11

155.17 104.84 27.91 6.41 4.29 12.44 1.46 22.76

146.45

26.35 47.78 9.19 21.54 2.28 8.53 1.00 22.04

99.89

42.78 62.63 7.34 5.12 1.80 18.59 0.98 Il.45

97.79

36.96 61.67 8.71 6.53 2.36 24.61 1.03 10.31

103.12

42.80 42.80 16.39 59.19 28.52 87.71 12.29 100.00

100.00

71.59 71.59 4.37 75.96 8.49 84.46

15.54 100.00 100.00

47.83 47.83 21.56 69.39 8.54 77.93

22.07 100.00 100.00

64.04 64.04 5.24 69.28

19.01 88.29 Il.71 100.00

100.00

59.80 59.80 6.34 66.14

23.87 90.01 9.99 100.00

100.00

4.91 1.64 1.64 17.76 17.76 29.10 45.45 45.45 15.99 5.34 6.98 86.81 28.97 35.95

1.98 0.44

5.68 10.55 16.48 61.93 1.46 12.72 19.86 81.79

T 191.91 64.05 100.00 0.18 0.64 ".66 18.21 100.00 F 299.62 100.00 0.64 64.03 100.00

C 49.50 3.48 3.48 40.61 40.61 141. 12 81.69 81.69 MI M2

53.81 3.78 7.25 164.71 Il.56 18.82

2.24 20.62 0.53 8.27

8.46 6.13

4.90 86.58 3.55 90.13

T 1156.30 81.18 100.00 0.2' 1.73 17.05 9.87 100.00 F 1424.32 100.00 1.73 172.76 100.00

C 40.46 2.03 2.03 38.44 38.44 78.17 69.43 69.43 MI M2 T

F

92.09 4.63 6.66 445.44 22.39 29.05

1411.43 70.95 100.00 1989.41 100.00

1.90 13.05 8.79 7.81 77.24 0.54 3.41 12.18 10.81 88.06 0.19 1.13

1.13 13.44 Il.94 100.00 112.59 100.00

Page 176: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix C 163

Test 4 (Dec. 18, 1987): Double sluice tail (without dilution watcr in fccd)

Size Size Dist. Stream Mess Yield Cu.. Y. Grlde CYm. G. Unit Recoy. Cum. R. (In) ex)

0·38 18.48

38-53 4.12

53-75 7.42

75-106 10.60

106-150 12.50

150-212 15.31

+212 31.58

All 100.00

(g) (X) (X, (oz/st) (oz/st) (oz) (X) (X)

C

Ml M2 T F

C

Ml M2 T F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T

f

C

Ml M2 T

F

0.30 0.21 0.21 25.70 2.90 2.02 2.22 1.01

28.12 19.54 21.77 0.19 112.58 78.23 100.00 0.08 143.90 100.00 0.17

1.20 1.60 1.60 11.82 4.50 6.00 7.60 3.15 5.56 7.41 15.01 2.70

63.75 84.99 100.00 75.01 100.00

0.39 0.91

0.74 0.50 0.50 74.82 7.41 5.05 5.55 1.58

30.06 20.48 26.03 0.52 108.58 73.97 100.00 146.79 100.00

1.08 0.73 0.73 12.12 8.18 8.91 51.30 34.62 43.53 83.68 56.47 100.00

148.18 100.00

2. la 1.44 1.44 7.86 5.38 6.81

39.79 27.23 34.04 96.40 65.96 100.00

146.15 100.00

4.32 1.43 1.43 21.93 7.24 8.67 65.71 21.70 30.37

210.86 69.63 100.00 302.82 100.00

0.30 0.79

40.25 2.15 0.65 0.14 0.77

23.76 0.87 0.33 0.12 0.56

13.44 1.05 0.43 0.08 0.42

25.70 5.36 30.85 30.85 3.32 2.04 11.72 42.58 0.51 3.71 21.38 63.96 0.17 6.26 36.04 100.00

17.36 100.00

11.82 18.90 20.78 20.78 4.97 18.90 20.78 41.56 3.85 20.01 22.00 63.56 0.91 33.15 36.44 100.00

90.96 100.00

~.82 37.n 48.04 48.04 8.23 7.95 10.13 58.17 2.16 10.65 13.56 71.73 0.79 22.19 28.27 100.00

78.51 100.00

40.25 29.34 37.94 37.94 5.27 17.59 22.74 60.68 1.59 22.50 29.10 89.78 0.77 7.91 10.22 100.00

n.33 100.00

23.76 34.14 61.30 61.30 5.69 4.65 8.35 69.66 1.40 8.98 16.13 85.79 0.56 7.92 14.21 100.00

55.69 100.00

13.44 19.17 45.95 45.95 3.09 7.58 18.17 64.13 1.19 9.40 22.52 86.65 0.42 5.57 13.35 100.00

41.n 100.00

C 5.21 0.41 0.41 17.86 17.86 7.38 28.14 28.14 Ml 44.41 3.52 3.93 1.09 2.85 3.84 14.64 42.n Ml 107.37 8.51 12.45 0.22 1.05 1.87 7.14 49.91 T 1104.30 87.55 100.00 0.15 0.26 13.13 50.09 100.00 F 1261.29 100.00 0.26 26.22 100.00

C 14.82 0.75 0.75 23.02 23.02 17.21 40.39 40.39 Ml 94.24 4.75 5.50 M2 367.11 18.52 24.02 T 1506.25 75.98 100.00 F 1982.42 100.00

1.38 0.42 0.14 0.43

4.32 6.56 15.40 55.80 1.32 7.84 18.40 74.19 0.43 10.99 25.81 100.00

42.60 100.00

Page 177: An Investigation of Gold Recovery in the Grinding and Gravit y

Appcndix C 164

Test 4 (Dec. 18, 1987): Double sluice tait (without dilution water in feed)

Size size Dist. Stream M'55 Yield CUI!. Y. Grlde CUI!. G. Unit Recoy. CIn. R.

