analysis of an expeditionary structurecradpdf.drdc-rddc.gc.ca/pdfs/unc57/p523437.pdf · analysis of...

110
Analysis of an Expeditionary Structure Arda Ozum, P.Eng. Edmonton, AB Contract Scientific Authority: S.L. Hlady Defence R&D Canada – Suffield The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the contents do not necessarily have the approval or endorsement of Defence R&D Canada. Contract Report DRDC Suffield CR 2005-033 February 2005 Defence Research and Recherche et développement Development Canada pour la défense Canada

Upload: trandien

Post on 05-Feb-2018

227 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

Analysis of an Expeditionary Structure

Arda Ozum, P.Eng. Edmonton, AB Contract Scientific Authority: S.L. Hlady Defence R&D Canada – Suffield

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Contract Report

DRDC Suffield CR 2005-033

February 2005

Defence Research and Recherche et développement Development Canada pour la défense Canada

Page 2: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of
Page 3: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

Analysis of an Expeditionary Structure

Arda Ozum, P.Eng. #603, 9725 – 106 Street Edmonton, Alberta T5K 1B5 Contract Number: W7702-02P149 Contract Scientific Authorities: S.L. Hlady (403-544-4727)

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Defence R&D Canada – Suffield

Contract Report

DRDC Suffield CR 2005-033

February 2005

Page 4: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of
Page 5: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 i

Abstract

The Canadian Forces designed a steel-framed HESCO/ISO bunker for collective protection. To validate the design a 3-dimensional model of the bunker was analyzed with STAAD (a commercial structural analysis program) under a dynamic impulsive overpressure loading. The structure consists of an ISO shipping container surrounded by a steel frame and perimeter HESCO bastion walls. There is a steel roof supporting smaller HESCO bastions and an observation post on the roof. The objective of the analysis is to determine the maximum loading that the structure should be able to repeatedly withstand.

Based on the analysis of the structure using STAAD and assuming that the dynamic impulse may originate from anywhere, it is the performance of the HESCO walls that limits the elastic load rating for the structure to a maximum reflected overpressure of 420 kPa with a time of duration of 0.004 seconds. This corresponds to a peak side-on pressure of roughly 80 kPa with a time of duration of 0.004 seconds or an impulse of 0.32 kNs/m2. The observation post is a weak link in the design and might fail at a lower load than the rest of the structure.

Recommendations for future improvements include: modifying the entrances to put increased gravity loads on the narrow end walls; saturating the HESCO bastions with a very lean mix concrete fill to decrease the loss of fill, and extend the life of the HESCOs; and having the entrances face opposite directions.

Page 6: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

ii DRDC Suffield CR 2005-033

Executive summary

The Canadian Forces designed a steel-framed HESCO/ISO bunker for collective protection. To validate the design a 3-dimensional model of the bunker was analyzed with STAAD (a commercial structural analysis program) under a dynamic impulsive overpressure loading. The structure consists of an ISO shipping container surrounded by a steel frame and perimeter HESCO bastion walls. There is a steel roof supporting smaller HESCO bastions and an observation post on the roof. The objective of the analysis is to determine the maximum loading that the structure should be able to repeatedly withstand.

STAAD Model with Static Loading

Uniform static loads were applied to the STAAD model in the three principal planes to see the correlation between lateral deflections of the structure and the stresses that would develop in the solid elements. For a typical section of HESCO bastion wall that is 3 meters tall, a lateral deflection in the range of 6 mm at the top of the wall resulted in tensile stresses in the solid elements from the statically loaded STAAD model. It should be noted that a 6 mm deflection at the top of the HESCO walls corresponds to 1/500th of the height of the wall.

STAAD Models with Dynamic Loading

Dynamic loads were applied to the STAAD model in the three principal directions. There were stress concentrations where the HESCO walls and the steel frame come into contact. There were also greater deflections in the structure in and around the observation post. A pressure wave originating from above resulted in larger lateral deflections of the observation post than the rest of the structure indicating that the observation post would be a weak link in the design and might fail at a lower load than the rest of the structure.

CONCLUSION

Based on the analysis of the structure using STAAD and assuming that the dynamic impulse may originate from anywhere, it is the performance of the HESCO walls that limits the elastic load rating for the structure to a maximum reflected overpressure of 420 kPa with a time of duration of 0.004 seconds. This corresponds to a peak side-on pressure of roughly 80 kPa with a time of duration of 0.004 seconds or an impulse of 0.32 kNs/m2.

