an overview of recent results from the national spherical torus experiment office of science m.g....

22
An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell Princeton Plasma Physics Laboratory for the NSTX Research Team International Congress on Plasma Physics Fukuoka 8 – 12 September 2008 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics Idaho NEL Johns Hopkins U Los Alamos NL Lawrence Livermore NL Lodestar MIT Nova Photonics, Inc. New York U Old Dominion U Oak Ridge NL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec Supported by QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Upload: christian-white

Post on 20-Jan-2018

219 views

Category:

Documents


0 download

DESCRIPTION

Bell / ICPP 2008, Fukuoka / NSTX Contributes to Toroidal Confinement Physics, Preparation for ITER and Fusion Energy Development Complements and extends conventional aspect-ratio tokamaks –High  :  T up to 40%,  (0) ~ 1 –Intrinsic cross-section shaping (  > 2, B P /B T ~ 1) –Large fraction of trapped particles  √  r/R)) –Large gyro-radius (a/  i ~ 30–50) –Large bootstrap current (>50% of total) –Large plasma flow & flow shear (M ~ 0.5) – suppresses ion turbulence –High dielectric constant (  ~ 30–100) –Large population of supra-Alfvénic fast ions (v NBI /v Alfvén ~ 4) –High divertor power flux (P/R) – challenges plasma facing materials Explores possibilities for a Plasma-Materials Test Facility or a Component Test Facility (CTF) –High heat flux or neutron fluence in a driven system

TRANSCRIPT

Page 1: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

An Overview of Recent Results from the

National Spherical Torus Experiment

Office ofScience

M.G. BellPrinceton Plasma Physics Laboratory

for the NSTX Research Team

International Congress on Plasma PhysicsFukuoka

8 – 12 September 2008

College W&MColorado Sch MinesColumbia UComp-XGeneral AtomicsIdaho NELJohns Hopkins ULos Alamos NLLawrence Livermore NLLodestarMITNova Photonics, Inc.New York UOld Dominion UOak Ridge NLPPPLPSIPrinceton UPurdue USandia NLThink Tank, Inc.UC DavisUC IrvineUCLAUCSDU ColoradoU MarylandU RochesterU WashingtonU Wisconsin

Culham Sci CtrU St. Andrews

York UChubu UFukui U

Hiroshima UHyogo UKyoto U

Kyushu UKyushu Tokai U

NIFSNiigata UU Tokyo

JAEAHebrew UIoffe Inst

RRC Kurchatov InstTRINITI

KBSIKAIST

POSTECHASIPP

ENEA, FrascatiCEA, Cadarache

IPP, JülichIPP, Garching

ASCR, Czech RepU Quebec

Supported by

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 2: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 2

NSTX Designed to Study High-Temperature Toroidal Plasmas at Low Aspect-Ratio

Aspect ratio A 1.27 – 1.6Elongation 1.8 – 3.0Triangularity 0.2 – 0.8Major radius R0 0.85m

Plasma Current Ip 1.5MA

Toroidal Field BT0 0.4 – 0.55 T(Pulse Length ~2 – ~1 s)Auxiliary heating:NBI (100kV) 5 – 7 MW(Pulse Length 5 – 2 s)RF (30MHz) 6 MW (5 s)

Central temperature 1 – 5 keVCentral density ≤1.21020m-3

Flexible outer PF coils for

shaping, control

Insulated VV breaks for CHI

Graphite/CFC PFCs+ Lithium coating

Slim center column with TF, OH coils

Conducting platesfor MHD stability

Excellentdiagnostic

access

Page 3: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 3

NSTX Contributes to Toroidal Confinement Physics, Preparation for ITER and Fusion Energy Development

• Complements and extends conventional aspect-ratio tokamaks– High : T up to 40%, (0) ~ 1

– Intrinsic cross-section shaping ( > 2, BP/BT ~ 1)

– Large fraction of trapped particles √r/R))

– Large gyro-radius (a/i ~ 30–50)