(In) (X)

0·38 18.48

38·53 4.12

53·75 7.42

75-106 10.60

106-150 12.50

150-212 15.31

·Z1Z 31.58

Ali 100.00

C Ml M2 T

F

C Ml M2 T

F

C Ml M2 T

F

C Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T F

C

Ml

(II) (X) (X) (oZ/st) (oz/st) (oz) (X) (X)

0.30 0.21 0.21 25.70 25.70 5.36 30.85 30.85 2.04 11.72 42.58 3.71 21.38 63.96 6.26 36.04 100.00

2.90 2.02 2.22 1.01 3.32 28.12 19.54 21. n 0.19 0.51

112.58 78.23 100.00 0.08 0.17 143.90 100.00 0.17

1.20 1.60 1.60 11.82 4.50 6.00 7.60 3.15 5.56 7.41 15.01 2.70

63.75 84.99 100.00 0.39 75.01 100.00 0.91

0.74 0.50 0.50 74.82 7.41 5.05 5.55 1.58

30.06 20.48 26.03 0.52 108.58 73.97 100.00 0.30 146.79 100.00 0.79

17.36 100.00

11.82 18.90 20.78 20.78 4.97 18.90 20.78 41.56 3.85 20.01 22.00 63.56 0.91 33.15 36.44 100.00

90.96 100.00

n.82 37.72 48.04 48.04 8.23 7.95 10.13 58.17 2.16 10.65 13.56 11.73 0.79 22.19 28.27 100.00

18.51 100.00

1.08 0.73 0.73 40.25 40.25 29.34 37.94 37.94 12.12 a.18 a.91 2.15 5.27 17.5922.7460.68 51.30 34.62 43.53 0.65 1.59 22.50 29.10 89.78 83.68 56.47 100.00 0.14 O. n 7.91 10.22 100.00

148.18 100.00 o.n n.33 100.00

2.10 7.86

1.44 5.38

1.44 23.76 23.76 34.14 61_30 61.30 6.81 0.87 5.69 4.65 8.35 69.66

39.79 27.23 34.04 96.40 65.96 100.00

146.15 100.00

0.33 0.12 0.56

4.32 21.93

1.43 7.24

1.43 13.44 8.67 1.05

65.71 21.70 30.37 210.86 69.63 100.00 302.82 100.00

0.43 O.OB 0.42

5.21 44.41

0.41 3.52

0.41 17.86 3.93 1.09

1.40 0.56

8.98 16.13 85.79 7.92 14.21 100.00

55.69 100.00

13.44 19.17 45.95 45.95 3.09 7.58 18.17 64.13 1.19 0.42

17.86 2.85

9.40 ZZ.52 86.65 5.57 13.35 100.00

41.12 100.00

7.38 28.14 28.14 3.84 14.64 42.77

M2 107.37 8.51 12.45 0.22 0.15 0.26

1.05 1.87 7.14 49.91 0.26 13.13 50.09 100.00

26.22 100.00 T 1104.30 87.55 100.00 F 1261.29 100.00

C 14.82 0.75 0.75 23.02 23.02 17.Z1 40.39 40.39 Ml 94.24 4.15 5.50 1.38 4.32 6.56 15.40 55.80 M2 367.11 18.52 24.02 0.42 1.32 7.84 18.40 74.19 T 1506.25 75.98 100.00 0.14 0.43 10.99 25.81 100.00 F 1982.42 100.00 0.43 42.60 100.00

Page 178: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix C 165

SlUlce Tes~ ----------- ---- -----.. - ------- --- --------

ReSldual SUM of squares: :3.68158 FHlal Resulte.

StreaM

feed 2 cone 3 hd

3

Gold

feed conc tall

StreaM

feed cone tall

300 210 150 105 75 53 37

Sl~e

: Absolute SOllds Flowrate

183.00 12.70

170.30

: Relatlve SOllds : Flowrate

100.00 6.94

93.06

Pulp Mass Flowrate Mees Cale 5.0. AdJust

183.0 12.7

183.0 1:.7

170.3

40.0 0.7

As~ay Data

Mees.

0.620 0.930 0.550

Calc.

0.593 0.934 0.567

Std. Oev.

0.030 0.045 0.025

AdJust. : ~ Rec :

-0.027 0.004 0.017

100 Il 89

Fractlonal Sl~e Olstrlbutlon Data

feed Mees Cale : 50.

24.69 23.98 0.5 14.18 13.76 0.5 15.41 14.29 0.5 11.26 !! .37 0.5 8.86 8.52 0.5 6.60 6.83 0.5 4.23 4.68 0.5

tall Meas 1 Calc 1 50. 1

1 1 ,

Il Il

Il Il

-~,. 7* : : -0.4 Il

Il

- 1 .1 + : : 0.1 Il , ,

-0.3 Il Il

0.2 Il Il

0.4 Il Il

Adj.

eone Mea s: Ca 1 c: : SO. : Ad J .

:6.02 26.07 0.5 0.0 13.56 13.59 0.5 0.0 13.00 13.08 0.5 0.1 1::.42 12.4) 0.5 -0.0 6.01 6.03 0.5 0.0 5.30 5.28 0.5 -0.0 7.71 7.68 0.5 -0.0

===8_=~=~_z=a=mz=~= =~zz_._zac.mz=.=a.ZZ2

300 23.17 23.83 0.5 0.7+: 210 13.38 13.77 0.5 0.4 1

1

150 13.33 14.38 0.5 1.0+ : 105 Il.40 11.30 0.5 -0.1 75 8.39 8.71 0.5 0.3 53 7.16 6.95 0.5 -0.:: 37 4.87 4.45 0.5 -0.4

Page 179: An Investigation of Gold Recovery in the Grinding and Gravit y

Appcndix C 166

Gold Mea~ • Cal c. Std. De\'. : AdJustMent : ~{Rec : ========~==========z=============~======caa_.c •• ==c=====z=====.=====~==

300 0.510 0.576 0.400 (2).066 100 210 0.440 0.45: 0.300 0.01 : 100 150 0.570 0.617 0.250 0.047 100 105 0.800 0.761 0.:00 -0.12139 100 75 0.890 0.852 0.200 -0.038 100 53 0.910 0.860 0.200 -0.050 100 37 !. :;90 1.001 0.200 -0.289* 100

PAN 0.410 0.274 0.200 -0.136 100

Assays of Sl::e frac t lons for eone

Gold Meas. Cale. Std. Dev. 1 AdJustMent 1 7.Ree . 1 , 1

300 1.410 1.405 0.400 -0.005 18 210 0.630 0.629 0.300 -0.001 10 150 0.500 0.497 0.:50 -0.003 5 105 0.580 0.583 0.200 0.003 6 75 0.770 0.77'2 0.200 0.002 4 53 1.240 1.243 0.200 0.003 8

