analogue computers using magnetic amplifiers

1
Analogue Comput$#^Using Magnetic Amplifiers . E. DAVIS I . H . SWIFT ASSOCIATE MEMBER AIEE T HIS Analogue computing technique uses direct cur- rents as variables. These currents are summed by magnetic amplifiers to perform addition and sub- traction operations. Products, quotients, roots, and powers are obtained by summing other currents that are proportional to the logarithms of the variables. These logarithmic currents are obtained by networks of 5 ger- manium or silicon diodes and 11 precision resistors. As the input current increases, the diodes in the circuit cut in sequentially to shape the output current according to a logarithmic curve. A voltage is supplied to a voltage divider in the network controlling the switching points of these diodes. Fig. 1 shows the basic negative feedback circuit used for computing. The logarithmic networks LN are applied to each of the input current leads, as shown. The c 'nega- tive" network for the output current h differs from the "positive" networks only in reversal of the direction of current flow, the diode connections, and the sign of the 10- volt bias voltage required. Since the input current of the magnetic amplifier is very small, the logarithm of the output is very nearly equal to the sum of the logarithms of the inputs. Thus the negative feedback accomplishes the taking of the anti-logarithm. The magnetic amplifier has sufficient current gain that its input current i causes a computational error of less than 1 /3 per cent. Hence, to a close approximation log Ij —» log I t CURRENT HERE TO FEED TO ANOTHER SUMMING AMP / aj\ If the û's are equal, the inputs are multiplied together. If they are not equal, powers or roots of the inputs are multi- plied. Also, any of the inputs may be made to be divisors by using a negative, instead of a positive network, for it. Furthermore, if addition and subtraction is desired, the net- works are omitted. At room temperature, networks made with germanium diodes give a logarithmic output with a maximum error of 0.8 per cent, for an input current range of 2 to 30 milli- amperes. The effect of temperature ( 55 to + 7 0 C) is primarily to change the logarithm base, causing no addi- tional computing error. This statement is applicable for a. log I, io5o I .o t 1 ww—, E LN] Ego Fig. 1. Block dia- gram of computing scheme to sum logarithmic cur- rents \ log I 0 AVAILABLE HERE TO FEED TO ANOTHER SUMMING AMP Fig. 2. Circuit illustrating some schemes used for interconne c t i n g components to make up a com- puter. Also shown is the introduction of a mechanical input by means of a potentiom- eter. The sym- bol indicates a ground potential point (the input junction of a sum- ming amplifier) inputs from 6 to 30 milliamperes. At low input current and high temperatures, however, the error becomes appre- ciable (3 per cent at 4 milliamperes). These errors are not excessive for some applications. For other applications the networks can be temperature compensated over the full current range to about the same accuracy as obtained at room temperature. This is done by using temperature- sensitive resistors in the network. The problems of temperature compensation are greatly simplified, however, with the use of silicon junction diodes. The logarithmic networks and the summing amplifiers can be interconnected to solve systems of nonlinear equa- tions. The method of interconnection utilizes the fact that the summing, or input, junction of the magnetic am- plifier is at zero potential, see Fig. 1. Hence, currents may be independently fed into, or drawn from, this point. As an example, the output of the circuit of Fig. 1 can be fed to the summing junction of another similar amplifier. Further- more, this current may be split into fixed fractional amounts by a simple parallel resistor network, and fed to several other circuits. Such current splitting networks are also used as shown in Fig. 2. The computation done in Fig. 1 requires 7 ounces of components, and is performed with an accuracy of about 1 per cent. The response time is short (0.01 second, using a 400-cycle amplifier). The versatility of the technique re- sults in a computer with a high ratio of computations per unit volume or weight, using reliable components. These desirable characteristics, together with experience to date, indicate that computers made of these two basic com- ponents should have considerable utility in military and industrial applications. Digest of paper 54-389, "An Analogue Computing Technique Using Magnetic Am- plifiers," recommended by the AIEE Committee on Magnetic Amplifiers and approved by the AIEE Committee on Technical Operations for presentation at the Fall General Meeting, Chicago, 111., O c t o b e r 11-15, 1954. Published in AIEE Transactions, vol. 73, pt. I, 1954 (Jan. 1955 section), pp. 635-40. . E. Davis and I. H. Swift are both with the Naval Ordnance Test Station, Inyokern, China Lake, Calif. 158 Davis, SwiftAnalogue Computers E LECTRICAL E NGINEERING

