analog computing for high energy efficiency · analog computing for high energy efficiency...

36
Analog Computing for High Energy Efficiency Aatmesh Shrivastava Assistant Professor Electrical and Computer Engineering 416 ISEC [email protected] 12/14/17 1

Upload: vandan

Post on 12-Aug-2019

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

Analog Computing for High Energy Efficiency

Aatmesh  Shrivastava  Assistant  Professor  

Electrical  and  Computer  Engineering  416  ISEC  

[email protected]  

12/14/17   1  

Page 2: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

2  

Source  :BEATECH  

Exponen2al  growth  in  the  number  of  connected  devices  

IoT  infographic    by  i-­‐scoop  based  on  Cisco  data  

IoT  Prospects  

Page 3: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

3  

Todays  Power  Requirements  

~100  WaEs  

~3  WaEs  

~10  milli  WaEs  

~100  milli  WaEs  

Page 4: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

4  

Powering  with  Ambient  Energy  

Solar:    10µ-­‐100µ  WaEs  

Temp  Gradients:    10µ-­‐100µ  WaEs  

Piezoelectricity:    10µ-­‐100µ  

RF  Energy:    100n-­‐1u  WaEs  

1000X  lower  than  the  lowest  power  MSP430!  

Page 5: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

5  

Flow  of  Energy  in  an  EH  System  

V  

Ambient  Source  

Energy  Harvester  unit  

Power  Management  

System  Processing  and  Communica2on  

Harvest  from  low  voltage,  low  power  level  

Efficient  Harves2ng  

Low  Voltage  operaJon/system  start-­‐up  to  enable  system  at  lower  stored  energy  

Efficient  Power  Management  

Solar,  ∆T,  RF,  etc.  

Maximize  the  available  energy  for  the  system  

Every  bit  of  stored  energy  should  be  used  for  system  opera2on    

Minimize  loss    in  voltage  conversion  

Operate  the  system  at  lowest  power  level  •  Ultra-­‐low  power  radios  and  analog.  •  Sub-­‐threshold  digital.  •  Low  power  sensing  circuits.  

Low  Idle  mode  power  consumpJon  

Lowest  power  clock  reference,  voltage  reference  etc.  

Page 6: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   6  

SoC  Design  •  The  circuit  techniques  enable  ultra-­‐low  power  IoT  nodes.  

Accelerators

4-Channel, 16-tap FIR

16-pt, Complex

FFT

CORDIC

4-Channel AFE

8-bit SAR ADC

WuRx

4kB DMEM

2kB Tx Buffer

Multiplier/MAC

Histogram (1-3)

Heart rate (R-R) and

AFIB

ADPLL

Tx FSM

DC-DC Converter

Power Management

Radios

Sensing

Timer (1)

Clocking

Var. Voltage SPI Pads(0.4-3.3V)

TEG

SolarSPI

(master)

MSP430

LCU

2kB LCU Instr Mem

2kB MSP Instr Mem

Bus Abitration

64B SPI FIFO

DMA

Clk/Pwr. Gate Ctrl

Bus Controllers

SYS. INTERRUPT

4GHz

400MHz – 2.4GHz

31.25kHz

Timer (2)

Boost Converter w/

MPPT

UWBTx

XO

SYS. CLK

SYS. VDD

DPM

CTRLR

CTRLR

CTRLR

A. Klinefelter,.. A. Shrivastava et al “A 6.45µW self-powered IoT SoC with integrated energy-harvesting… ” IEEE International Solid State Circuits Conference, Feb. 2015.

•  ULP  wireless  SoC  with  integrated  power  management,  transceiver,  AFE,  DSP,  and  flexible  clocking      

•  Autonomous  power  management  for  baDery-­‐free  operaGon  

•  Highest  level  of  integraGon,  including  energy  harvesGng  and  a  full  transceiver,  for  the  lowest  power  

•  Highest  energy  harvesGng  /  regulaGon  efficiency  

•  Flexible  sensing  interfaces  and  on-­‐chip  processing  for  a  diverse  set  of  target  applicaGons

Page 7: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   7  

SoC  Design  Technique  

•  4X  improvement  over  prior  art  for  higher  current  operaJon  •  70X  improvement  in  lifeJme  in  lower  current  mode    

 (These  benefits  are  without  taking  boost  converter  into  account)  

70X  improvement  in  lifetime  for  low  current  modes

4X  improvement  in  lifetime  for  high  current  modes

(µA)  

Reference  Sys  

Lower  duty  cycling  rate  

Higher  duty  cycling  rate  

Page 8: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   8  

Compu2ng  at  the  Edge  

•  IoT  devices  need  to  have  significant  compute  ability  to  the  edge.  