,J' ~ 37 2.180 21~ 13 0.200 0.033 25 ,-

PAN 0.350 0.359 0.:00 0.009 15

Assaye of Sl=e fraet lons for tall

Gold Mees. Cale. Std. De\' . 1 AdJustMent ,

%Rec 1 1 . ,

300 0.570 0.509 0.400 -0.061 8: 210 0.450 0.439 0.300 -0.011 90 150 0.670 0.626 0.250 -0.044 95 II1l5 0.740 0.776 0.200 0.036 94

75 0.8:?0 0.856 0.200 0.035 96 53 0.790 0.838 0.200 0.048 92 37 0.590 0.846 0.200 0.256* 75

PAN 0.140 0.267 0.200 0.127 85

Page 180: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix C 16;

Pesldual SUM of squares: 6.89931 FInal Pe:ults

.., .. :3

St reaM

feed cane tall

5 t reaM

feed ~ cone :3 tall

Gold

feed eone tall

2t0 150 105 75 S3 37

Sue

: Absolute SOllds : Pulp Mas5 Flowrate Flowrate Meas C5l= S.D. AdJust

181.40 1:::.80

168. S 1

: Relatlve: 501lds : Flowrate

100.00 7.06

g~. 94

18::.0 18 t .4

12.8 168.6

Assay Data

Meas.

0.510 0.990 0.430

Cale.

0.484 0.997 0.445

Std. Oev.

0.025 0.050 0.020

9.0 0.6

-1.6 0. t

AdJust. : X Ree :

-0.0~6·:

0.007 0.015

100 15 95

Fraetlonal 5l;:e Olstrlbut lon Data

Meas

34.76 14.63 12.10 10.84

6.83 3.46

Meds

feed Cale

34.57 14.79 1 ~. 17 10.S9 6.82 3.57

tall Cale

50. : AdJ.

0.5 -0.2 0.5 0.: 0.5 0.1 0.5 0.0 0.5 -0.0 0.5 0.1

50. 1 AdJ. 1

Meas

42. tB 13.98 t t .26 11.89 3.99 2.52

cone Cale

42.19 13.97 Il.26 Il.89 3.99 2.51

50.

0.5 0.0 0.5 -0.0 0.S -0.0 0.5 -0.0 0.5 0.0 0.5 -0.0

=a.=========s===c.e.K=Z=~C====C==~=======

210 33.81 33.99 0.5 0.2 150 15.01 14.86 0.5 -0.2 105 1: .30 12.24 0.5 -0.1 75 10.86 10.81 0.5 -0.0 53 7.02 7.03 0.5 0.0 37 3.76 3.65 0.5 -0.1

Page 181: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix C 168

Gold Meas. Cale. Std. Oe./. : AdJustMent ! ;~Re: :

210 0.::60 e.377 0.300 0.117 100 150 0.400 0.353 0.:50 -0.047 100 105 0.5:0 0.52:: 0. :00 0.00: 100 75 0.730 0.673 0.:0(l -0.057 100 S3 0.850 0.8:::: 0.200 -0.028 100 37 1.::70 1 .103 0.:00 -0.167 100

PAN 0.680 0.44:: 0.200 -0.238" 100

Assays of Sl:e fractIons for cane

Gold Mees. Cale. Std. Dev. 1 AdJustMent 1 ?oRee 1 1 1 1

210 1.390 1.380 0.300 -0.010 31 150 0.630 0.633 0.250 0.003 1 : 105 0.720 0.720 0.:00 -0.000 9

75 0.920 0.924 ~.~00 0.004 1 ,

53 0.690 0.691 0.200 0.001 :.' 37 1.750 1 .758 0.200 0.008 8

PAN 0.390 0.404 0.200 0.014 5

Assays of Slze fraet Ions for tall

Gold Mees. Cale. St d. Dev. 1 AdJustMent 1 ?oRee 1 1 1 1

210 0.390 0.283 0.300 -0.107 69 150 0.290 0.333 0.250 0.043 88 10S 0.510 0.508 0.:00 -0.002 91

7S 0.600 0.652 0.200 0.052 89 53 0.800 0.827 0.200 0.027 97 37 0.910 1.069 0.200 0.159 92

PAN 0.:20 0.444 0.200 0.224* 95

Page 182: An Investigation of Gold Recovery in the Grinding and Gravit y

.... ~ ..

Appendix C 169

Sll..Al.:e "7est =, c.'e:. lt 1~=- 1 ~ ... ::~-!.;)-51:e

Resldual SUM of squares: 4.78::;1::3 Flnal Pesults

StreaM

feed 2 cone 3 tall

.., ... 3

Gald

feed cane tall

StreaM

feed cone tall

210 150 105

7S S3 37

S l ;:e

Pulp Mess Flowrate Absolute SOllds F lawrate Meas Calc s.e. AdJust

183.00 8.80

174. ~0

Relatlve Sollds : Flawrate

100.00 4.81

95.19

183.0 B.e

183." 8.8

174. :::

Assay Data

Meas.

0.530 0.680 0.470

Cale.

0.509 0.879 0.490

Std. oev.

0.025 0.350 0.025

9.(') 0.4

".~ 0.~

AdJust. : % Rec

-0.021 0.199 0.0~0

100 8

9:

Fraetlonal 51:e Dlstrlbutlon Data

feed Mees: Cale: 50. : Adj.

34. Il 34.10 0.5 -0.0 14.78 14.96 0.5 0.2 12.05 12.05 0.5 -0.0 10.72 10.93 0.5 0.: 6.87 6.78 0.5 -0.1 3.54 3.50 0.5 -0.0

tell Meas 1 Cale 1 SO. 1 Adj. 1 1 1

Meas :

Il 35.59 Il

Il 14.55 Il

' 1 12.00 Il

Il 10.55 Il

Il 6.97 Il

Il 3.64 Il

cone Calc

35.59 14.54 12.00 10.54 6.97 3.64

SD.:AdJ.

