analog cmos amplifiers

Upload: hub23

Post on 03-Jun-2018

260 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Analog Cmos Amplifiers

    1/20

    1

    A n a l o g CMOS 1

    Chapter 3

    Fundamental Building BlocksCourse home page: http://www.fysel.ntnu.no/courses/tfe4185/

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    MOS Fu n d am e n t a l B u i l d i n g B l o ck s

    CMOS Current Mirrors

    Simple

    Source-Degenerated

    High-Output-Impedance

    CMOS Single Transistor Amplifiers Common-Source

    Source-Follower (Common-Drain)

    Common-Gate

    Cascode Gain Stage

    MOS Differential Pair and Gain Stage

  • 8/12/2019 Analog Cmos Amplifiers

    2/20

    2

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    B JT Fu n d am e n t a l B u i l d i n g B l o c k s

    Bipolar Current Mirrors

    Simple

    Base current compensated

    Emitter-Degenerated

    Bipolar Gain Stages

    Emitter Follower

    Differential Pair

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    I n t r o d u c t i o n t o A m p l i f i e r s

    212

    210 )()()()( inininn

    innininout VVVtVatVatVaatV ++++= K

    A VoutVin

    The input-output characteristic of anamplifier is generally a non-linear functionthat can be approximated by a its truncatedTaylor series over some signal range:

    The signal is shown here as a voltage. It can also be current or charge.

    For a sufficiently small input signal range, we can keep the constantand the first order terms only:

    )()( 10 tVaatV inout +=

    Here, a0 can be considered the operating point and a1 the small-signalgain.

  • 8/12/2019 Analog Cmos Amplifiers

    3/20

    3

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Am p l i f i e r Pe r f o r m a n c e Pa r a m e t e r s

    Gain

    Speed

    Noise

    Linearity

    Supply voltage

    Voltage swing

    Power dissipation

    Input/output impedance

    Most of these parameterstrade with each other.Such trade-offs lead tomany challenges in thedesign of high-

    performance amplifiers.

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Com m o n - So u r c e A m p l i f i e r

    with Resistive Load

    VinQ1

    Vout

    VDD

    RD

    2)(2

    tninoxn

    DDDout VVL

    WCRVV

    =

    Assuming that the transistor is biased instrong inversion, active region:

    Here we have neglected channel length

    modulation.

    Taking the derivative of Voutwith respect toVin, we get

    Dm

    tninoxnDin

    outv

    Rg

    VVL

    WCR

    dV

    dVA

    =

    == )(

  • 8/12/2019 Analog Cmos Amplifiers

    4/20

    4

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    CS Am p l i f i e r w i t h Re s is t i v e L o a d

    vin vin gm1vin RD~

    vout

    Finding the gain using the small-signal equivalent circuit

    Dmin

    outv

    Dinmout

    Rgv

    vA

    Rvgv

    ===

    All the current in the current source go through the resistor:

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    CS Am p l i f i e r

    with Ideal Current Source as Load

    VinQ1

    Vout

    VDD

    Ib

    vin gm1vin gds

    vout

    Effect of channel length modulation included.

    dsmds

    mv rg

    g

    gA ==

    The quantity gm/gds is called the intrinsic gainof a transistor. Represents the maximum gainthat can be achieved using a single device.

  • 8/12/2019 Analog Cmos Amplifiers

    5/20

    5

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Ex am p l e o f I n t r i n s i c Ga i n

    for a 0.35m CMOS technology

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Veff [V]

    -0

    200

    400

    600

    800

    Intrinsicgain

    W/L = 5m/1.05m

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Veff [V]

    0u

    50u

    100u

    150u

    200u

    250u

    300u

    Draincurrent

    [A]

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Si m p l e CMOS Cu r r e n t M i r r o r

    Assume transistors in activeregion, = 0, and same size

    Iout=Iin

    Iin

    Iout

    routV1

    vyvgs1gm1vgs1 rds1

    v1

    Q1 Q2

    ~

    iy

    1111

    1

    11||mm

    dsy

    yym

    ds

    yy

    ggr

    ivvg

    rvi =+=

    Q1

    v1

    1/gm1

    Q1

  • 8/12/2019 Analog Cmos Amplifiers

    6/20

    6

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Si m p l e CMOS Cu r r e n t M i r r o r

    1/gm1

    Q1

    vgs2 gm2vgs2 rds2

    Q1 Q2

    rout

    rds2

    Small Signal Equivalent Circuit (Low Frequency )

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Cu r r e n t M i r r o r D e s ig n Ex am p l e

    Design a current mirror such that Veffis > 0.5 V androut> 300 k at an input current of 100A.