RECOMMENDATIONS FOR FUTURE IMPROVEMENTS

Modify the entrances to put increased gravity loads on the narrow end walls. Saturate the HESCO bastions with a very lean mix concrete fill to decrease the loss of fill, and extend the life of the HESCOs. Have the entrances face opposite directions.

Ozum, A. 2005. Analysis of An Expeditionary Structure. DRDC Suffield CR 2005-033. Defence R&D Canada – Suffield.

Page 7: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 iii

Table of Contents

Abstract ......................................................................................................................................... i

Executive Summary ..................................................................................................................... ii

Table of Contents ........................................................................................................................ iii

Description of Structure ............................................................................................................... 1

Design Parameters .........................................................................................................................2

Analysis .........................................................................................................................................5

Analysis Results ............................................................................................................................7

Conclusions ...................................................................................................................................8

Recommendations for Future Improvements ..............................................................................10

Guidelines for Taking Measurements During Testing ................................................................12

Appendix A: Isometric Views of STAAD Model .......................................................................14

Appendix B: Horizontal Sections through STAAD Mode.........................................................16

Appendix C: Vertical Sections through STAAD Model ............................................................24

Appendix D: Nodal Time-Displacement Graphs from STAAD ................................................34

Appendix E: Solid Stress Contour Plots for Solid Elements in Global Y Direction from STAAD Analysis for Statically Loaded Model ....................................................47

Appendix F: Deflected Shape of SBHS .....................................................................................51

Appendix G: STAAD Input Files...............................................................................................53

Appendix H: References.............................................................................................................91

Appendix I: Structural Drawings................................................................................................92

Page 8: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

iv DRDC Suffield CR 2005-033

This page intentionally left blank.

Page 9: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 1

Defence R & D Canada – Suffield PO Box 4000, Station Main Medicine Hat, AB T1A 8K6 Attention: Sheri Hlady Dear Ms. Hlady: Re: Analysis of Expeditionary Structure Based on the plans supplied to me by National Defence, I have been analysing the behaviour of the single “Super Bunker Hardened Shelter” (SBHS) under a dynamic impulsive overpressure loading. The structure consists of an ISO shipping container surrounded by a steel frame and perimeter HESCO bastion walls. There is a steel roof supporting smaller HESCO bastions and an observation post on the roof. The object of the analysis is to determine the maximum loading that the structure should be able to repeatedly withstand.

Description of Structure ISO Container The SBHS is built around a standard 20’ long ISO shipping container. The shipping container is the innermost shell of the SBHS. It provides protection from the elements and some measure of protection from fragments to personnel in the shelter. The ingress of overpressure into the HESCO bastion fortification will load the ISO container to some degree. It is my understanding that the ISO container has not been analysed and I suspect that its performance can be greatly improved with some well placed steel reinforcing. It may be determined after testing whether or not this will be necessary. Furthermore, it is not known what level of pressures will develop within the ISO container during testing of the structure. Large changes in pressure inside the ISO container could result in injury to personnel within the shelter. We will attempt to measure time-pressure data inside the ISO container during testing. Structural Steel Frame There is a structural steel frame around the ISO container that is supported on concrete pad footings. The frame is braced in the longitudinal direction and has rigid frames for stability in the orthogonal direction. There is also bracing in the roof plane for both the main roof and the roof of the OP. The central portion of the frame consisting of the middle four columns extends up higher than the rest of the frame to form the observation post (OP). The structural steel frame has been designed for easy erection in the field with relatively small structural pieces that bolt together (refer to structural drawings in appendix). The main purpose of the frame is to provide a protective shell for the ISO container in the event of structural collapse of the SBHS. The structural steel frame will support the roof, should it collapse, thus allowing personnel means of egress after severe dynamic loading of the structure. The steel frame contributes some rigidity to the overall structure but the majority of the lateral load resistance of the structure is due to the HESCO bastions and their large mass. The limiting factor for the lateral load resisting ability of the steel frame is that under large lateral loads, the

