an overview of the nasa space radiation laboratory

34
NASA Space Radia*on Laboratory A. Rusek Bldg. 911B Brookhaven Na*onal Laboratory Upton, NY 11973 [email protected] , (631)3445830 FISO Telecon 4/1/15 hRp://spirit.as.utexas.edu/~fiso/archivelist.htm

Upload: spaceref

Post on 16-Jan-2016

364 views

Category:

Documents


0 download

DESCRIPTION

Adam Rusek got his PhD in experimental physics from the University of New Mexico in Albuquerque, the thesis experiment for which was carried out at Brookhaven National Laboratory (BNL), where he received a position upon graduation, in 1995. In 1999 he accepted a position as the dosimetry physicist for the NASA Space Radiation Laboratory (NSRL) at BNL, not yet built at the time, but beginning operations in 2013. This position he held until 2014, when he became Principal Investigator for the facility.

TRANSCRIPT

Page 1: An Overview of the NASA Space Radiation Laboratory

NASA  Space  Radia*on  Laboratory  A.  Rusek  

Bldg.  911B  Brookhaven  Na*onal  Laboratory  

Upton,  NY  11973  

[email protected],  (631)344-­‐5830  

FISO  Telecon    4/1/15                  hRp://spirit.as.utexas.edu/~fiso/archivelist.htm  

Page 2: An Overview of the NASA Space Radiation Laboratory

Origins  

•  Mo*va*on:  Ground  based  ion  source  for  simula*ng  solar  and  cosmic  ray  radia*on  to  study  its  affects  on  biology.  –  Assess  the  risks.  –  Study  countermeasures.  

•  Funding:  NASA  ($33M)  •  Know  how:  BNL  (DOE)  •  Project  started  2000,  commissioned  2003.  •  On  *me,  on  budget.  

NSRL Brookhaven National Laboratory 1  

Page 3: An Overview of the NASA Space Radiation Laboratory

Beam  Design  

•  Designed  based  on  the  experience  gained  through  work  at  LBL  and  BNL  (AGS)  (dose-­‐based  cutoff)  –  Beam  as  uniform  as  possible  (±10%  was  typical)  

–  Usually  round  beam  

–  Cutoff  achieved  by  means  of  ion  chambers/computer/extrac*on  controls  

 

•  NSRL  beam  is  geared  towards  (but  not  restricted  to)  biology  work  (dose-­‐based  cutoff)  –  Beam  uniformity  in  the  useful  area  is  ±2.5%  

–  Square  beam  (during  biology  work)  

–  Cutoff  achieved  by  means  of  ion  chambers/computer/extrac*on  controls          

NSRL Brookhaven National Laboratory 2  

Page 4: An Overview of the NASA Space Radiation Laboratory

Beam  

•  Tandem/Linac/EBIS  to  Booster  •  Booster  to  NSRL  beam  line  by  slow  extrac*on  

•  Beam  shaped  in  the  100  m  beam  line  and  •  Delivered  to  the  NSRL  target  room  (300ms  spill  every  4  sec)  

EBIS  (ions,  20  MeV)  

Tandem  (ions,  20  MeV/n)  

Slow  extrac*on  into  NSRL  

Booster  synchrotron  

(up  to  1000  MeV/n)  

Shape  and  deliver  to  the  target  room  

NSRL Brookhaven National Laboratory

Linac  (protons,  200  MeV)  

3  

Page 5: An Overview of the NASA Space Radiation Laboratory

Schedule  

•  3  runs,  or  campaigns  a  year:  Spring,  Summer  and  Fall  •  6-­‐9  weeks  each  

–  Total  of  about  24  weeks  per  year,  typically.    

–  spring  and  summer  have  been  run  as  one  16  week  long  run  for  the  past  3  years  

•  Irradia*ons  take  place  during  1-­‐2  shiis  daily,  on  week  days  only  (almost  true)  –  Leave  a  cushion  for  machine  down  *me  

–  Allow  for  lab  *me  following  irradia*on  

NSRL Brookhaven National Laboratory 4  

Page 6: An Overview of the NASA Space Radiation Laboratory

0.1  

1  

10  

100  

1000  

10000  

0.1   1   10   100   1000   10000  

Range  in  water  (m

m)  

LET  in  water  (KeV/µm)  

H 1500  

1000  800  700  600  500  400  

300  

200  

100  80  70  60  50  

40  

30  

20  

10  

He

C O Ne

Si Cl Ar Ti Fe

Kr Nb

Xe Ta

Au

5  

Page 7: An Overview of the NASA Space Radiation Laboratory

NSRL Brookhaven National Laboratory 6  

Page 8: An Overview of the NASA Space Radiation Laboratory

NSRL  NASA  Space    Radia*on  Laboratory  

RHIC  Relatevis*c  Heavy  Ion  Collider  

AGS  Alterna*ng  Gradient  Synchrotron  

TANDEM  Ion  Source    

LINAC  Linear  Accelerator  Proton  Source  

BOOSTER  Synchrotron  

EBIS  Electron      Beam  Ion    Source  

Medical  Department  Labs  and  User  Support  

NSRL Brookhaven National Laboratory 7  

Page 9: An Overview of the NASA Space Radiation Laboratory

Support  Building  

•   Beam  and  dosimetry  control  center  •  Experiment  staging  area  

•  Cell  labs  (3)  separated  from  animal  labs  (2)  •  Physics  support  lab  (1)    