– Large bootstrap current (>50% of total)– Large plasma flow & flow shear (M ~ 0.5) – suppresses ion turbulence– High dielectric constant ( ~ 30–100)

– Large population of supra-Alfvénic fast ions (vNBI/vAlfvén ~ 4)

– High divertor power flux (P/R) – challenges plasma facing materials

• Explores possibilities for a Plasma-Materials Test Facility or a Component Test Facility (CTF)– High heat flux or neutron fluence in a driven system

Page 4: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 4

Scaling Experiments Have Revealed Role of Electron Transport in NSTX Energy Confinement

4 MW

BT (T)

4 MW

r/a

Weaker dependence of E on Ip E,ITER98y,2 ~ Ip

0.93

Stronger dependence of E on BT

E,ITER98y,2 ~ BT0.15

r/a

Neoclassicalincluding finite banana width

i,GTC-NEO(r/a=0.5-0.8)

Ip-1

Ip (MA)

S. Kaye

Page 5: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 5

Heating Electrons with RF Waves DrivesShort-Wavelength Turbulence in Plasma Core

• Fast waves at high harmonics of ion-cyclotron frequeny (HHFW) heat electrons through electron Landau damping and TTMP

• Fluctuations measured by low-angle forward scattering of 280 GHz µ-waves

• Detected fluctuations in range ke = 0.1 – 0.4 (ks = 8 – 16) propagate in electron diamagnetic drift direction– Rules out Ion Temperature Gradient mode (ks ~ 1) as source of turbulence– Qualitative agreement with linear gyrokinetic code (GS2) for Electron Temperature

Gradient (ETG) mode onset

Before RFDuring RF

E. Mazzucato

Page 6: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 6

Electron Gyro-Scale Fluctuations Can Be Suppressed by Reversed Magnetic Shear in Plasma Core

• Shear-reversal produced by early NB heating during plasma current ramp

• Suppression of Electron Temperature Gradient (ETG) mode by shear-reversal and high Te/Ti predicted by Jenko and Dorland, Phys. Rev. Lett 89 (2002)

Scatteringvolume

q (E

FIT

with

MS

E c

onst

rain

t)

Normal shearReversed shear

E. Mazzucato, H. Yuh

Page 7: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 7

NSTX Extends the Stability Database Significantly

• Benefits of– Low aspect ratio– Cross-section shaping– Stabilization of external modes by conducting plates

Normalized current Ip/a·BT (MA/m·T)

T =

2µ 0

<p>/

BT0

2 (%

) • A = 1.5• = 2.3

• av = 0.6

• q95 = 4.0

• li = 0.6

• N = 5.9%·m·T/MA

• T = 40% (EFIT)34% (TRANSP)

Page 8: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 8

Non-Axisymmetric Field Correction and Feedback by External Coils Extend Duration of High- Plasmas

• Programmed correction of intrinsic n = 3 error field maintains toroidal rotation• Resistive Wall Mode can develop at high normalized-: terminates discharge• Feedback on measured n = 1 mode reliably suppresses RWM growth

– Limitations on time response and applied mode purity explored for ITER

6 ExternalControl

Coils

48 Internal Sensors(BR, BP)

Stabilizing plates

Coils powered by 3 SwitchingPower Amplifiers (3.5kHz, 1kA)– Apply n = 1 & 3 or 2 (4) field

components

S. Sabbagh

Page 9: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 9

Multi-mode TAE bursts induce fast-ion losses

NSTX Accesses Fast-Ion Phase-Space Regime Overlapping With and Extending Beyond ITER

f(m-nq)/qR

• Alfvén cascades observed at low e – Reversed-Shear Alfvén Eigenmodes (RSAE)

• Frequency chirping indicates evolution of qmin

– Matches q(r) analysis with MSE constraint• Modes also observed in MAST device

Alfvén Cascade Modes

E. Fredrickson

0

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8

CTF

ARIES-ST

NSTXITER

fast(0) / βtot (0)