•  Needed  to  cut-­‐down  RF  comm.  data  and  power  consumpJon.  

•  However  exisJng  digital  system  architecture  is  higher  area  and  higher  power  for  compuJng.  

•  Analog  to  digital  conversion  creates  a  highly  inefficient  use  of  hardware  as  only  two  extreme  points  of  a  transistor  operaJon  is  used  

•  Analog  compuJng  on  the  other  hand  makes  use  of  large  voltage  range  of  device  operaJon.  Lower  area  and  Lower  power.  

Page 9: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   9  

Analog  Compu2ng  

•  Makes  use  of  enJre  voltage  range  of  transistor  operaJon.  

•  ImplementaJon  of  adders,  mulJpliers,  etc.  requires  only  few  transistors  for  implementaJon.  

•  However  analog  compuJng  has  tradiJonally  suffered  from  accuracy  issues  due  to  variaJon.  

•  We  have  eliminated  this  variaJon  and  realize  high  precision  analog  circuits  for  computaJon.  

•  Can  achieve  power  efficiency  of  10-­‐100  Tera-­‐FLOPs/W  

Page 10: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   10  

Sub-­‐threshold  Analog  Pla]orm  

PTAT current referenceIO=Vtln(M)/fRC1

Sub-threshold diff-amp with PTAT bias and switched-cap loadgain,  A=ln(M)/η*(C1/C3)

Temperature variation of diff-amp gain at 48ppm/oC

(a) Precise differential amplifier design with sub-threshold operation

Sub-threshold gm-C filter with PTAT bias

UGF=fR*ln(M)/η*(C1/C2)

(b) Precise low-pass filter implementation with sub-threshold operation

VDD

Q1Q2R1

M5

M7

M6

M8

M

C1φ1 φ2

IoVX

VY

A

B Cd

Cd1

VDD

IOVX

Vi+

C3C3

φ1 φ2

φ1 φ2 CdCd

Vi-

VDD

VX

VY

VCMFB

Vin1 Vin2

C2

Vo2Vo1

C2

Io gm gm

2C4

2C4

gmgm

2C4

2C4 VO-

VO+

Vi-

Vi+

A gm-C biquad

ω  =fR*ln(M)/η*(C1/C2)

Process variation of the diff-amp gain with 3-σ variation of 2.3%

Temperature variation of biquad filter cut-off frequency 69ppm/oC

Process variation of the biquad filter with 3-σ variation of 4.2%

Page 11: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   11  

Example  Logarithmic  Circuit  

A A A A A+

-

+

-

+

-

+

-

+

-

Current Rectifier

Current Rectifier

Current Rectifier

Current Rectifier

Current Rectifier

∑ RSSI

VDD

IOV2

V1

Vi+ Vi

-

RA RA

signal power level (dBm)

RSS

I (V)

Diff-amp as a limiting amplifier

Successive cascaded amplifier stages to form an RSSI

(a) RSSI amplifier circuit (b) Simulation of the RSSI circuit

Input signal •  Dynamic  range  of  

70dB.  •  Less  than  20nW  

power  consumpJon.  •  Only  few  transistors  

needed.  •  No  clock!  •  Less  than  1%  

inaccuracy.  

•  High  precision,  lower  area  and  ultra-­‐low  power  arithmeJc  circuit  

Page 12: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   12  

Feature  Extrac2on    

•  Segng  up  feature  extracJon  method  

signal power level (dBm)

RSS

I (V)

Inter-ictal power level

Pre-ictal power Threshold

VPTH

VDD

RSC

1R

SC2

VPTH

A+

-RSSIS

ULP comparator for threshold detection

Voltage threshold set by switched cap

(a) PLT feature extraction method

signal power level (dBm)

RSS

I (V)

Inter-ictal power level

logW

SVM Classifier

Hyperplane

Normal

SeizurexB

xA

WT.X+β

=W1X1+W2X2+W3X3+W4X4+W5X5+β

Power spectral density is weighted at each frequency band

logWX To ADC

(b) SVM classification based feature extraction

Page 13: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   13  

Analog  Compu2ng  

•  We  will  develop  high  accuracy,  analog  compuJng  infrastructure  for  ultra-­‐low  power  computaJon  at  the  edge.  