NSRL Brookhaven National Laboratory

C    

C    

C   A   A  

A  

D  

P  

8  

Page 10: An Overview of the NASA Space Radiation Laboratory

12”  beam  pipe  

8”  beam  pipe  

R-­‐Line:  From  Booster  to  NSRL  

9  

Page 11: An Overview of the NASA Space Radiation Laboratory

1.0  -­‐  5.0  cm  (fwhm)  

5cm  x  5cm  -­‐  20cm  x  20cm  

NSRL Brookhaven National Laboratory

NSRL  Beam  Shapes  and  Sizes  

Beams  can  be  both  slow-­‐extracted  (300  –  500  ms)  Or  fast-­‐extracted  (<1µs),  once  per  2-­‐4  s  cycle  

10  

Page 12: An Overview of the NASA Space Radiation Laboratory

NSRL Brookhaven National Laboratory

Target  Room  

Size:  20’  x  20’  

11  

Page 13: An Overview of the NASA Space Radiation Laboratory

Calibra*on  

•  NIST-­‐traceable  calibra*on  chambers  •  Self  calibra*on  against  scin*lla*on  counters  – Use  heavy  ions  where  overlap  is  good  – Contact  made  through  dE/dx  tables  

– Agreement  with  NIST-­‐traceables  within  2%  

12  

Page 14: An Overview of the NASA Space Radiation Laboratory

P,  200  MeV  

C,  300  MeV/n  

Ti,  1000  MeV/n  

NSRL Brookhaven National Laboratory 13  

Page 15: An Overview of the NASA Space Radiation Laboratory

Digital  Beam  Imager  

Beam    

NSRL Brookhaven National Laboratory 14  

Page 16: An Overview of the NASA Space Radiation Laboratory

NSRL Brookhaven National Laboratory 15  

Page 17: An Overview of the NASA Space Radiation Laboratory

NSRL Brookhaven National Laboratory 16  

Page 18: An Overview of the NASA Space Radiation Laboratory

300  MeV/n  Fe  

Binary  Filter  

PlasRc  caps  Water-­‐filled  

Empty  

DBI  Screen  

Beam  view  

NSRL Brookhaven National Laboratory 17  

Page 19: An Overview of the NASA Space Radiation Laboratory

Fe  300  

0.0  mm   35.5  mm  

37.0  mm  36.5  mm  

36.0  mm  

37.5  mm  

38.5  mm   39.5  mm   41.5  mm  18  

Page 20: An Overview of the NASA Space Radiation Laboratory

Single  Eye  Exposure  

•  Right  eyes  of  three  rats  at  a  *me.  

 

collimator  

NSRL Brookhaven National Laboratory 19  

Page 21: An Overview of the NASA Space Radiation Laboratory

Single  Eye  Exposure  

•  Right  eyes  of  three  rats  at  a  *me.  •  Two  plates,  9  tubes,  for  

streamlined  opera*on.  

•  Lots  of  flexibility,  easy  alignment.  

NSRL Brookhaven National Laboratory 20  

Page 22: An Overview of the NASA Space Radiation Laboratory

Special  Beams  

•  Time-­‐structured  beams  •  “smooth”  beam  •  10-­‐60Hz  beam  

•  Fast-­‐extracted  beam    •  Beam  extracted  in  one  booster  

cycle,  in  about  800  ns.  

20 Hz

“Smooth”

60 Hz

20 Hz

FEB

FEB 800 ns

Ion    Chamber  

Scin*llator   NSRL Brookhaven National Laboratory 21  

Page 23: An Overview of the NASA Space Radiation Laboratory

Space  Environment  

Requirements  

•  Lower  dose  rates  •  Longer  exposures  (chronic)  •  Mixed  fields  and  energies  •  Higher  upper  energy    

Response  

•  Specialty  imaging  and  dosimetry  

•  Exposure  incubtors  •  Rapid  energy  changing  •  Rapid  ion  changing  •  Beam  line  upgrade  to  1.5  

GeV/n  

NSRL Brookhaven National Laboratory 22  

Page 24: An Overview of the NASA Space Radiation Laboratory

 •   Can  image  the  beam  at  very  low  fluence  

• 2  Fe/cm2  

• 1,000  p/cm2  

•   Coupled  with  schin*lla*on  counter  cutoff  • can  deliver  “homeopathic”  doses  –  100tracks/cm2  

30,000  p/cm2  22,500  Fe/cm2  

Pixel  Ion  Chamber  with  Gain  

23  

Page 25: An Overview of the NASA Space Radiation Laboratory

Large  Beam  

•  60x60  cm2  (50x50  cm2  useful  area).  