Upload: i-h

Post on 01-Mar-2017

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analogue computers using magnetic amplifiers

Analogue Comput$#^Using Magnetic Amplifiers

Β . E . D A V I S I . H . S W I F T A S S O C I A T E M E M B E R A I E E

TH I S Analogue c o m p u t i n g t e c h n i q u e uses d i r ec t c u r ­r e n t s as va r i ab l e s . T h e s e c u r r e n t s a r e s u m m e d

b y m a g n e t i c ampl i f ie rs t o pe r fo rm a d d i t i o n a n d s u b ­t r ac t i on o p e r a t i o n s . P r o d u c t s , q u o t i e n t s , roo ts , a n d p o w e r s a r e o b t a i n e d b y s u m m i n g o t h e r c u r r e n t s t h a t a r e p r o p o r t i o n a l to t h e l o g a r i t h m s of t h e va r i ab l e s . T h e s e l o g a r i t h m i c c u r r e n t s a r e o b t a i n e d b y n e t w o r k s of 5 ger ­m a n i u m or silicon d iodes a n d 11 prec is ion resis tors . As t h e i n p u t c u r r e n t increases , t h e d iodes in t h e c i r cu i t c u t in s e q u e n t i a l l y to s h a p e t h e o u t p u t c u r r e n t a c c o r d i n g to a l o g a r i t h m i c c u r v e . A vo l t age is supp l i ed to a v o l t a g e d i v i d e r in t h e n e t w o r k c o n t r o l l i n g t h e s w i t c h i n g po in t s of these d iodes .

F ig . 1 shows t h e basic n e g a t i v e f eedback c i rcu i t u sed for c o m p u t i n g . T h e l o g a r i t h m i c n e t w o r k s LN a r e a p p l i e d t o e a c h of t h e i n p u t c u r r e n t l eads , as s h o w n . T h e c ' n e g a ­t i v e " n e t w o r k for t h e o u t p u t c u r r e n t h differs f rom t h e " p o s i t i v e " n e t w o r k s on ly in reversa l of t h e d i r e c t i o n of c u r r e n t flow, t h e d i o d e connec t i ons , a n d t h e sign of t h e 10-volt b ias vo l t age r e q u i r e d . S ince t h e i n p u t c u r r e n t of t h e m a g n e t i c ampl i f ie r is v e r y smal l , t h e l o g a r i t h m of t h e o u t p u t is ve ry n e a r l y e q u a l to t h e s u m of t h e l o g a r i t h m s of t h e i n p u t s . T h u s t h e n e g a t i v e feedback accompl i shes t h e t a k i n g of t h e a n t i - l o g a r i t h m . T h e m a g n e t i c ampl i f ie r h a s sufficient c u r r e n t ga in t h a t its i n p u t c u r r e n t i causes a c o m p u t a t i o n a l e r r o r of less t h a n 1 / 3 p e r cen t . H e n c e , to a close a p p r o x i m a t i o n

γ log Ij —» γ log I t CURRENT HERE TO FEED

TO ANOTHER SUMMING AMP

η / aj\

If t h e û's a r e e q u a l , t h e i n p u t s a r e m u l t i p l i e d t o g e t h e r . If t h e y a r e n o t e q u a l , p o w e r s or roo t s of t h e i n p u t s a r e m u l t i ­p l ied . Also, a n y of t h e i n p u t s m a y b e m a d e to b e divisors b y u s ing a n e g a t i v e , ins tead of a pos i t ive n e t w o r k , for it . F u r t h e r m o r e , if a d d i t i o n a n d s u b t r a c t i o n is des i red , t h e ne t ­works a r e o m i t t e d .

A t r o o m t e m p e r a t u r e , n e t w o r k s m a d e w i t h g e r m a n i u m d i o d e s give a l o g a r i t h m i c o u t p u t w i t h a m a x i m u m e r r o r of 0.8 p e r cen t , for a n i n p u t c u r r e n t r a n g e of 2 to 30 mi l l i -a m p e r e s . T h e effect of t e m p e r a t u r e ( — 55 to + 7 0 C) is p r i m a r i l y to c h a n g e t h e l o g a r i t h m b a s e , c a u s i n g n o a d d i ­t i ona l c o m p u t i n g e r ro r . T h i s s t a t e m e n t is a p p l i c a b l e for

τ a. log I, io5oα I.o t 1 w w — ,

E L N ]