Page 10: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

2 DRDC Suffield CR 2005-033

frame will rotate and the footings may lift up off the ground. The footings are shallow spread footings and it is only the weight of concrete used in the footings that will resist uplift forces should the steel frames try to overturn. The footings do not incorporate the use of soil mass for additional anchorage the way deep foundations would. The lateral load carrying capacity of the steel frame could be improved with a pile foundation. HESCO Bastions The HESCO bastions consist of heavy gauge steel mesh boxes that are lined with geo-textile. They are erected on site and filled with local fill materials such as sand and gravel. Their main purpose is to add mass to the system, which is the best way to limit the acceleration of the structure during dynamic loading, and they provide an effective means of protection from fragments. All HESCO bastions must be covered completely as the contents of a HESCO may become dangerous to personnel as air-borne fragments propelled by a pressure wave. There are a few issues to keep in mind when using HESCO bastions. Firstly, in field use, it may not always be possible to find adequate fill material, especially in rocky terrain. Secondly, during a dynamic loading event, any heat generated could damage the geo-textile resulting in a loss of fill material. Third point of concern is that the HESCO bastions tend to creep and sag with time and therefore the SBHS is not meant to be a permanent shelter. The HESCO bastions used in the analysis of the SBHS for the walls of the SBHS were 1m x 1m x 1m and the HESCO bastions for the roof were 0.6m x 0.6m x 0.6m. Roof Structure The roof structure consists of hollow structural steel sections (HSS) with the smaller 0.6m x 0.6m x 0.6m HESCO bastions covering the HSS roof members. The HSS sections are placed on top of the HESCO walls. The roof is then built up with a layer of the smaller HESCO bastions. Once again, the advantage of using HESCO bastions is that their mass tends to limit accelerations of the structure and they provide some measure of protection from projectiles. The roof of the SBHS is not rigidly attached to the HESCO walls and relies on the mass of the smaller HESCO bastions to keep it in place during dynamic loading. The roof framing of the SBHS was modified from what was originally shown on the drawings sent from National Defence. The orientation of the roof HSS members was turned 90 degrees over the entrances in order to place more vertical load on the narrow side HESCO walls of the fortification. This was done in the analysis to increase the lateral load resistance of the narrow-side walls during overpressure loading. The changes to the roof framing in the model are also reflected in the structural drawings in the appendix of this report.

Design Parameters Assumptions There were a number of assumptions made for the analysis of the SBHS. In no particular order, they are as follows:

• Soil density in HESCO bastions taken as 15 kN/m3 • Concrete 28 day strength taken as 20 MPa • Yield strength of steel HSS and wide flange shapes is 350 MPa • Yield strength of steel angle shapes and plates is 300 MPa

Page 11: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 3

• Ultimate strength of steel is 450 MPa • A325 M20 bolts used in all connections; bolt threads are not in shear plane • Impulse loading is triangular, rising instantly to its maximum value and linearly

decreasing to zero • HESCO bastions modeled as solid elements • Contents of HESCO bastions assumed to behave in a linear elastic fashion until material

is in tension • Impulse loading applied from 3 orthogonal directions • Ingress of blast pressure into HESCO fortification was ignored

Loading Loads on structure are based on a free field pressure wave and the overpressures on walls and roof are derived according to guidelines set forth in “Design of Blast Resistant Buildings in Petrochemical Facilities” prepared by the Task Committee on Blast Resistant Design of the Petrochemical Committee of the Energy Division of the American Society of Civil Engineers (ASCE), ISBN 0-7844-0265-5. The impulsive load wave has been simplified to be a triangular pressure wave, rising instantly to its maximum value and decreasing linearly to zero. This simplifies the input for STAAD analysis while the peak pressure is chosen so that the impulse remains the same between the specified pressure wave and the pressure wave used in the STAAD model. The loads due to the pressure wave acting on sidewalls, roof and rear wall (with respect to the front wall – the wall facing the source of the pressure wave) are relatively small but have not been ignored. The subsequent and small negative pressure wave that usually follows the positive pressure wave has been ignored because it is relatively small and its effects are usually negligible compared to those caused by the peak pressure and more importantly the reflected pressure on the windward side of the structure. Performance Criteria The HESCO bastions are predominantly a gravity structure in that their stability is entirely provided by their great mass. HESCO bastions are not attached together with anything that has significant structural strength. In this regard, it was assumed that the HESCO bastion walls would behave in a similar way to an un-reinforced masonry wall. In other words, it was assumed that the HESCO bastions would behave like individual finite blocks resting on one another and not attached to one another. This is obviously a simplification because the soil filled HESCO bastions will deform under load and do not stay as rigid blocks. Also, they are attached together with wire though the wire will be rather insignificant under the influence of blast loads. Regardless, these assumptions were made to succumb to the limitations of STAAD. We have to keep in mind that STAAD is merely a tool and that we are trying to make the best use out of it. STAAD does not have the facilities to model the HESCO bastions as blocks filled with non-cohesive material. There may be programs on the market that may be better suited to modeling the expeditionary structure but the task of locating such a program and learning how to use it is beyond the scope of this project. Each HESCO bastion was modelled as a series of solid block elements in STAAD. To be exact, eight solid elements in STAAD were used to represent each HESCO bastion. The use of solid elements was chosen because they were the best option available in STAAD for modeling HESCO bastions. Plate or beam elements in STAAD would not have accurately modeled the stress distribution through the thick walls of the structure.