0.5 0.0 0.5 -0.0 0.5 0.~

0.5 -0.0 0.5 0.0 0.5 0.0

=====.=caftc=&==_==~==a=E~=~==~~===~=K=QE=

210 34.02 34.03 0.5 0.0 150 15.15 14.98 0.5 -0.2 105 12.05 12.05 0.5 0.0 75 1 1 . 14 10.94 0.5 -0.2 53 6.68 6.77 0.5 0.1 3 7 3.45 3.49 0.5 0.0

Page 183: An Investigation of Gold Recovery in the Grinding and Gravit y

Appcndix C 170

( Assaye of Sl:e fractIons f~r feed

Gold Mees. Cale. Std. De\'. : AdJustMent : ~:Rec :

210 0.260 0.284 0.300 CL024 100 150 0.450 0.498 0.250 0.048 100 105 0.730 0.655 0.200 -0.07S 100 75 0.660 0.694 0.200 0.034 100 53 0.980 0.973 0.:00 -0.007 100

37 0.990 0.958 0.200 -0.032 100 PAN 0.650 0.446 0.200 -0.204* 100

Assays of Sl:e fract 10ns for eonc

Gold Mess. Cale. St d. Dev. 1 AdJustMent 1 ~Rec 1 , 1 1

210 ".810 0.809 0.300 -0.001 14 150 0.570 0.568 0.250 -0.002 5 105 0.510 0.514 0.200 0.004 4 75 0.810 0.808 0.200 -0.002 5 53 1.090 1.090 0.200 0.000 6

'~ 37 1.300 t .30: 0.:00 0.002 7

PAN 0.250 0. :59 0.:00 0.009 7 ..J

Assays of Sl:e fract 10ns for tell

Gold Meas. Cale. St d. Dev. ,

AdJustMent 1 ~Rec 1 1 1 1

210 0.280 0. :57 0.300 -0.023 86 150 0.540 0.494 0.250 -0.046 95 105 0.590 0.662 0.200 0.072 96 75 0.720 0.688 0.200 -0.03: 95 53 0.960 0.967 0.200 0.007 94 37 0.910 0.940 0.:00 0.030 93

PAN 0.260 0.455 0.200 0.195 97

Page 184: An Investigation of Gold Recovery in the Grinding and Gravit y

..t;~

"t_»

Appendix C

ReSldual SUM of squares: ::.26311 Final Results

3

StreaM

feed conc tall

StreaM

feed 2 conc :3 tell

Gold

feed cone tall

210 150 105 75 53 37

51:e

Pulp Mas~ Flowrate flbsolute SOllds Flowrate Meas Cal: 5.0. AdJust

183.00 13.30

169.70

RelatIve SOllds Flowrate

100.00 7.:7

9:.73

183.0 13.3

183.0 13.3

169.7

Assay Data

Meas.

0.740 1.130 0.430

Cale.

0.490 1.135 0.439

Std. De\'.

0.100 0.050 0.020

9.0 0.7

-0.:50*: 0.005 0.009

0.0 0.0

:~ Rec

100 17 83

Fractlonal Slze DIstrIbutIon Data

Mees

29.62 15.53 1:.7: 11.0: 7.8: 4.27

Mees

feed Cale

30.80 15.40 12.59 10.79 7.58 4.18

tall Cale

50. : Adj.

0.5 1 .2*: : 0.S -0.1 Il

, 1

0.5 -(1).1 Il Il

0.5 -(1).: 0.5 -0.2 Il

Il

0.5 -0.1 Il

"

50. Adj.

Mees

34.89 l ':i. 11 12.21 10.60 6.79 :3.81

cone Ca le

34.80 15.1: 1~.:2

10.6: 5.81 3.82

50. : Adj.

0.5 -0.1 0.5 '1.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0

=a~zzm=z==~.=====Z===_===Q=====.=======E=

210 31.58 30.49 0.5 -1 . 1 *: 150 15.31 15.43 0.5 0.1 105 12.50 1:2.62 0.5 0.1 75 10.60 10.81 0.5 0.2 53 7.4: 7.64 0.5 0. : 37 4.12 4.:: ' D.~ 0.1

IiI

Page 185: An Investigation of Gold Recovery in the Grinding and Gravit y

Appcndix D li2

(

Appendix D

Experimental Results of the Gold Room

:{ ,

Page 186: An Investigation of Gold Recovery in the Grinding and Gravit y

Gold Mees. Cale. Std. De\. : AdJustMent : :';Rec

210 0.:::0 0.307 0.300 0.08'1 100 150 0.530 0.480 0.:50 -0.050 100 105 0.590 0.59: 0.:00 0.00: 100 75 0.720 0.755 0.:00 0.035 100 53 0.930 0.863 0.200 -0.067 10~

37 1.460 1.186 0.:00 -0.274· 100 PAN 0.330 0.254 0.:00 -0.076 100

Assays of 5 l::e frad lons for eone

Gold Meas. Cale. Std. Dev. 1 AdJustMent 1 XRec 1 1

210 1.730 1.723 0.300 -0.007 46 150 0.640 0.644 0.:50 0.004 10 105 1.030 1.030 0.200 -0.000 12 75 0.980 0.978 0.200 -0.00: 9 53 1.000 1.004 0.:00 0.004 8 37 1.460 1.478 0.200 0.018 8

PAN 0.440 0.445 0.200 0.005 1:

Assays of Sl::e fraetlons for tall

Gold Meas. Cale. Std. Dey. 1 AdJustMent 1 XRec 1 1

210 0.260 0.180 0.300 -0.080 S4 150 0.420 0.467 0.250 0.047 90 105 0.560 0.558 0.200 -0.002 88 75 0.770 0.738 0.200 -0.032 91 53 0.790 0.853 0.200 0.063 92 37 0.910 1.166 0.:00 0.256 • 92

PAN 0.170 0.241 0.200 el .071 eB

Page 187: An Investigation of Gold Recovery in the Grinding and Gravit y

Appcndix D 173

Test l (April 13, 1987): 19cm Knelson rougher feed

Sue (un)

Size Dlst. Stream (X)

Mess (g)

Yield on

Cum. Y. Grade (lU (oz/st)

Cun. G.

Coz/st) Uni t

(oz)

Recov. Cum. R.