Ego Fig. 1. Block d ia­g r a m of c o m p u t i n g s c h e m e to s u m logar i thmic cur ­

rents

\ log I 0 AVAILABLE HERE TO FEED TO ANOTHER SUMMING AMP

Fig. 2 . Circuit i l lustrating s o m e s c h e m e s u s e d for in t erconne c t i n g c o m p o n e n t s to m a k e u p a c o m ­puter . Also s h o w n is t h e in troduct ion of a m e c h a n i c a l i n p u t θ b y m e a n s of a p o t e n t i o m ­eter . T h e s y m ­bo l Δ ind icates a g r o u n d potent ia l po in t ( the i n p u t j u n c t i o n of a s u m ­

m i n g ampli f ier)

i n p u t s f rom 6 to 30 m i l l i a m p e r e s . A t low i n p u t c u r r e n t a n d h i g h t e m p e r a t u r e s , h o w e v e r , t h e e r r o r b e c o m e s a p p r e ­c i ab le (3 p e r c e n t a t 4 m i l l i a m p e r e s ) . T h e s e e r ro rs a r e n o t excessive for some a p p l i c a t i o n s . F o r o t h e r a p p l i c a t i o n s t h e n e t w o r k s c a n b e t e m p e r a t u r e c o m p e n s a t e d ove r t h e full c u r r e n t r a n g e to a b o u t t h e s a m e a c c u r a c y as o b t a i n e d a t r o o m t e m p e r a t u r e . T h i s is d o n e b y us ing t e m p e r a t u r e -sensi t ive resistors in t h e n e t w o r k . T h e p r o b l e m s of t e m p e r a t u r e c o m p e n s a t i o n a r e g r e a t l y simplified, h o w e v e r , w i t h t h e use of silicon j u n c t i o n d iodes .

T h e l o g a r i t h m i c n e t w o r k s a n d t h e s u m m i n g ampl i f ie rs c a n b e i n t e r c o n n e c t e d to solve systems of n o n l i n e a r e q u a ­t ions . T h e m e t h o d of i n t e r c o n n e c t i o n ut i l izes t h e fact t h a t t h e s u m m i n g , or i n p u t , j u n c t i o n of t h e m a g n e t i c a m ­plifier is a t z e r o p o t e n t i a l , see F ig . 1. H e n c e , c u r r e n t s m a y b e i n d e p e n d e n t l y fed in to , or d r a w n from, this po in t . As a n e x a m p l e , t h e o u t p u t of t h e c i rcu i t of F ig . 1 c a n b e fed t o t h e s u m m i n g j u n c t i o n of a n o t h e r s imi la r ampli f ier . F u r t h e r ­m o r e , th is c u r r e n t m a y b e spli t i n t o fixed f rac t ional a m o u n t s b y a s imp le p a r a l l e l resis tor n e t w o r k , a n d fed to severa l o t h e r c i rcui t s . S u c h c u r r e n t sp l i t t ing n e t w o r k s a r e a lso used as s h o w n in F ig . 2.

T h e c o m p u t a t i o n d o n e in F ig . 1 r e q u i r e s 7 ounces of c o m p o n e n t s , a n d is p e r f o r m e d w i t h a n a c c u r a c y of a b o u t 1 p e r cen t . T h e response t i m e is shor t (0.01 second, us ing a 400-cycle ampl i f i e r ) . T h e versat i l i ty of t h e t e c h n i q u e r e ­sults in a c o m p u t e r w i t h a h igh r a t i o of c o m p u t a t i o n s p e r u n i t v o l u m e or we igh t , us ing re l iab le c o m p o n e n t s . T h e s e de s i r ab l e charac te r i s t i cs , t oge the r w i t h expe r i ence to d a t e , i n d i c a t e t h a t c o m p u t e r s m a d e of these t w o bas ic c o m ­p o n e n t s shou ld h a v e cons ide rab l e u t i l i ty in mi l i t a ry a n d i ndus t r i a l app l i ca t i ons .

Digest of paper 54-389, " A n Analogue Computing Technique Using Magnet ic Am­plifiers," recommended by the AIEE Committee on Magnetic Amplifiers and approved by the A I E E Committee on Technical Operations for presentation at the Fall General Meeting, Chicago, 111., October 11-15, 1954. Published in A I E E Transactions, vol. 73, pt. I, 1954 (Jan. 1955 section), pp. 635-40.

Β. E. Davis and I. H. Swift a re both with the Naval Ordnance Test Station, Inyokern, China Lake, Calif.

158 Davis, Swift—Analogue Computers ELECTRICAL ENGINEERING