Page 12: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

4 DRDC Suffield CR 2005-033

Part of the performance criteria set forth on this project was that the expeditionary structure be capable of withstanding multiple loading cycles. In order to accommodate this criterion, the structure would have to be loaded within an elastic range of stresses. This would mean that there would be no plastic or permanent deformations in the structure after a load cycle. It is common knowledge that soils have the ability to resist compressive loads. Granular soils such as sand and gravel do not have any tensile strength, and cohesive soils such as clays have very little tensile strength. The HESCO bastions are generally filled with granular materials and as such have the capacity to take compressive stresses such as those generated by roof self weight on the walls. HESCO bastions should not be relied on to develop tensile stresses. Any structural element that is loaded in bending will develop both tensile and compressive stresses due to rigid body dynamics through its thickness. If the structural element is also under axial compressive stresses, theses compressive stresses will counter act the tensile stresses and increase the compressive stresses due to bending. If there is enough axial compression to cancel out tensile stresses generated from bending loads in an element, it may be possible to load a structural member in bending without inducing tensile stresses in the structural element. A typical analogy is to think of a tower of wooden building blocks supported at the top and bottom. A lateral load placed on the tower will result in bending of the tower and opening up of the spaces between the blocks on the opposite (tension) side of the tower that the load is being applied from. Introducing a vertical compressive load on the tower will decrease the tensile stresses and thus proportionally increase the lateral load the tower will be able to withstand without the blocks coming apart. This is how the HESCO walls are assumed to behave under lateral loading as well. Since the soil and gravel that the HESCO bastions are filled with will not have any appreciable tensile strength, the structure was analysed such that the lateral loading in the STAAD model that begins to cause tensile stresses on the face of the HESCO bastions was deemed to be the allowable ultimate load on the structure. Tensile stresses would mean separation at the face of the HESCO bastions. It is theorized that if the load that causes tension in the HESCO bastions is not exceeded and the geo-textile does not deteriorate during loading, the structure should be able to withstand multiple load cycles. The simplification of assuming the HESCO bastions to behave like rigid elements was to make possible the use of STAAD (a structural analysis program produced by REI – Research Engineers Incorporated). STAAD is not well equipped to deal with soils as structural elements and simplifications and assumptions were made to make the best use of STAAD as the structural analysis program. This assumption may render the analysis results a bit conservative because in actuality, the soil filled HESCO bastions are not infinitely rigid and will deflect under loads in ways STAAD is not able to model. Furthermore, under larger loads and subsequent deflections where tensile stresses result in separation of the granular fill material in the HESCO bastions, the behaviour of HESCO bastions no longer remains linear elastic. Due to these reasons, the HESCO bastions may have a greater ability to absorb energy than what we may be able to model with STAAD.

Page 13: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 5

Analysis Model A 3-dimensional model of the SBHS was created on STAAD (a commercial structural analysis program). The model was based on the drawings provided by National Defence. Appropriate member releases were used to make the model as representative as possible to the actual structure and thus the model should emulate the behaviour of the structure to a reasonable degree. The HESCO bastions were modeled by solid elements and the remainder of the frame was modeled using beam elements. The ISO container is not part of the model and may be analysed separately at a later time. There are a number of instances where the model required a connection between structural elements in order for the analysis to run to completion. However in reality, these connections are not actual physical connections but merely locations in the structure where elements bear against one another. A good example of this type of connection is where the HSS roof members are bearing on the HESCO bastion walls. There is not an actual physical connection at this location but in order for the model to work, a connection had to be added in the model. Furthermore, since STAAD does not give force versus time output for dynamic analyses, it is difficult to evaluate the performance of this gravity/friction connection. If we may determine the coefficient of friction between steel and soil and we know the amount of normal force between the steel and soil filled HESCO, we could calculate the amount of load the roof structure could withstand without sliding off the HESCO walls. The performance of such friction connections will have to be evaluated during testing. The guiding criteria will be the amount of slip between the HESCO bastions and the structural steel HSS roof members. In order to have a structure that would be capable of withstanding multiple load cycles, any differential displacement between HSS roof members and the HESCO bastion walls would have to be small. An educated guess at the amount of slip that would be acceptable for a structure designed to withstand multiple loading cycles is between 3 and 6 mm. This criterion is merely my engineering judgement and is not based on any research. Static Loading One of the major difficulties that I encountered in running a time-history analysis with STAAD is that STAAD does not readily give the stresses in the solid elements with respect to time. Force versus time or stress versus time output for dynamic loading is not part of the STAAD output engine. This makes it difficult to determine if the solid elements, which represent the soil filled HESCO bastions, are experiencing tensile stresses. Tensile stress in the HESCO bastions was chosen as the limiting criteria for the ultimate load on the structure, provided the steel frame is not overloaded. In order to determine if tensile stress is present in the solid elements of the model, a separate analysis was run using static loading (a loading that does not change with respect to time) on the model because the static loading output from STAAD did show stresses in the solid elements of the model. The static loading was varied until it produced small tensile stress in the solid elements of the model. The lateral deflection of the HESCO walls was then checked at specific nodes both along the length of the walls and along the height. Successive analysis runs showed that a lateral deflection at the top of the HESCO bastion walls in the order of 6 mm corresponds with the onset of tensile stresses in the solid elements of the STAAD model. The static analysis was based on elastic deformations throughout.