•  This  system/computer  architecture  can  cater  to  a  large  variety  of  IoT  sensing  needs.  

•  In  iniJal  stage,  the  development  will  cater  to  specific  applicaJon  with  a  goal  to  develop  a  more  general  architecture.  

•  Can  achieve  power  efficiency  of  10-­‐100  Tera-­‐FLOPs/W  

 

Page 14: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

14  

•  The  converter  should  operate  TEG  at  its  MPP  •  High  Efficiency.  

VO

MPP Tracking

MPPclk

TEGV M

PP

Clock Gen

Cm

p_ou

t

LS Control

EN ϕ1

HS Control

LS

HS

Boost

MLS

MHS

VI

RSTint

Boost Control

Cold Start Osc

L

Clock Doubler

MSU

VX

Cold StartCircuit

C1

Low-­‐Voltage  Harves2ng  

Page 15: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

15  

Thanks  

Page 16: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

16  

MPPclk

TEG

VMPP

Clock Gen

Cmp_out

VIN

CTEGS1

S2

CM

CTRL

RST

Load / Boost Cnvtr

R

R

MPP Sampling

•  Operates  at  MPP  tracking  point.  Ø  Periodically  samples  the  maximum  power  point  of  the  ambient  

source  (  TEG  or  Solar  cell).  Ø  Operates  the  converter  at  its  maximum  power  point  through  the  

control  loop.  

MPP  Tracking  

Page 17: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

17  

•  Operates  in  two  phases  ϕ1  and  ϕ2.  •   ϕ1  is  used  for  cancelling  all  the  offset  in  the  design.  •  ϕ2  is  LS  and  HS  control  typical  switching.  •  In  LS,  MLS  is  turned  on  and  inductor  starts  charging  •  In  HS,  MHS  is  turned  on  and  inductor  transfers  charge  

ϕ1

LS

HS

ϕ2

EN

timeBoost control Timing Signals

VO

MPP Tracking

MPPclk

TEG

V MPP

Clock Gen

Cm

p_ou

t

LS Control

EN ϕ1

HS Control

LS

HS

Boost

MLS

MHS

VI

RSTint

Boost Control

Cold Start Osc

L

Clock Doubler

MSU

VX

Cold StartCircuit

C1

Boost  Converter  Architecture  

Page 18: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

0.05 0.15 0.25

1520

2530

35

VI

Efficiency

SimulationEquation(10)

I P,max

VI

(1)

10 20 30 40 50

6070

8090

IL

Efficiency

VI=50mVVI=100mVVI=200mVVI=300mV

Efficiency

Peak  Ind.  Current  (IP)

18  

MLSControl Circuit

VIIP

Ind.

Cur

rent

T

RL

Static and Switching Loss

Conduction Loss

a) Low Side switching

MHS

Control Circuit

VI

Static and Switching Loss

VO

RHConduction Loss

b) High Side switching

L L

•  Efficiency   varies   greatly   with  peak  inductor  current  

•  Maximum   efficiency   point  peak   inductor   current   for   a  given  VI  is  given  by    

𝑰↓𝑷,𝒎𝒂𝒙 = [6(𝑬↓𝑺𝑻 +𝑬↓𝑺𝑾 ) 𝑽↓𝑰 /𝑳𝑹↓𝑳  ]↑1/3          ….  (1)  

Peak  Inductor  Control  

Page 19: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

19  

VO

ϕ1

ϕ1ϕ2

VO

VIN

VI

CLS

EN

MLS

LS

M1(2/0.2)

ILSctl

ILSctl

ϕ2

MP1(weak)

Cbias

Phase Node   Node

VI VI+VTM1 -

- VI+VTM1 α (VI+VTM1-VTM1)2

α (VI)2

a

b

ϕ1

ϕ2

a b ILSctl

VCLS

crst

VON_LS

EN

VON_LS

LS TLS

VCLS

VIN

RSTint

VX

C1

Timing diagram

𝑰↓𝑳𝑺𝒄𝒕𝒍 = 𝑪↓𝑳𝑺 𝒅𝒗/𝒅𝒕  �→𝑻↓𝑳𝑺 = 𝑪↓𝑳𝑺 𝑽↓𝑰 /𝑰↓𝑳𝑺𝒄𝒕𝒍  = 𝑪↓𝑳𝑺 /𝒌𝑽↓𝑰    

𝑰↓𝑷 = 𝑽↓𝑰 𝑻↓𝑳𝑺 /𝑳 = 𝑽↓𝑰 𝑪↓𝑳𝑺 /𝒌𝑳𝑽↓𝑰  = 𝑪↓𝑳𝑺 /𝒌𝑳   

•  Circuit  provides  peak  inductor  current  independent  of  VI  and  VO.  •  In   reality,   the   peak   inductor   current   decreases   with   VI   because   of  

voltage  drop  across  LS  switch.    