(%) (%)

0·38 1.40

38·53 1.74

53·75 3.30

75'106 8.43

106·150 14.04

150·212 18.32

212·300 19.01

+300 33.76

All 100.00

C

Ml T

F

C

Ml M2 T

F

C

M' M2 T F

C

Ml M2 T

F

0.41 1.10

30.50

32.01

1.37 2.30

3.10

33.70

1.28 1.28 14410.00 14410.00 18457.04 3.44 4.72 240.69 4087.99 827.11

95.28 100.00 79.06 268.17 7533.05 100.00 268.17 26817.21

3.39 3.39 22946.14 22946.14 77677.80 5.68 9.07 426.71 8833.14 2425.09

7.66 16.73 81.89 4825.92 627.24 83.27 100.00 176.10 953.94 14664.12

68.83 68.83 3.08 71.91

28.09 100.00 100.00

81.43 81.43 2.54 83.97 0.66 84.63

15.37 100.00 40.47 100.00 953.94 95394.25 100.00

1.61

8.50 2.11

11.15

2.11 22993.38 22993.38 48575.44 13.27 1215.50 4683.59 13556.89

13.20 17.32 30.59 438.21 2279.51 7589.96 52.90 69.41 100.00 142.02 795.80 9858. la

61.04

17.04 61.04 78.07

9.54 87.61 12.39 100.00

76.21 100.00 795.80 79580.39 100.00

0.87 20.40 31.60

45.70 98.57

0.88

20.70

32.06 46.36

100.00

0.88 22299.44 22299.44 19681.96

21.58 646.48 1532.14 13379.52 53.64 177.26 722.34 5682.68

100.00 130.47 447.93 6048.98

447.93

43.94

29.87 12.69

13.50 100.00

43.94

73.81 86.50

100.00

C 0.47 0.48 0.48 19556.44 19556.44 9296.58 32.08 32.08

Ml 13.90 14.06 14.53 925.37 1534.74 13009.65 44.89 76.97

M2 T F

C

Ml M2 T

F

C Ml M2 T F

C

Ml M2

31.50 31.86 46.39 102.94 551.49 3279.67 11.32 88.28 53.00 53.61 100.00 63.34 289.81 3395.39 11.72 100.00

98.87 100.00 289.81 28981.29 100.00

0.58 10.40 18.40

70.30

99.68

0.87 8.20 6.40

84.50 99.97

38.10

28.50 144.70

0.58

10.43 18.46

70.53

100.00

0.58 19330.27 19330.27 11247.55

11.02 1090.65 2054.13 11379.17

29.47

100.00

37.74

36.96

259.30

791.31

259.30

696.65

2606.63 25930.00

43.38

43.88 2.69

10.05 100.00

43.38

87.26 89.95

100.00

0.87

8.20

0.87 22504.28 22504.28 19584.60 77.68 77.68

9.07 336.59 2462.93 2760.87 10.95 88.64 6.40 15.47 65.30

28.95 252.10

84.53 100.00 100.00

4.80

3.59 18.24

4.80 4130.75

8.40 283.02 26.64 61.75

1471.02 418.01

252.10 2447.01 25210.49

4130.75 19838.85

2484.20 1016.17 825.29 1126.34

1.66

9.71 100.00

81.30

4.17 4.62

90.29

100.00

81.30 85.47 90.08

T 582.00 73.36 100.00 32.98 244.02 2419.56 9.92 100.00 F 793.30 100.00 244.02 24401.52 100.00

C

Ml M2 T F

51.38

210.05 439.01

2.18

8.92

18.64

2.18 8555.02

11.10 718.63

29.74 95.94

1655.12 70.26 100.00 48.85

302.88 2355.56 100.00

8555.02 18659.75

2258.72 6408.13 903.16 1788.04

61.61

21.16 5.90

61.61

82.76 88.67

302.88 3432.54 11.33 100.00

30288.46 100.00

Page 188: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix D 1 j.,

Test 1 (Apri113, 1987): ! 9cm Knclson roughcr tail

She (LIlI)

0-]8

38-53

53-75

75·106

Size Dist. Stre .. CX)

0.93

1.34

3.50

6.89

C

Ml T

F

C

M1 M2 T

F

C

Ml Ml T

F

C

M1 M2 T

F

106-150 14.35

C

M1 M2 T

F

150·21Z

212-300

+300

AU

19.65

19.54

33.79

100.00

C

Ml M2 T

F

C

Ml M2 T

F

C Ml M2 T F

C Nl M2 T F

Mass (g)

Yield (1)

CIJII. Y. Graide CIIII. G.

(lU Coz/st) Coz/st)

Unit Coz)

Recov. Cun. R. Cl) (X)

0.96 4.43 4.0 112.56 112.56 498.88 39.48 39.48 1.96 9.05 13.48 18.53 49.44 167.68 13.27 52.75

18.74 86.52 100.00 6.90 12.64 596.98 47.25 100.00 21.66 100.00 12.64 1263.54 100.00

0.60 1.26

1.118 3.94

1.as 2606.25 2606.25 4889.n 5.82 33.33 863.30 131.33

86.94 86.94 2.34 89.28

4.80 15.01 20.83 8.00 246.87 120.08 2.13 91.41 25.32 79.17 100.00 6.10 56.24 482.96 8.59 100.00 31.98 100.00 56.24 5624.14 100.00

0.42 0.50 0.50 8572.37 8572.37 4313.92 79.39 79.39 2.96 3.55 4.05 105.14 1157.28 372.89 6.86 86.25

29.74 35.63 39.68 7.27 124.63 259.06 4.n 91.02

50.34 60.32 100.00 8.09 54.34 487.96 8.98 100.00

83.46 100.00 54.34 5433.82 100.00

o.n o.n o.n 5762.60 5762.60 4176.22 80.55 80.55

5.49 5.53 6.25 58.20 719.58 321.61 6.20 86.75

47.41 47.n 53.97 8.58 90.92 409.44 7.90 94.65 45.73 46.03 100.00 6.03 51.85 2n.56 5.35 100.00

99.35 100.00 51.85 5184.82 100.00

0.84 0.85 0.85 4862.39 4862.39 4119.42 82.07 82.07 4.83 4.87 5.n 51.54 764.26 251.07 5.00 87.07

47.68 48.09 5].81 9.70 89.89 466.46 9.29 96.36 45.80 46.19 100.00 3.95 50.19 182.46 3.64 100.00 99.15 100.00 50.19 5019.42 100.00