Page 14: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

6 DRDC Suffield CR 2005-033

The lateral deflection of specific chosen nodes from the static analysis was then used as a guide for the dynamic time-history load in order to determine if tensile stresses would be developed in the solid elements during dynamic loading. Since deflection versus time was readily available from the STAAD analysis output for dynamic loading, the maximum deflection for a dynamic analysis at the same nodes as checked in the static loading case was used to determine the maximum dynamic load that the structure should be able to resist. Thus 6 mm of lateral deflection at the top of the solid elements (HESCO bastions) was used as the maximum allowable lateral deflection during dynamic loading. This deflection would be independent of any slip between the roof and the walls due to frictional sliding of structural components against one another. For the load case where a pressure wave originates from above the SBHS, the roof loads in the static model were increased until the average compressive stresses in the HESCO walls were in the range of 100 kPa. The value for this allowable compressive load was picked as the governing compressive stress in the HESCO walls based on past experience with soil bearing resistance and with the assumption that the granular fill in the HESCO bastions may not be compacted very well in actual field conditions. I also did not known how much vertical load would cause the wire frames of the bastions to fail. It was found that the roof elements in the STAAD model had a 15 mm vertical deflection under the above described static loading that would cause 100 kPa of compressive load in the HESCO walls. The roof members would not reach elastic yielding until they experience vertical deflections of 48.5 mm so they are well within their elastic load-deflection range. In fact, it is possible that the roof may be too heavily built and that there may be room to save cost and weight by reducing either the size or the number of roof members. The deflections in the roof members from the static loading were used as a guide in order to determine the maximum dynamic over-head load the structure can resist. Dynamic Loading The dynamic loading of the STAAD model presented a problem that wasn’t an issue with the model that used static loading to check allowable lateral deflections. The problem was with the stiffness of the solid elements used to model the HESCO bastions. Young’s modulus (E) is a measure of stiffness and the E for soils is much smaller than that of steel. Though this did not create a problem for STAAD in the statically loaded model, the dynamic time-history loaded model did not run an analysis to completion with two materials in the model with substantial differences in the magnitude of E. Error messages seem to indicate that STAAD was having some difficulty handling the relatively soft (soil) material and steel together in one analysis. During many hours of experimentation with the model, it was discovered that the analysis did run to completion and gave meaningful results if the Young’s modulus for the solid elements in the model was increased to a value closer to that of steel than a value that was representative of soil. The limiting value of E for soil was approximately 1/200 that of the value of steel. If the value of E for soil were below 1/200 of the value of E for steel, the analysis would not run to completion. In an effort to trick STAAD into running the time-history analysis and providing meaningful analysis results, I increased the Young’s modulus of the solid elements but decreased their depth and increased their density such that the equivalent stiffness and mass of the wall would reflect the actual physical structure as accurately as possible. The stiffness of a structure is proportional to its Young’s Modulus and it’s cross sectional dimensions. By increasing the stiffness and decreasing the cross section of the walls, the effective stiffness of the system does not change. The response of the system for impulsive loading is also very much dependent on the mass of the system and increasing the density of the

Page 15: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 7

solid elements offset the decrease in wall thickness to keep the mass of the system constant. This seemed to work well and STAAD began to run dynamic analysis of the model to completion and began to show the analysis results in the post processing facility of STAAD.