    Given: nCox = 92 A/V2; Vtn= 0.8 V;rds = 1/ID = 8000L(m)/ID (mA)

    m34

    m8.34V25.0

    V

    A92

    m42A100

    2

    m4

    m75.38000

    1.0k300k300

    )mA(

    )m(80001

    22

    2

    =

    =

    >=

    ==

    W

    WVL

    WCI

    L

    LI

    L

    Irr

    effoxn

    D

    DDdsout

    Solution:

  • 8/12/2019 Analog Cmos Amplifiers

    7/20

    7

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    CS w i t h A c t i v e L o a d

    routVinQ1

    Ibias

    Vout

    Q2Q3

    vin vgs1 gm1vgs1 R2= rds1|| rds2~

    Rinvout

    )||( 211 dsdsmin

    outv rrg

    v

    vA ==

    Active load

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    So u r c e - Fo l l o w e r ( Co m m o n - D r a in )

    Voltage gain close to unity

    Used as voltage buffers

    Can provide current gain

    Ibias

    Q3 Q2

    VinQ1

    Vout

    vgs1 gm1vgs1 rds1

    vout

    vin

    rds2

    gs1vout

    2111

    1

    1121 0)()(

    dsdssm

    m

    in

    out

    outinmsdsdsout

    gggg

    g

    v

    v

    vvggggv

    +++=

    =++

    Writing the nodal equation at vout:

  • 8/12/2019 Analog Cmos Amplifiers

    8/20

    8

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Com m o n - Ga t e A m p l i f i e r

    routVbiasQ1

    Ibias

    Vout

    Q2Q3

    Vin

    vgs1gm1vin rds1

    vin

    gs1vin

    Used for:

    Low input impedance stages

    Amplifying current

    vout

    +

    ++

    +==

    ++=

    11111

    1

    111

    11

    1

    )(

    ds

    L

    mdssm

    L

    ds

    in

    inin

    dsoutininsinmin

    r

    R

    gggg

    G

    g

    i

    vr

    gvvvgvgi

    rin

    1

    1

    1

    111

    111 0)()(

    dsL

    m

    dsL

    dssm

    in

    out

    inmsoutLdsinout

    gG

    g

    gG

    ggg

    v

    v

    vggvGgvv

    +

    +++

    =

    =++

    Voltage gain: Input impedance:

    RL

    Assumes zeroRS

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    So u r c e - D e g e n e r a t e d Cu r r e n t M i r r o r

    Iin

    Iout

    Ix

    Vs

    Q1 Q2

    RsRs

    sxsgs

    sxs

    Rivv

    Riv

    ==

    =

    )1( 22

    22

    22

    msdsx

    xout

    ds

    sxxsmx

    ds

    sxgsmx

    gRri

    vr

    r

    RivRgi

    r

    vvvgi

    +=

    +=

    +=

    ix is equal to the total current through gm2 vgs2and gds2:

    Note: To include the body effect, replace gm2with gm2+ gs2

  • 8/12/2019 Analog Cmos Amplifiers

    9/20

    9

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Ca s co d e Cu r r e n t M i r r o r

    IinVout

    rout

    Q3 Q4

    Q1

    Iout

    Q2

    [ ]

    [ ]

    [ ]

    424

    4424

    44424

    4444

    )(1

    )(1

    )(1

    mdsds

    smdsds

    dssmdsds

    dssmsdsout

    grr

    ggrr

    gggrr

    gggRrr

    ++

    +++=

    +++=

    Serious disadvantage:Voutmust be larger than 2Veff + Vtnto keep all transistors in the active

    region

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    W i l so n Cu r r e n t M i r r o r