Boost  Converter  Architecture  

Page 20: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

20  

60 64 68

-50

515

25

4s

IL(mA)

60 64 68

-50

515

25

4s

IL(mA)

64 68 72 76

-50

515

25

4s

IL(mA)

70 75 80

-50

515

25

4s

IL(mA)

18 22 26

010

2030

4s

IL(mA)

18 22 26

010

2030

4s

IL(mA)

32 36 40

010

2030

4s

IL(mA)

32 36 400

1020

304s

IL(mA)

42 46 50

010

2030

4s

IL(mA)

Ind.  Current  (m

A)

VI=50mV VI=100mV VI=150mV VI=200mV VI=250mV

MeasuredEquation  (1)

Ind.  Current  (m

A)

VO=0.6Va)  Different  measurements  of  peak  inductor  current  (IP)  with  VI  ,  VO=1.2V

VO=0.8V VO=1.0V VO=1.2V

b)  Different  measurements  of  peak  inductor  current  (IP)  with  VO  ,  VI=100mV

MeasuredEquation  (1)

µs µs µs µs µs

µsµsµsµs

Within  15%  

Within  1%  

•   measurement  show  that  Ipeak  is  within  15%  of  50mV  VI  and  1%  for  150mV  or  above  

Measurement  Results  

Page 21: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

21  

•  Figure  shows  the  zero  detecJon  control  for  controlling  the  high  side  switch.  •  Compares  VX  with  VO.  Once  VX  crosses  VO,  turns  off  HS  switch.  •  Proposed  comparator  uses  offset  compensaJon  in  phase  ϕ1  to  realize  near  

ideal  zero  detecJon  for  max.  efficiency  

VO

HSMHS

VX

VREF

VX

rst

LS

RSTintϕ1

ENcmpLS

VX

ENcmpHS

ϕ1

VO

VI

C2

Timing Diagram

Zero  Detec2on  

Page 22: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

22  

Comparator (C2) Schematic

ENcm

p2

ENcmp ENcmp2

ENcmp

ϕ1

VX

COFFSET

ϕ1

VO

VREF

VREF

ENcmp

VO VO

d

ϕ1M2 M3

e

f

W

W/2 W/2

ϕ1

ϕ1

VREF

g

T1

T2

ENcmp2

VO

Common Gate Amp

ϕ1

VOFFSET

ENcmp

•  A  common  gate  amplifier  gives  high  performance.  •  In  phase  ϕ1  output  is  fed  back  and  offset  is  stored  on  COFFSET.  •  Zero  detecJon  is  performed  in  LS  in  phase  ϕ2.  amplifier  

achieves  near  ideal  zero  crossing  

Zero  Detec2on  Comparator  

Page 23: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

23  

•  Cold-­‐start  is  enabled  for  VO  <  550mV  which  keeps  POR  low  and  enables  the  ring  oscillator  (RO).  

•  A  clock  doubler  circuit  runs  from  the  output  of  RO  and  doubles  the  switng  of  the  clock  to  0  to  2VI.    

•  The  measured  cold-­‐start  voltage  was  220mV  

p1

p2

VI

PORLVT

Ring Oscillator

VI

VO

p1

p2

LS_SU

0 to VI

0 to 2VI

0 to VI

MSUClock

Doubler

LS_SU

Cold-­‐Start  Circuit  

Page 24: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

24  

•  Design  was  done  in  130nm  CMOS  and  the  area  is  0.12mm2.  •  The  LS  resistance  is  criJcal  for  low  voltage  operaJon,  

designed  value  of  0.3Ω.  

Die photograph of the boost converter.