0.37 2.41

43.47 53.74 99.99

0.63 3.47

29.92 65.97 99.99

17.40 35.60

115.00 637.60 805.60

28.34 95.63

740.15 1534.84

0.17 2.41

43.47 53.~

100.00

0.63 3.47

29.92 65.98

100.00

2.16 4.42

14.28 79.15

100.00

0.3712353.77 12353.77 4571.35 2.78 232.n 1845.95

46.25 18.97 128.79 100.00 4.09 61.77

61.77

560.91 824.71 219.82

6176.79

0.63 8320.88 8320.88 5242.68 4.10 140.20 1397.23 486.54

34.02 22.46 188.14 672.07 100.00 4.82 67.19 318.01

67.19 6719.30

2.16 5372.20 5372.20 11603.31 6.58 175.85 1881.82 m.09

20.85 24.90 610.71 355.45 100.00 12.11 136.94 958.46

136.94 13694.31

1.18 1.18 5878.57 5878.57 6944.18 3.99 5.17 136.09 1448.83 542.48

30.85 36.02 16.83 222.26 519.35 63.98 100.00 7.87 85.10 503.66

74.01 9.08

13.35 3.56

100.00

78.02 7.24

10.00 4.73

100.00

84.73 5.67 2.60 7.00

100.00

74.01 83.09 96.44

100.00

78.02 85.27 95.27

100.00

84.73 90.41 93.00

100.00

81.60 81.60 6.37 87.98 6.10 94.08 5.92 100.00

2398.95 100.00 85.10 8509.67 100.00

Page 189: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix D 1 ï5

Test 1 (April 13, 1987): 19cm Knelson scan venger tail

Size (~)

Size Olst. Stream C,,)

0-38 0.48

38-53 0.32

53-75 1.83

75-106 6.69

106-150 11.82

150-212 21.96

212-300 18.11

+300 38.78

AU

C

Ml T

f

C

Ml H2 T

F

c Ml M2 T F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2 T

f

c Ml M2 T

F

c

"" T

F

Mass Yleld CII1I. Y. Grade c~. G Unit

(oz)

Recov. Cum. R.

(%) Cg) Cl) (l) (oz/st) (%) (%)

0.44 1.08

3.49

8.78 21.56 69.66

5.01 100.00

0.25 0.74 1.08

6.98

20.67 30.17

8.78 30.34

100.00

6.98

27.65 57.82

80.21 2.33

1.76 8.77

80.21 24.88

8.77

704.40 50.29

122.39

80.31 5.73

13.95 877.09 100.00

71.80

9.23 10.58

80.31 86.05

100.00

71.80

81.03 91.62

. 1.51 42.18 100.00

494.66

21.48 16.88 9.56

48.11

494.66 3454.29 140.97 444.00 76.23 509.17 48.11 403.27 8.38 100.00

3.58 100.00

0.61 6.45

6.63

6.92

2.96

31.30 32.17

33.58

20.61 100.00

2.08

24.73 42.87

4810.73 100.00

2.96 1204.17 1204.17 3564.02

34.26 66.42

100.00

108.88 165.58 60.11 263.21

49.70 977.16

71. 71 71. 71

3.33 75.04 5.30 80.34

19.66 100.00

5.29

8.18

29. la 49.70 4969.98 100.00

2.08 1460.44 1460.44 3040.56

26.81 14.36 126.64 355.14 69.69 3.61 50.95 154.77

82.88

9.68 4.22

82.88

92.56 96.78

1.57

18.65 32.33 22.86 30.31 100.00 3.90

36.69 36.69 118.23 3 22 100.00

75.41 100.00

5.32 59.17 28.79

39.66 132.94

5.04

23.10 38.36 57.95

124.45

1.43

11.04 25.44

66.32

104.23

15.30

30.00

84.70

4.00 44.51 21.66

29.83

100.00

4.05

18.56 30.82 46.56

100.00

1.37

10.59 24.41

63.63 100.00

3.51

6.88 19.43

4.00 48.51 70.17

100.00

4.05

22.61 53.44

100.00

426.26 23.61

2.20 2.35

28.74

536.79

24.17 4.99

1.40 28.42

3668.70 100.00

426.26 1705.80 56.83 1050.85 39.97 47.64

28.74 70.11

2874.40

536.79 2173.91

115.98 448.64 51.96 153.81 28.42 65.19

2841.55

59.34

36.56 1.66 2.44

100.00

76.50

15.79 5.41

2.29 100.00

1.37 1921.29 1921.29 2635.94 82. la 2.11

10.93

4.86

100.00

11.96 36.37

100.00

3.51

10.39

29.82

6.41 14.38

2.45 32.11

226.00 83.99

32.11

67.89 350.98

155.89

3210.70

867.60 3044.56

319.02 270.07

123.84 377.85

70.49

6.25

8.75

59.34 95.90

97.56

100.00

76.50

92.29 97.71

100.00

82.10

84.21 95. lI.

100.00

70.49

76.74

85.49 306.00 70.18 100.00

867.60

39.25 19.45

8.93 43.19

43.19 626.74 14.51 100.00 436.00 100.00

36.56 184.76 281.17

629.46 1131. 96

3.23 16.32

24.84

55.61

100.00

4319.21 100.00

3.23 811.33 811.33 2620.50 73.27 10.30

7.45

8.99 , 00.00

19.55

44.39

100.00

22.56 152.86 368.27

10.72

5.78 35.77

73.33

35.n 266.34

321.59

3576.70

73.27 83.56

91.01

100.00

Page 190: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix D 17(i

Size (un)

0·38

38·53

53·75

75·106

106·150

150·212

212·300

+300

ALI

Si ze Dlst. Stream (X)

0.84

1.12

3.29

7.07

10.21

20.11

C

Ml T

C

Ml M2 T

F

C

Hl M2 T

C

Ml M2 T

F

C

Ml M2 T

F

C

Ml M2

Test 1 (April 13, 1987): Riilleless table fcccl Mass

(g)

0.27

0.58

2.27

Ylcld

eX)

8.70

18.64

72.66

CYl1. G.

ex)

8.70

27.34

100.00

Grade (oz/st)

C\.II1. G.

(oz/st) Uni t

(oz)

793.20 6901.35

1054.60 21926.93

542.88 25459.87

Recov.

(%)