Analysis Results STAAD Model with Static Loading Uniform static loads were applied to the STAAD model in the three principal planes to see the correlation between lateral deflections of the structure and the stresses that would develop in the solid elements. The uniform loads were increased until the solid elements displayed minimal tensile stresses (solid elements were used to model the HESCO bastions). Deflections at specific nodes in the model were then noted for future comparison with results from nodal displacements in dynamic analyses. See the appendix for sections of the STAAD model depicting nodal points, nodal numbers and also nodal displacements for dynamically loaded analysis runs. For a typical section of HESCO bastion wall that is 3 meters tall, a lateral deflection in the range of 6 mm at the top of the wall resulted in tensile stresses in the solid elements from the statically loaded STAAD model. Once tensile stresses begin to develop in the HESCO bastions, the behaviour of the HESCO walls will no longer be linear elastic and the STAAD model is no longer accurate in modeling the behaviour of the structure. By limiting stresses in the HESCO walls such that there will be no tensile stresses, we are able to use STAAD to model the structure. Furthermore, this loading criteria ensures that the structure will remain in the elastic region and should be able to withstand many loading cycles. It should be noted that a 6 mm deflection at the top of the HESCO walls corresponds to 1/500th of the height of the wall. This is a very small lateral deflection and it is in the correct order of magnitude if we were to compare it with lateral deflection criteria for other wall systems that do not perform well under tensile stresses (for example: masonry walls would be designed for a similar lateral deflection criteria). The solid stress contours for the statically loaded STAAD model with loading from above (vertical loads in global Y direction in STAAD model) results in compressive loads in the HESCO walls. There are regions in the solid elements that show tensile stresses as well despite the fact that all the applied loads are compressive. These tensile stresses are due to Poisson’s ratio and the fact that a compressive load in one axis results in tensile stresses in an orthogonal axis. Solid stress contour drawings for the three principal directions of loading may be viewed in Appendix E. STAAD Models with Dynamic Loading Dynamic loads were applied to the STAAD model in the three principal directions. The magnitudes of the dynamic loads were increased until the maximum time-varying deflections in the dynamically loaded model were approximately equal to the lateral deflections of the structure from the statically loaded STAAD model that caused tension in the solid elements. For most locations, this was 6 mm of lateral deflection at the top of the wall. Deflections at specific nodes in the model were compared between statically loaded and dynamically loaded STAAD models. See the appendix for sections of the STAAD model depicting nodal points, nodal numbers and also nodal time-displacement curves for selected nodes from dynamically loaded STAAD analysis runs.

Page 16: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

8 DRDC Suffield CR 2005-033

As discussed earlier in this report, limiting the lateral deflection of the HESCO walls to the elastic range also helps in that the STAAD model assumes that the HESCO walls will oscillate back and forth with the steel frame and roof. This is only possible if the structure is loaded within elastic range. If the structure is loaded into the plastic range where permanent deflections are present, the oscillating mass of the structure will change. Consider that as a large pressure wave pushes on the SBHS, the whole structure will deflect. If there is a permanent/plastic deflection in the HESCO walls, the far wall on the opposite side of the source of the pressure wave may not rebound back with the rest of the structure. This would reduce the oscillating mass and thus could result in greater deflections on the rebound time-displacement curve. This would be difficult loading scenario to model with STAAD. It would not be impossible to model this sort of behaviour but it would be necessary to greatly simplify the model. Fortunately, the HESCO walls should have great damping characteristics and it is expected that the initial peak deflection will be the largest deflection the structure will experience during a pressure wave. Subsequent deflections should all be less than the initial peak deflection. The lateral pressure waves on the model did not result in any unexpected behaviour from the STAAD model. There were stress concentrations where the HESCO walls and the steel frame come into contact. There were also greater deflections in the structure in and around the observation post. A pressure wave originating from above resulted in larger lateral deflections of the observation post than the rest of the structure indicating that the observation post would be a weak link in the design and might fail at a lower load than the rest of the structure.