Parameter ValueTechnology 130nm  bulk  CMOS

Total area 600  µm  x  200  µmInductor  value L=10  µH

VIN-­‐to-­‐VSS

LS  resistance 300  mΩ (Target)

Inductor  DCR 70  mΩ

Bondwire 50  mΩ(1mm,1mil,gold)

NMOS  Res 120  mΩLayout  parasitic 60  mΩ

VSSVX VO

MLS MHS

IP Ctrl ZDHS ControlLS ControlCold StartMPP

VI

Resistance breakdown of LS

Design  Implementa2on  

Page 25: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

25  

0 2 4 6

0.0

0.4

0.8

1.2

VI

Efficiency

-3 -1 1 2 3 4

0.0

0.4

0.8

1.2

VI

Efficiency

200mV/div

No  overshoot  or  undershoot  at  Vx indicating  ideal  zero  crossing

Inductor  current

Vx

V

Vx200mV/div

Inductor  current

b)  Vx Waveform  at  VI=15mV  for  zero  detection

a)  Vx Waveform  at  VI=250mV  at  VO=1.1V  for  zero  detection  

Zero  Detec2on  

Page 26: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

-0.06 -0.03 0.00-0.4

0.0

0.4

0.8

VI

Efficiency

c)  Boost  converter  operation  at  VI=10mV

Vx 200mV/div

VO=0.9V

Inductor  current

26  

10mV  opera2on  

Page 27: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

27  

VOVI=250mV

50mV/div

Inductor Current

Cold Start from VI=250mV

VI

VI=20mV

20mV operation

Normal operationCold start

•  Figure  shows  start-­‐up  from  250mV  and  harvest  energy  to  20mV  input.  

Start-­‐up  Opera2on  

Page 28: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

0.00 0.10 0.20 0.30

020

4060

80100

VI

Efficiency

Effi

cien

cy

VI

21% @ 10mV input, VO=0.6V

83% @ 300mV input, VO=1.1V

28  

Efficiency  of  21%  at  10mV  VI  and  83%  at  300mV  VI.    

Efficiency  Measurement  

Page 29: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

29  

This  Work Carlson  JSSC’10

Ramadass    JSSC’11

Kadirvel  ISSCC’12

Im  JSSC’13

HarvesJng TEG TEG TEG Solar  /  TEG TEG Min.  VI 10  mV 20  mV 25  mV -­‐ 40  mV

Cold-­‐Start    VI  Voltage  

220  mV 600  mV 35  mV  w/  mech.  kick

330  mV  /  5  µW 40  mV  w/  X-­‐former

IDDQ 300  nW ~  1  µW -­‐ ~330  nA -­‐ IP  Control ü û û -­‐ û MPPT ü û ü ü ü

η  (@  VI)   83%  @  0.3V 75%  @  0.1V 58%  @  0.1V 80%  @  0.5V,  Solar 61%  @  0.3V

η  at  low  VI   53  %  @  20  mV  22%  @  10  mV

46%  @  20  mV -­‐ -­‐

30%  @  50  mV  30%  @  100  

mV

Technology 130  nm 130  nm 350  nm -­‐ 130  nm

Comparison  Table  

Page 30: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

30  

Energy  Harvester  Roadmap  

•  Boost  conversion  involves  charging  the  inductor  L  in  low-­‐side  (LS)  switching  and  storing  the  energy  on  capacitor  on  high-­‐side  (HS)  switching  

•  More  research  is  needed  to  improve  both  LS  and  HS  efficiency.  

MLSControl Circuit

VIIP

Ind.

Cur

rent

T

RL

Static and Switching Loss

Conduction Loss

a) Low Side switching

MHS

Control Circuit

VI

Static and Switching Loss

VO

RHConduction Loss

b) High Side switching

L L

Page 31: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

31  

Energy  Harvester  Roadmap  

•  A  5mV  drop  on  LS  switch  can  reduce  efficiency  by  50%  at  10mV.  •  CMOS  switches  are  not  efficient  for  low-­‐input  voltages.  •  Need  to  explore  external  switches  more  efficient  transistors.  •  Inductor:  lower  form  factor  and  low  power  capability.  

MLSControl Circuit

VIIP

Ind.

Cur

rent

T

RL

Static and Switching Loss

Conduction Loss

a) Low Side switching

MHS

Control Circuit

VI

Static and Switching Loss

VO

RHConduction Loss

b) High Side switching

L L

LS  switching  requires  opJmizaJon  on  inductor  and  low-­‐side  switch  

Page 32: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

32  

Energy  Harvester  Roadmap  

•  Our  analysis  show  that  device  mismatch  in  controller  can  impact  the  efficiency  from  15%  to  45%.  