Vfast

/ VAlfv

én

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8

CTF

ARIES-ST

NSTXITER

βfast(0) / βtot (0)

Vfast

/ VAlfv

én

6

5

4

3

2

1

0

v fas

t/vA

lfvén

(NBI)(’s)

Page 10: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 10

MHD Instabilities Affect Confinement of Fast Ions

• Density profile of fast ions (15 – 65 keV) deduced from Doppler-shifted D emission by energetic neutrals created by charge-exchange with NBI neutrals

• During TAE avalanches, measured fast-ion losses up to 30%– Consistent with neutron rate drop– Profile remains peaked

• Low-frequency (kink) activity redistributes fast ions outwards– Can destabilize Compressional

Alfvén Eigenmodes (CAEs) in outboard midplane region

Avalanche

M. Podestá

Page 11: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 11

Peak Heat Flux on Lower Divertor Can Be Reduced By Plasma Shaping

Measure heat flux to divertor with IR thermography of carbon tiles

R. Maingi

• Compare configurations with different triangularity at X-point X

–lower single-null (LSN), X ≈ 0.4

–double-null (DN), X ≈ 0.4

–high triangularity DN X≈ 0.75

• Flux expansion reduces heat flux1 : 0.5 : 0.2

• ELMs: Type I Mixed Type V(large) (small)

Page 12: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 12

Gas Puffing Near X-point Can Produce Radiative Divertor Without Affecting Core Confinement

V. Soukhanovskii

Page 13: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911

NSTX is Exploring and DevelopingLithium-Coated Plasma Facing Components

13

LITER Canisters

2005: Injected lithium pellets, 2 - 5 mg, into He discharges prior to D NBI shot2006: LIThium EvaporatoR (LITER) deposited lithium on divertor between shots2007: Enlarged nozzle, re-aimed at lower divertor to increase deposition rate2008: Dual LITERs covered entire lower divertor; shutters interrupted lithium

stream during plasmas; evaporated ~200g lithium (reloaded 3 times)– Also used “lithium powder dropper” to introduce lithium through SOL

Modeled deposition pattern

Page 14: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 14

Solid Lithium Coating Reduces Deuterium Recycling, Suppresses ELMs, Improves Confinement

• Without ELMs, impurity accumulation increases Prad and Zeff

00.51.0Time (s)100.50101510002000103Ip (MA)PNBI (MW)WMHD (kJ)D.)<n>1020m -3)<T>V)T0)V)PMW)<Zff>129239noLi),129245260mgLi) 0.51.01.5Radius (m)0.00.5ne (1020m-3)0.00.51.00.51.01.5Radius (m)Te (keV)129239 (no Li), 129245 (260mg Li)t=0.62st=0.62s

H. Kugel

Page 15: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 15

Non-Axisymmetric Midplane Coils Can Induce Repetitive ELMs in Lithium-Suppressed Plasmas

• n = 3 resonant magnetic perturbation applied• 11ms duration pulse at 40Hz optimal for this shape (DN, =2.4, =0.8) • RMPs have also modified ELM behavior in non-lithium ELMing plasmas

Radius (m)ne (1020m-3)Te (keV)0.60.00.20.40.00.51.00.51.01.5t = 0.62st = 0.62s

01Ip (MA)024PNBI (MW)0100200WMHD (kJ)050We (kJ)0.00.51.00.00.5<Te> (keV)Time (s)-101Iefc1 (kA)012D.)0.00.5<n>1020m -3)012PMW)0.00.51.016<Zff>Tims)

Reduced Prad and Zeff

J. Canik

Page 16: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 16

Central solenoid flux (Wb)00.5Ip (MA)Time (s)D.)N%.m.T/MA)00.505050.00.51.01.52.0PNBIMW)/101

n=3 Error Field Correction With n=1 RWM Feedbackand Lithium Coating Extends High-N Discharges