Conclusion Overpressure Orthogonal to Long Side The peak side-on overpressure that initiated vertical tensile stresses in the solid elements of the model was in the range of 80 kPa with a time of duration of 0.004 seconds. This corresponds to an impulse of 0.32 kNs/m2 and a maximum reflected overpressure on the long side of the SBHS of 420 kPa. This peak pressure was modeled to rise instantly to its maximum value and decrease linearly back to zero over 0.004 seconds of duration time. The sidewalls received 1.92 kPa of equivalent peak overpressure and the rear wall received 0.2 kPa of equivalent peak overpressure for pressure wave acting on the long side of the SBHS. The pressure on the sidewalls, roof and rear wall are generally quite small and insignificant in comparison to the reflected overpressure that is generated on the wall facing the source of the pressure wave. This impulsive loading may be recreated during testing by an infinite combination of charges detonated at varying distances. The size of the charge will increase exponentially with respect to increasing distance from the structure in order to recreate a given overpressure. Loads acting orthogonal to the long side of the structure in the STAAD model were perhaps the better indicator as to how the structure will behave under impulsive load. Due to the fact that the HESCO bastions are not rigidly attached and that their stability and lateral load resistance is mainly a function of their mass and the mass that is on them (roof mass), they will only transfer lateral loads (shear loads) through the action of friction in the material used to fill the HESCO bastions. Therefore, HESCO bastions will carry any lateral load placed on them vertically to roof and grade or foundation. HESCO bastions will not transfer an orthogonal lateral wall load horizontally to the end walls. It can be seen from the solid stress distribution graphs that the middle portion of the long wall behaves very much like a one-way load carrying system in the model. This is due to the aspect ratio of the long wall. In other words, lateral loads placed on the

Page 17: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 9

wall are carried along a vertical path to transfer the load into reactions at the base and roof of the wall. This is the way that HESCO bastions will behave in actuality though this behaviour does deteriorate for loads on the short side of the SBHS in the STAAD model because the relatively short horizontal length of the wall tends to transfer some of the load horizontally to the other wall(s). Overpressure Orthogonal to Short Side According to STAAD analysis results, the maximum reflected overpressure on the short side of the SBHS that started to result in tensile stresses in the solid elements was in the range of 11000 kPa. This is an artificially inflated value of maximum reflected overpressure and it is not expected that the narrow side of the SBHS will be capable of withstanding a dynamic reflected overpressure that is four times greater than the walls along the long sides of the structure. The reason that the sidewall is capable of supporting greater lateral load than the long wall is because the short wall begins to carry its load in two directions and thus starts to behave like a two-way slab. In order to avoid this situation, releases would have to be introduced along the edges of the solid elements to force them to carry the lateral loads vertically to the base of the HESCO bastions and to the roof. STAAD seems to provide a facility where nodal releases may be introduced for linear (beam) elements and plate elements but not for solid elements. Alternatively, a small section of the wall may be modelled to represent the end walls and loaded laterally to see how the wall will behave under dynamic loading. From observation of the long wall, it can be expected that the short sidewalls will withstand a similar reflected peak overpressure. Overpressure on Roof Reflected overpressure on the roof of the structure was also modeled for a pressure wave originating from directly overhead. Increasing vertical loads on the roof of the STAAD model indicated that the HESCO walls were capable of carrying a substantial vertical dynamic load. A static analysis for load originating from above the SBHS was performed in STAAD with the governing criteria being to limit compressive stresses in the HESCO walls to a value of around 100 kPa. This roof loading also resulted in roughly 15 mm of deflection in the roof members. The HSS roof members would reach yield stress conditions at 48 mm of deflection. Based on these loading conditions, it was found that the roof structure could only be subjected loads many times greater than a lateral dynamic load, the only weak links being the observation post and HESCO walls. If we were to consider the observation post sacrificial in the event of a dynamic load, the roof structure for a dynamic load from above would be capable of withstanding more load than a lateral pressure wave. It was also observed that increasing vertical loads caused greater lateral movement that vertical movement in the roof. This is indicative of buckling type of failure in the walls therefore the HESCO walls begin to fail before the roof structure fails, according to STAAD model of the SBHS. The roof loads were left at a high value to show that little vertical deflection was experienced simultaneously with larger lateral movement for vertical pressure. The time-distance results may be viewed in the appendix. In an effort to see if the roof could be improved, the roof was also modeled with more mass. Greater mass in the system during a dynamic loading event means that accelerations and thus deflections and stresses will also be reduced. It was found that doubling the mass of the roof system by increasing the HESCO mass on the roof only reduced the dynamic deflections of the roof members by about 25%. Adding more mass to the roof would seem to yield a diminishing

Page 18: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

10 DRDC Suffield CR 2005-033

return. In any case, there may be room to save cost on the structure by reducing the strength of the roof. This may be determined with testing and further modeling of the structure. Maximum Dynamic Load Rating Based on the analysis of the structure using STAAD and the performance criteria discussed above and assuming that the dynamic impulse may originate from anywhere, it is the performance of the HESCO walls that limits the elastic load rating for the structure to a maximum reflected overpressure of 420 kPa with a time of duration of 0.004 seconds. This corresponds to a peak side-on pressure of roughly 80 kPa with a time of duration of 0.004 seconds or an impulse of 0.32 kNs/m2. We should not forget that the work outlined in this report is merely a simplified model that attempts to predict in a simple way a very complicated structure under very complicated loading scenarios. My engineering judgment tells me that the SBHS will likely be capable of withstanding much higher loads prior to failure than what we have calculated using STAAD and using the elastic range of loading. Furthermore, with field-testing, more accurate values of effective modulus of elasticity may be determined. The STAAD model could then be modified to reflect knowledge gained through testing to better predict the performance of the structure.