•  The  controller  design  needs  to  improve  to  realize  max  efficiency  

MLSControl Circuit

VIIP

Ind.

Cur

rent

T

RL

Static and Switching Loss

Conduction Loss

a) Low Side switching

MHS

Control Circuit

VI

Static and Switching Loss

VO

RHConduction Loss

b) High Side switching

L L

Histogram of y3

y3

Frequency

10 20 30 40 500

510

15Efficiency (%)

Freq

uenc

y

Histogram of Efficiency

µ=32.5%  σ=4.67%  

a) Efficiency without offset compensation

Page 33: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   33  

Bandgap  Reference  

•  It  uses  2x  charge  pump  cells  to  bias  the  BJTs,  reducing  the  operaJng  voltage  to  a  400  mV,  lowest  voltage  Bandgap  circuit.  

•  Add  PTAT  and  CTAT  voltages  to  generate  Bandgap  reference.  •  It  can  reduce  the  VSU  to  ~400  mV.    •  Consumes  32  nW  or  lower  power.  

VEB1

Q1

1Vin

ϕ1  

ϕ1  ϕ2  

ϕ2  2x  charge  pump  cell

CL1

Vin

ϕ2  

ϕ1  ϕ2  

ϕ1  

Switched  cap.  netw.aVEB+  bΔVBE

VREF

Cf1 Cf2

+_

+_

VEB2

Q2

MCL2

ΔVBE+ _ 2x  charge  pump  cell

VEB1  generation  circuit VEB2  generation  circuit

CΔ1 2

A. Shrivastava, et al “A 32nW Bandgap reference ….” IEEE International Solid State Circuits Conference, Feb. 2015

Page 34: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   34  

SIMO  Energy  Harvester  

PV

1.5V

3.3V

1.2V

5VStorage

BoostBuck

+_

Buck    

Boost  

•  Energy  harvesJng  and  power  management  can  also  be  combined  into  a  single  soluJon,  which  can  save  system  cost.  

•  Single  inductor  can  mulJplex  to  work  for  harvester  and  regulator.    

A. Shrivastava, et al “A 1.2µW SIMO energy harvesting and power management unit….” IEEE Symposium on VLSI Circuits, June 2014.

Page 35: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   35  

1nW  Crystal  Oscillator  

XTAL

CL

CL

X C RC VDD/GND

ENP

ENNMNC

XO

XI

NCAL

PCAL

SARD

igita

l C

ontr

olle

r

ENP

ENN

XO

XI

XI

XI

VREF

VREFH

VREF

VREFL

+_

+_

+_

+_

VDDC

XI CLK

Clock Buffer

Calibration circuit

Time constant generation circuit

AmplifierDCCLK

XO

CLK

Output  of  clock  buffer  operating  at  32.768  KHz  with  duty-­‐cycling,  

A. Shrivastava, et al “A 1.5nW, 32.768 KHz XTAL Oscillator Operational from a 0.3V Supply” IEEE Journal of Solid State Circuits, 2016.

Measured waveform at 32 kHz

•  Lowest  power  crystal  oscillator.  

Page 36: Analog Computing for High Energy Efficiency · Analog Computing for High Energy Efficiency Aatmesh(Shrivastava(AssistantProfessor’ Electrical’and’Computer’Engineering’ 416’ISEC’

12/14/17   36  

•  Started  at  Northeastern  in  August-­‐16.  q  2  Ph.D.  students,  2  M.S.    

•  Experience  q  Over  11  years  of  experience  in  integrated  circuits  research  and  development  q  Several  IC  tapeout  experience  including  TI’s  OMAP  which  went  into  Google-­‐glass  q  Part  of  the  IoT  start-­‐up,  PsiKick  that  has  raised  over  $32M  in  funding.  

•  Lab    q  State  of  the  art  IC  prototyping  facility.  

•  ContribuJons  q  >25  conference  and  journals.  q  TPC  Member  ISCAS,  MWSCAS,  ISLPED,  Editorial  Review  Board-­‐SSCL.  

•  Awards  q  Selected  for  Airforce  Young  Inves2gator  Award-­‐2018.  q  13  granted  US  Patents,  over  20  pending  patents  q  Louis  T  Radar  Graduate  Research  Fellowship.  q  Charles  Brown  fellowship  for  excellence  

Capabili2es