12.71

40.39

46.90

12.71

53.10

100.00

3.13 100.00

793.20

1176.65

350.38

542.88 54288.15 100.00

1.24

1.01

0.89

1.08

29.41

23.92

21. 10

25.57

29.41 24758.25 24758.25 728145.93

53.33 3477.42 15212.32 83194.46

74.43 405.94 11015.54 8564. lI,

100.00 2802.74 8915.66 71661.51

81.67

9.33

0.96

8.04

81.67

91.00

91.96

100.00

4.23 100.00 8915.66 891566.02 100.00

3.07 23.84 23.84 23316.64 23316.64 555755.62

1.38 10.74 34.57 4519.68 17478.47 48533.01

4.16

4.27

12.88

32.27 66.85 285.77 9177.97 9222.41

33.15 100.00 1001.55 6467.16 33205.30

100.00 6467.16 646716.34

3.22

3.22

11.60

11.61

12.21 44.03

9.08 32.76

27.73 100.00

3.21

5.48

15.59

15.77

40.05

2.53

3.30

30.86

8.01

13.68

38.94

39.37

100.00

3.20

4.17

39.04

11 .60 24683.35 24683.35 286364 37

23.21 3391.01 14033.21 39370.25

67.24 189.22 4968.44 8330.51

100.00 506.39 3506.56 16590.69

3506.56 350655.81

8.01 24230.68 24230.68 194204.06

21.70 1223.71 9722.45 16742.84

60.63 367.66

100.00 204.65

2333.19

3715.16 14315.38

2333.19 8056.35

233318.62

3.20 25986.05 25986.05 83195.12

7.37 12518.37 18369.32 52173.18

46.40 855.41 3636.70 33391.22

85.93 85.93

7.50 93.44

1.43

5.13

100.00

81.67

11.23

2.38

4.73

100.00

83.24

7.18

6. lI,

3.45

100.00

46.65

29.26

18.72

94.87

100.00

81.67

92.89

95.27

100.00

83.24

90.41

96.55

100.00

46.65

75.91

94.63

T 42.37 51.60 100.00 178.52 1783.27 9567.85 5.37 100.00

17.94

39.41

100.00

F 79.06 lCO.OO 1783.27 178327.38 100.00

C

Hl

H2 T

F

C

Hl H2 T

F

C

Hl

H2 T

F

0.82

2.05

18.07

49.67

1.16

2.91

25.59

70.33

1.16 25146.76 25146.76 29274.62

4.07 12675.28 16239.12 36881.77

29.67 3253.27 5036.50 83261.10

100.00 272.74 1686.00 19182.64

17.36

21.88

49.38

11.38

17.36

39.24

88.62

100.00

70.62 100.00 1686.00 168600.13 100.00

21.00 13.89 13.89 3218.25 3218.25 44697.92

19.30 12.76 26.65 943.00 2128.6112036.97

52.40

58.50

34.66

38.69

61.31

100.00

1154.12 14023.58

814.74 10715.33

54.86 54.86

14.77 69.64

17.21

13.15

86.85

100.00

151.20 100.00

404.65

276.95

814.74 81473.80 100.00

35.86

36.78

9.15 9.15 11603.51 11603.51 106205.87

9.39 18.54 3096.07 7295.99 29064.07

135.12 34.49 53.03 859.21 3109.7229631.82

184.04

391.80

46.97

100.00

100.00 291.59

1785.99

1785.99 13696.85

178598.61

59.47 59.47

16.27 75.74

16.59 92.33

7.67

100.00

100.00

Page 191: An Investigation of Gold Recovery in the Grinding and Gravit y

Appendix E 177

(

Appendix E

(

Computer Programs

f •

Page 192: An Investigation of Gold Recovery in the Grinding and Gravit y

C ******************************************** C *** Smoothing a separability curve *** C *** by cubic spline functions *** C ********************************************

IMPLICIT REAL(A-H, O-Z) DIMENSION X(5),Y(5),H(10),A(10),B(10),C(10),D(10) DIMENSION XB(Sl),YB(Sl)

C 30" KNELSON TAIL #3, 6PSI, 150-212 um DATA X/O.O,23.08,49.40,73.00,100./ DATA Y/O.O,1.12,7.39,30.07,100./ N=5 N1=N-1 N2=N-2 IP=51 XL=X(N) -X(l) OPEN(3,FILE='R-Y') OPEN (4, FlLE=' ABCO' )

C DO 10 I=1,N1

10 H(I)=X(I+l)-X(I) DO 20 I=1,N2

A( 1) =H (1) B(I)=2.0*(H(I)+H(I+1» CCI) =H(I+1) D(I)=3.0*«Y(I+2)-Y(I+1»/H(I+1)-(Y(I+1)-Y(I»/H(I»

20 CONTINUE A(N2)=(H(N2)**2-H(N1)**2)/H(N2) B(N2)=(H(Nl)+H(N2»*(H(N1)+2*H(N2»/H(N2)

DO 40 I=2,N2 T=A( 1) lB (1-1) B(I)=B(I)-C(I-1)*T

40 D(I)=D(I)-D(I-1)*T B(N1)=D(N2)/B(N2)

DO 50 K=2,N2 I=N1-K

50 B(I+1)=(D(I)-C(I)*B(I+2»/B(I) B(N)=B(N1)*(H(N1)+H(N2»/H(N2)-B(N2)*H(Nl)/H(N2) B(l)=O.O

WRITE (4,80) 80 FORMAT(lX, 'NO.' ,6X, 'A(I)', 7X, 'B(I)', 7X, 'C(I)', 7X, '0(1)' ,/)

DO 90 I=1,N1 A(I)=(B(I+1)-B(I»/H(I)/3.0 C(I)=(Y(I+1)-Y(I»/H(I)-H(I)*(B(I+1)+2.0*B(I»/3.0 WRITE ( 4, 100) l, A ( 1) , B (1) , C (1) , y (1) , H ( 1) , X ( l )

90 WRITE(*,100) I,ACI) ,B(I) ,C(I), Y(L) ,H(l) ,X(l) WRITE(*,101) B(N) WRITE(*, *)

100 FORMAT(lX,I3,6(2X,f9.2» 101 FORMAT(17X,f9.2) C

DO 120 I=l,IP 120 XB(I)=X(1)+XL*FLOAT(I-1)/FLOAT(IP-l)

DO 150 J=l,IP DO 130 I=1,N1

KI=I IF (X(I).GT.XB(J» GOTO 140

130 CONTINUE 140 KO=KI-l

Page 193: An Investigation of Gold Recovery in the Grinding and Gravit y

W=XB(J) -x (KO) YB(J)-A(KO)*W**3+B(KO)*W*W+C(KO)*W+Y(KO)

150 CONTINUE YB(IP)=Y(N) DO 170 I-1,IP WRITE(3,160) XB(I),YB(I)

170 WRITE(*,160) XB(I),YB(I) 160 FORMAT(2(3X,f9.2»

CLOSE (3) STOP END

Page 194: An Investigation of Gold Recovery in the Grinding and Gravit y

0.00 0.00 2.00 0.07

~ 4.00 0.13 6.00 0.20

l 8.00 0.27 10.00 0.35 12.00 0.44 14.00 0.54 16.00 0.64 18.00 0.76 20.00 0.89 22.00 1.04 24.00 1.20 26.00 1.38 28.00 1.59 30.00 1.83 32.00 2.11 34.00 2.44 36.00 2.83 38.00 3.28 40.00 3.80 42.00 4.40 44.00 5.08 46.00 5.85 48.00 6.72 50.00 7.69 52.00 8.78 54.00 10.00 56.00 11.35 58.00 12.85

~ 60.00 14.51 ~ 62.00 16.35 ... 64.00 18.37

66.00 20.58 68.00 23.01 70.00 25.66 72.00 28.54 74.00 31.66 76.00 35.05 78.00 38.70 80.00 42.63 82.00 46.85 84.00 51.38 86.00 56.23 88.00 61.40 90.00 66.91 92.00 72.78 94.00 79.01 96.00 85.61 98.00 92.61

100.00 100.00

(

Page 195: An Investigation of Gold Recovery in the Grinding and Gravit y

,..,..