    IinVout

    rout

    Q3 Q4

    Q1

    Iout

    Q2

    rin

    211

    4dsm

    dsoutrg

    rr

    About one-half of the outputimpedance for that of a cascodecurrent mirror

    Serious disadvantage:Voutmust be larger than 2Veff + Vtnto keep all transistors in the activeregion

  • 8/12/2019 Analog Cmos Amplifiers

    10/20

    10

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Ca s c o d e Ga i n St a g e s

    rd2

    Vin Q1

    Vout

    Q2Vbias

    Ibias

    Telescopic-cascode amplifier

    Vin Q1

    Ibias1

    Q2

    Vout

    Vbias

    Folded-cascode amplifier

    Ibias2

    rL

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Ca s c o d e Ga i n St a g e s

    Analysis

    2122

    2 ||

    dsdsmd

    Ldout

    rrgr

    rrr

    =

    =

    Assume that rl is of a similar formand that all transistors are matched.Dropping the indices, we get:

    2

    2dsm

    outrg

    r

    Output impedance

    Looking into the source of the common-gate, orcascode, transistor Q2 we get:

    Voltage Gain

    ds

    mds

    ds

    m

    Lds

    m

    Lds

    dssmin g

    gg

    g

    g

    g

    g

    g

    g

    g

    gggy

    +

    =

    +

    +

    ++=

    /111 22

    2

    2

    2222

    ds

    m

    inds

    m

    in

    s

    g

    g

    yg

    g

    v

    v

    221

    12 +

    =

    2

    2

    2

    2

    2

    2

    1

    2

    +=

    ds

    m

    dsL

    m

    ds

    m

    s

    out

    in

    sv

    g

    g

    gg

    g

    g

    g

    v

    v

    v

    vA

  • 8/12/2019 Analog Cmos Amplifiers

    11/20

    11

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    MOS D i f f e r e n t i a l Pa i r

    Q1

    ID2

    Q2V+ V

    Ibias

    ID1

    v+ v

    id1 = is1 id2 = is2

    is1 is2

    inm

    d

    inm

    mm

    in

    ss

    insd

    mmm

    in

    vg

    i

    vg

    gg

    v

    rr

    vii

    ggg

    vvv

    2

    2/1/1

    22

    212111

    21

    =

    =+

    =+

    ====

    +

    inmout

    ddout

    vgi

    iii

    =

    21

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    MOS D i f f - Pa i r w i t h A c t i v e Lo a d

    Q1Q2

    V+ V

    Ibias

    is1

    Q3 Q4 id4

    Vout

    outmv

    inoutmoutdsout

    sdd

    inm

    sd

    rgA

    vrgriiv

    iii

    vg

    ii

    1

    141

    134

    111

    )(

    2

    =

    ==

    ==

    ==

    vin gm1vin rout

    vout

    +

    -

    CL

    is1

    Differential-input, single-ended output gain stage

    Voltage Gain

  • 8/12/2019 Analog Cmos Amplifiers

    12/20

    12

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    MOS D i f f - Pa i r w i t h A c t i v e Lo a d

    Output resistance

    is1 is2

    is1 is2

    vx~

    ix

    rds1 rds2

    rds3 || rs3 rds4gm4va

    +

    -va

    rs2rs1

    ix2 ix3

    ix1 ix4

    ix5

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    MOS D i f f - Pa i r w i t h A c t i v e Lo a d

    Output resistance analysis

    42

    24

    4321

    3214

    54

    221

    22

    41

    ||

    2

    dsdsout

    ds

    x

    ds

    x

    x

    xxxx

    x

    x

    xout

    xssx

    xx

    ds

    xss

    ds

    xx

    ds

    xx

    rrr

    r

    v

    r

    v

    v

    iiii

    v

    i

    vr

    iiii

    ii

    r

    vii

    r

    vi

    r

    vi

    =

    +=

    +++==

    ===

    =

    ==

    =

    (assuming rds1, rds2 >> rs1, rs2)

    (assuming rs1= rs2)

    (current mirror)

  • 8/12/2019 Analog Cmos Amplifiers

    13/20

    13

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    B ip o l a r Cu r r e n t M i r r o r s

    Simple

    Iin

    rout

    Q1 Q2

    Iout

    inout II 2/21

    1

    +=

    Better

    Iin

    rout

    Q1 Q2

    Iout

    inout II +=

    /21

    1rout=ro

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Em i t t e r - D e g e n e r a t e d Cu r r e n t