116313 – no mode control or Li129125 – with mode control + Li

Onset of n=1 rotating modes avoidedNSTX record pulse-length = 1.8sN 5 sustained for 3-4 CR

• EF/RWM control sustains rotation, high Flux consumption reduced by sustained high + Li conditioning• High elongation = 2.4 increases bootstrap current fraction

Transition to phase with larger, more frequent ELMs

116313 129125

Page 17: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 17

Gas, ECH Injection

Injectorcurrent

– )| +Capacitor bank

10 – 50 mF, 1 – 2 kV

Insulated gaps between inner, outer divertor

plates

Poloidalfield

Toroidalfield

Coaxial Helicity Injection (CHI) Generated 160 kA of Toroidal Plasma Current in NSTX

Toroidal plasma current after ICHI→0 flows on closed surfaces

51015050100150200250Time (ms)kAIpICHI20:1

R. Raman

• After ICHI0, EFIT reconstructs detachment from injector and resistive current decay– Decay rate consistent with Te = 10 – 20 eV

Page 18: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 18

CHI Initiated Discharge Successfully Coupled to Inductive Ramp-up with NBI and HHFW Heating

•Broad density profile during H-mode phase

• Discharge is under full equilibrium control• Loop voltage is preprogrammed• With lithium coating, CHI-initiated discharges are more

reproducible and reach higher currents with similar inductive flux R. Raman

Page 19: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 19

NSTX is Revealing New Physics in Toroidal Magnetic Confinement and Developing the Potential of the ST• Investigating the physics of anomalous electron transport

– Electron transport dominates as a result of ion-scale mode suppression• Extending the understanding of MHD stability at high

– Extending pulse length through active control of low-n modes• Examining stability and effects of super-Alfvénic ions

– Measuring transport of fast ions due to spectrum of Alfvén eigenmodes • Developing techniques to mitigate high heat fluxes on PFCs

– Extreme flux expansion and creating radiative divertor• Assessing the potential of lithium as a plasma facing material

– Solid lithium coatings of PFCs reduce recycling, improve confinement– Liquid lithium divertor will be installed for experiments in 2009

• Developing alternate methods for plasma startup and sustainment– Coaxial Helicity Injection can replace inductive initiation

Page 20: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 20

“Angelfish” MHD Phenomenon Identified as Form of Hole-Clump, Consistent with Theory

• Compressional Alfvén Eigenmode satisfies Doppler-shifted resonance condition for calculated fast ion distribution ( = c - k||vbeam)

– Fast ions modelled with TRANSP code using classical slowing down• Growth rate from theory in reasonable agreement with observation• Controlling fast-ion phase space can suppress deleterious instabilities

– “Angelfish” instability suppressed by addition of HHFW heating

E. Fredriickson

Page 21: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911 21

Improvement in Confinement with Lithium Mainly Through Broadening of Electron Temperature Profile

• Broader electron temperature profile reduces internal inductance li and inductive flux consumption in current flattop, despite higher Zeff

• Lithium increases edge bootstrap current through higher p’, lower collisionality

WMHD<EFIT> (kJ)

We<T

S> (

kJ)

Ave

rage

loop

vol

tage

in I p

flat

top

(V)

T e(0

) (ke

V)

Page 22: An Overview of Recent Results from the National Spherical Torus Experiment Office of Science M.G. Bell…

Bell / ICPP 2008, Fukuoka / 080911

• Evaluate capability of liquid lithium to sustain deuterium pumping beyond capacity of solid film

• Upgrade to long-pulse capability will require method for core fueling• Compact Toroid injection or frozen deuterium pellets

In 2009, NSTX Will Begin Investigating Liquid Lithium on Plasma Facing

Components•Replace rows of graphite tiles in outer lower divertor with segmented plates

•Molybdenum surface on copper substrate with temperature control– Heated above Li melting point

180°C– Active heat removal to counteract

plasma heating•Initially supply lithium with LITER and lithium powder dropper

Liquid Lithium Divertor (LLD)

22