•  Large  pixel  chamber  (8x8)  to  monitor  beam  uniformity.  

•  Exposure  incubator  for  long  exposures.  

 

NSRL Brookhaven National Laboratory 24  

Page 26: An Overview of the NASA Space Radiation Laboratory

SPE  SimulaRon  

Requires  

•  Fast  energy  changing  –  Directly  from  the  booster  

–  By  binary  filter  •  Large  beam  

–  For  long,  low  dose-­‐rate  exposures  

 

“spin-­‐off”  

•  Fast  energy  changes  –  Easier  opera*ons  –  Easier  scheduling  

 

NSRL Brookhaven National Laboratory 25  

Page 27: An Overview of the NASA Space Radiation Laboratory

0.0000001  

0.000001  

0.00001  

0.0001  

0.001  

0.01  

0.1  

1  

0   50   100   150   200   250  

 FracRon

 of  Total  Dose  

Energy  (MeV)  

August  1972  SPE  

NSRL  1972  SPE  

An  SPE  SimulaRon  

Used  50  MeV  to  represent  0  –  50  MeV  60  MeV  to  represent  50  –  60  MeV  70  MeV  to  represent  60  –  70  MeV  80  MeV  to  represent  70  –  80  MeV  And  so  on….  

NSRL Brookhaven National Laboratory 26  

Page 28: An Overview of the NASA Space Radiation Laboratory

0

1

2

3

4

5

6

7

0 50000 100000 150000 200000 250000 3000000

1

2

3

4

5

6

7

0 5 000 1 0000 1 5 000 2 0000 2 5 000 3 0000

Depth  (µm)  

Dose  (arbitrary)  

27  

Page 29: An Overview of the NASA Space Radiation Laboratory

GCR  SimulaRon  

Requires  

•  Fast  ion  changes.  •  Availability  of  many  ion  

species.  

•  Upper  energy  of  at  least  1.5  GeV/n.  

•  Large  beam.  –  For  long,  low  dose-­‐rate  

exposures  

 

“spin-­‐off”  

•  Ul*mately  we  should  be  able  to  change  ions  from  NSRL  dosimetry  room(!)    

NSRL Brookhaven National Laboratory 28  

Page 30: An Overview of the NASA Space Radiation Laboratory

Type  of  Studies  and  InvesRgaRons  

•  Biology  >90%  –  Tending  more  and  more  to  the  lower  doses  now  –  Ion,  LET,  Energy  studies  –  Cancer,  CNS,  Cardio-­‐Vascular,  BPO,  Acute  effects…..    

•  Shielding  •  Materials  (radia*on  hardness  etc.)  •  Electronics  (radia*on  hardness  etc.)  

–  NASA,  NRO,  others  •  Instrument  tes*ng  and  calibra*on  

–  NASA,  others.  •  Therapy  research      

–  Limited  to  physics  and    biology  

NSRL Brookhaven National Laboratory 29  

Page 31: An Overview of the NASA Space Radiation Laboratory

When  not  providing  service  

•  Fragmenta*on  Cross  sec*ons.  –  4He,  3He,  C,  O,  on  elemental  targets  and  water  

•  Detector  and  readout  developments.  –  Specialty  ion-­‐chambers,  adapta*on  of  commercial  readout  for  medical  

imaging  to  mul*-­‐channel  ion  chamber.  

•  Calibra*on  and  tes*ng.    –  Example:  ZDC’s,  water-­‐based  liquid  scin*llator  (BNL  development)  

NSRL Brookhaven National Laboratory 30  

Page 32: An Overview of the NASA Space Radiation Laboratory

ExisRng  CapabiliRes    

Beam  •  Variety  of  shapes  and  sizes  

–  Square  beam  from  5  to  50  cm  

–  Round  beam  from  0.5  to  10  cm  

•  Good  uniformity  (>95%)  •  Many  ions  available  

•  Wide  energy  range  available  

•  Slow-­‐extracted  beam  

•  Fast-­‐extracted  beam  

Dosimetry  •  Good  dynamic  range    

–  1  –  2000  rads/min  (ion  chambers)  

–  <  1  rad/min  (scin*llator)  

•  Self  calibra*on  capabili*es  •  Cutoff  within  >1%  of  total  dose  

•  Good  imaging  methods  –  DBI  

–  Ion  chambers  with  gain  

   

NSRL Brookhaven National Laboratory 31  

Page 33: An Overview of the NASA Space Radiation Laboratory

Missing  CapabiliRes    

Beam  •  Sub  cm  pencil  beam  

•  Scanning  capability  •  Exposure  vacuum  chamber  

Dosimetry  

   

NSRL Brookhaven National Laboratory 32  

Page 34: An Overview of the NASA Space Radiation Laboratory

Thanks  for  your  aaenRon!    

NSRL Brookhaven National Laboratory