    M i r r o r s

    Iin

    Iout

    Ix

    Q1 Q2

    ReRe

    )1( 22 emoout Rgrr +

    Almost identical to the MOS version:

    One additional condition:

  • 8/12/2019 Analog Cmos Amplifiers

    14/20

    14

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    B i p o l a r G a in St a g e s

    Emitter Follower

    Q2

    RE

    Vin

    RS

    Vout

    ib

    ie

    ro

    re

    RS

    RE =RE || ro

    vout

    vin

    ib

    RbRe

    vb

    rb ignored

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    B ip o l a r Em i t t e r Fo l l o w e r

    Voltage Gain

    mE

    E

    SEe

    Ee

    in

    out

    mE

    E

    b

    out

    Sb

    b

    in

    b

    Eeb

    bb

    EebEeeb

    be

    gR

    R

    RRr

    Rr

    v

    v

    gR

    Rv

    vRR

    Rvv

    Rri

    vR

    RriRriv

    ii

    /1))(1(

    ))(1(

    /1;

    ))(1(

    ))(1()(

    )1(

    '

    '

    '

    '

    ''

    '

    ''

    ++++

    ++=

    +=

    +=

    ++==

    ++=+=

    +=

    Impedance reflection rule: At low frequencies,resistances in series with the emitter appear +1times larger when seen looking into the base.

  • 8/12/2019 Analog Cmos Amplifiers

    15/20

    15

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    B ip o l a r Em i t t e r Fo l l o w e r

    Output Impedance

    ib

    iere

    RS

    Re

    ix

    vx = ve

    Shall find:

    exS

    x

    exSb

    exbx

    riR

    i

    riRi

    rivv

    ++

    =

    +=

    +=

    1

    vb

    11 +

    =+

    = xebii

    i

    x

    xe

    i

    vR =

    eS

    x

    xe r

    R

    i

    vR +

    +==

    1

    (REexcluded)

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    B i p o l a r D i f f e r e n t i a l Pa i r

    Small Signal

    Q1

    IC2

    Q2V+ V

    IEE

    IC1

    Voltage gain same as for MOSdifferential pair. However,input resistance is not infinite.

    ic1 = ie1 ic2 = ie2

    ie1 ie2

    ))(1( 21 eeid rrr ++=

    re2re1rid

    Using the impedancereflection rule, we get:

  • 8/12/2019 Analog Cmos Amplifiers

    16/20

    16

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Fr e q u e n c y R es p o n s e

    Common-Source Amplifier

    Full coverage

    Source-Follower Amplifier

    Important results only

    Cascode Gain Stage

    Full coverage

    SPICE Simulation Example Simulating frequency response

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Com m o n - So u r c e A m p l i f i e r

    Frequency Response

    vin gm1v1 R2~

    Rinvout

    Cgs1

    Cgd1

    C2

    v1

    bssa

    g

    CsRg

    v

    v

    vgsCvsCsCGv

    sCvGvsCsCGv

    m

    gdm

    in

    out

    mgdgdout

    gdoutiningdgsin

    21

    121

    1111212

    1111

    1

    1

    0)(

    0)(

    ++

    =

    =+++

    =++

    Writing the nodal equations at v1 and vout: C2 = Cdb1+Cdb2+CLR2= rds1|| rds2

    ( )21211122122111 )()1(

    CCCCCCRRb

    CCRRgCCRa

    gdgsgsgdin

    gdmgdgsin

    ++=

    ++++=

  • 8/12/2019 Analog Cmos Amplifiers

    17/20

    17

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Com m o n - So u r c e A m p l i f i e r

    3 dB Frequency

    )()]1([

    1

    )}()]1([{11

    2122111dB3

    2122111

    2121

    CCRRgCCR

    CCRRgCCRs

    Rg

    sa

    Rg

    v

    v

    gdmgdgsin

    gdmgdgsin

    mm

    in

    out

    ++++

    +++++

    =+

    At frequencies where the gain has started to decrease, but is still much greaterthan unity, we can write:

    If the first term in the denominator dominates:

    )]1([1

    11dB3

    ACCR gdgsin ++

    Miller capacitance

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    SP I CE Ex am p l e

    VinQ1

    Ibias

    Vout

    Q2Q3

    Common-Source Amplifier

    Vb

    MOS Common-Source Amplifier

    .lib mos025u.mdl

    vdd vdd 0 dc 2.5

    vss vss 0 dc 0

    m1 vout vin 0 0 n1 l=2u w=10u

    m2 vout vb vdd vdd p1 l=2u w=10u

    m3 vb vb vdd vdd p1 l=2u w=10uib vb vss 10u

    cl vout vss 2p

    * setting DC operating point

    l1 vout vin 1g

    * AC decoupling

    c1 vinc vin 1g

    vac vinc vss dc 0 ac 1

  • 8/12/2019 Analog Cmos Amplifiers

    18/20

    18

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    So u r c e - Fo l l o w e r Am p l i f i e r

    Frequency Response

    Ibias

    Q1

    Rin CinVout

    CL

    Iin

    The transfer function can be written as:

    20

    2

    0

    2

    11

    1

    )()0()(

    +

    +

    =++

    +==

    s

    Q

    s

    sNA

    cssba

    gsC

    i

    vsA

    mgs

    in

    outNote that when Q > 0.5,poles will be complexconjugate, and the circuitwill exhibit overshoot

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    So u r c e - Fo l l o w e r Am p l i f i e r

    Q factor and pole frequency

    Q factor and pole frequency 0:

    111'

    1

    1111'

    1'

    111

    1'

    1

    110

    ;;

    )(

    )]()[(

    )(

    )(

    ssgdininLsbs

    sgssminsin

    sgsinsgssmin

    sgsinsgs

    smin

    gGCCCCCC

    GCGgCCG

    CCCCCGgGQ

    CCCCC

    GgG

    +=+=

    +++

    +++=

    ++

    +=

    If Cs, Cin, or both become large, Qbecomes small => we are safe

    When Cin and Gs1become small, Q will be large => large ringing

  • 8/12/2019 Analog Cmos Amplifiers

    19/20

    19

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Ca s c o d e Ga i n St a g e

    Vin Q1

    Vout

    Q2Vbias

    Ibias

    vin

    gm1vg1 rds1

    Rin

    vout

    Cgs1

    Cgd1

    Cs2

    vg1

    gm2vs2

    vs2

    rds2 Cd2 GL

    Cs2 = Cdb1+Csb2+Cgs2

    Cd2 = Cgd2+Cdb2+CL+Cbias

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Th e Z e r o - V a l u e T i m e - Co n s t a n t

    A n a l y s i s M e t h o d

    Set all independent sources to zero

    Calculate a time constant for each capacitor byassuming all other capacitors are zero, replacingthe capacitor in question with a voltage source,and then calculating the resistance seen by thatcapacitor by taking the ratio of the voltage sourceto the current flowing from the voltage source.

    The -3-dB value is estimated to be 1 divided bythe sum of all the individual capacitor timeconstants.

  • 8/12/2019 Analog Cmos Amplifiers

    20/20

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Ca p a c i t a n c e T im e Co n s t a n t s

    gm1vg1 Rd1Rin

    ~- vx + ix

    Rd1 is the parallel combinationof rds1and the impedance seenlooking into the source of Q2

    ~vx Rd1

    Rin

    vy

    vg1ix

    gm1vy

    Cgd1

    Trond Ytterdal, Department of Electronics and Telecommunication, NTNU, Norway

    NTNU

    September 2004

    Ca p a c i t a n c e T im e Co n s t a n t s

    Analysis

    [ ]

    [ ]

    )1(2

    )1(2

    )2(12

    )(1

    )(;

    111

    111

    1111

    11

    inmds

    gdCgd

    inmds

    mdsinds

    Cgd

    mdindx

    xCgd

    ymdyxxinxy

    Rgr

    C

    Rgr

    ggRr

    r

    gGRRi

    vr

    vgGvviRiv

    +

    +++

    ++==

    ==

    (3.52)][see21 dsd rR 2

    2

    222

    22

    11

    dsmdCd

    dssCs

    ingsCgs

    rgC

    rC

    RC

    =

    totaldB

    CdCsCgdCgstotal

    +++=

    13

    2211