C C C ("

l. C C C

C

*************************************************** *** Generate qold recovery on the bas;' of *** *** yield using 51 points R-Y data got by *** *** cubic spline functions, which is in order *** *** to qet Rt and Rf at same yield to *** *** calculate free qold recovery later *** ***************************************************

IMPLICIT REAL(A-H,O-Z) DIMENSION X(51),Y(51),H(51),A(51),B(51),C(51),D(51) DIMENSION XB(40l),YB(401) N=5l Nl=N-l N2=N-2 IP-2l OPEN(3,FILE='R-Y') OPEN(4,FILE='ABCD')

DO 5 I-l,N READ(3,*) Y(I),X(I)

5 CONTINUE C

XL=X(N) -X(l) DO 10 I=l,Nl

10 H(I)=X(I+l)-X(I) DO 20 I=1,N2

A(I) =H(I) B(I)-2.0*(H(I)+H(I+l» C(I)=H(I+l) D(I)-3.0*«Y(I+2)-Y(I+l»/H(I+l)-(Y(I+l)-Y(I»/H(I»

_ CONTINUE

C

A(N2)=(H(N2)**2-H(Nl)**2)/H(N2) B(N2)=(H(Nl)+H(N2»*(H(Nl)+2*H(N2»/H(N2)

DO 40 1-2,N2 T-A(I)/B(I-l) B(I)-B(I)-C(I-l)*T

40 D(I)-D(I)-D(I-l)*T B(Nl)=D(N2)/B(N2) DO 50 K=2,N2

I=Nl-K 50 B(I+l)=(D(I)-C(I)*B(I+2»/B(I)

B(N)=B(Nl)*(H(Nl)+H(N2»/H(N2)-B(N2)*H(Nl)/H(N2) B(1)-O.O WRITE(4,80)

80 FORMAT ( lX, , NO. ' , 6X, , A (1) , , 7X, , B (1) , , 7X, , C (1) , , 7X, , D (1) , ,/) DO 90 I-l,Nl

A(I)-(B(I+l)-B(I»/H(I)/3.0 C(I)-(Y(I+l)-Y(I»/H(I)-H(I)*(B(I+l)+2.0*B(I»/3.0 WRITE(4,100) I,A(I),B(I),C(I),Y(I)

90 WRITE(*,lOO) I,A(I),B(I),C(I),Y(I) 100 FORMAT(lX,I3,4(2X,f9.2» C

WRITE (*,110) 110 FORMAT(//,2X,'NO.',5X,'XB(I)',5X,'YB(I)',/)

XB(l)=O XB(2)=0.1 XB(3)=0.25 XB(4)=O.5 XB(I5)=l

Page 196: An Investigation of Gold Recovery in the Grinding and Gravit y

(

(

(

XB(6) =1.S XB(7)=2 XB(S) =4 XB(9) =6 XB(lO)=S XB(11)=10 XB(12)=lS XB(13)=20 XB(14)-=30 XB(15)-40 XB(16)-SO XB(17)-60 XB(18)-70 XB(19)-SO XB(20) -90 XB(21)-100 DO 150 J"l, IP

DO 130 I=1,N1 KI=I IF (X(I).GT.XB(J» GOTO 140

130 CONTINUE 140 KO-KI-1

W=XB(J) -X(XO) YB(J)-A(KO)*W**3+B(XO)*W*W+C(KO)*W+Y(KO)

ISO CONTINUE YB(IP)·Y(N) DO 1",0 I-1,IP WRITE(3,160) I,XB(I),YB(I)

170 WRITE(*,160) I,XB(I),YB(I) ,-~ FORMAT(lX,I3,2(3X,f9.2»

END

Page 197: An Investigation of Gold Recovery in the Grinding and Gravit y

0.0000 0.0000 2.0000 0.0651 4.0000 0.1316 6.0000 0.2010 8.0000 0.2747

10.0000 0.3543 12.0000 0.4412 14.0000 0.5'367 16.0000 0.6425 18.0000 0.7598 20.0000 0.8902 22.0000 1. 0352 24.0000 1.1962 26.0000 1.3774 28.0000 1.5857 30.0000 1.8282 32.0000 2.1120 34.0000 2.4442 36.0000 2.8318 38.0000 3.2820 40.0000 3.8018 42.0000 4.3984 44.0000 5.0788 46.0000 5.8501 48.0000 6.7194 50.0000 7.6938 52.0000 8.7821 54.0000 9.9960 56.0000 11. 3473 58.0000 12.8481 60.0000 14.5102 62.0000 16.3455 64.0000 18.3661 66.0000 20.5837 68.0000 23.0104 70.0000 25.6581 72.0000 28.5387 74.0000 31. 6640 76.0000 35.0462 78.0000 38.6970 80.0000 42.6284 82.0000 46.8524 84.0000 51.3808 86.0000 56.2256 88.0000 61.3988 90.0000 66.9121 92.0000 72.7777 94.0000 79.0073 96.0000 85.6129 98.0000 92.6065

100.0000 100.0000 1 0.00 0.00 2 0.10 3.06 3 0.25 7.35 4 0.50 13.25 5 1.00 21.53 6 1.50 27.21 7 2.00 31.25 8 4.00 40.69 9 6.00 46.36 -

.... '"

Page 198: An Investigation of Gold Recovery in the Grinding and Gravit y

(

r ,

(

10 Il 12 '"3 ,

15 16 17 18 19 20 21

8.00 50.59 10.00 54.01 15.00 60.55 20.00 65.49 30.00 72.96 40.00 78.68 50.00 83.40 60.00 87.47 70.00 91.07 80.00 94.31 90.00 97.27

100.00 100.00