Recommendations for Future Improvements Roof Framing The HESCO structure is stable because it has a lot of mass. It not only has its own mass but there is also a significant roof loading holding the walls down. This is beneficial to the HESCO structure during a dynamic loading event as vertical loads on the wall will increase the lateral load carrying capacity of the wall to a certain extent. As originally depicted, the walls at the narrow ends of the SBHS did not benefit from this additional roof load and may have been more vulnerable to a pressure wave that generated on the narrow side of the SBHS. We have changed the plans such that the structure at the entrances was slightly modified so as to put some increased gravity loads on the narrow end walls. Observation Post The OP protrudes up higher than any other portion of the SBHS. It therefore will have a greater (negative) effect on the steel structure of the SBHS during dynamic loading. Increasing the weight on the roof of the observation post would reduce the accelerations of the observation post during a pressure wave and may reduce the amount of stress introduced into the rest of the structure thought the amount of weight added would have to be significant to gain any appreciable advantage. It was observed from the STAAD analysis that the HESCO walls in the vicinity of the OP experienced greater stresses and deflections during lateral loading. This is obviously a result of the greater vertical projection of the OP and was expected. Steel Connections Steel connection details have been provided in the appendix but are meant only as a guideline for layout of bolts and connection plates. A thorough engineering analysis was not done on the connections. It is generally the fabricator’s engineer that would design the connections of steel structural members.

Page 19: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 11

HESCO Lean Mix Concrete Fill There has been some indication that the geo-textile in HESCO bastions does not hold up very well during field testing, resulting in a loss of fill materials and reducing the chances of the SBHS to resist multiple loading cycles. There is also a concern with the steel mesh frames of the HESCO bastions stretching and distorting with time causing the HESCO bastions to sag. If it is at all possible, saturating the HESCO bastions with a very lean mix concrete fill while they are being filled with soil could eliminate both of these possible points of concern. Layout of HESCO Walls A recent meeting at National Defence resulted in the desire to make some changes to the expeditionary structure. Although these changes were made too late to incorporate into the analysis that this report is based on, the points that were brought to my attention will surely improve the chances of minimizing injury to personnel within the structure during impulsive loading. One of the suggested changes was to change the layout of the HESCO bastion walls so that the two entrances are not both facing the same direction. If a pressure wave were to originate on the side of the structure where both entrances faced, the resulting simultaneous ingress of overpressure into the structure would amplify to a much larger reflected overpressure causing more harm to occupants in the structure and to the structure itself. Extension of Steel Frame The steel frame inside the HESCO bastion fortification currently covers mostly the ISO container. The steel frame does not contribute greatly to the ability of the structure to resist lateral loads. The main purpose of the steel frame is that if the structure were to fail, the steel frame would act as a secondary vertical load resisting system. Blast resistant buildings are generally designed such that they have separate lateral load and vertical load resisting systems. The steel frame would give the occupants of the expeditionary structure a chance to get out of the structure in the event of a structural collapse of the roof and walls. It is for this reason that I would recommend that the frame be revised to extend to the very end walls and also provide a secondary support for the roof structure over the entrances. Connection of HESCO Bastions to Roof Structure The expeditionary structure relies on gravity and friction for the connection of HSS roof members on HESCO walls. It is difficult to predict how this connection will behave during actual loading. Depending on the performance of the structure, a better connection between the HSS roof and the HESCO walls may need to be developed. Differential movements between the HSS roof members and the HESCO bastions should be monitored during testing to determine if there is too much slip between the HESCO bastions and the structural steel HSS roof.

Page 20: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

12 DRDC Suffield CR 2005-033

Guidelines for Taking Measurements During Testing Measuring Deflections Measurements of structure deflections will need to be taken during testing in order to compare analysis results with test results. Due to the fact that the impulsive loads that the structure will be subject to have very short duration times, there is a need for sophisticated measuring devices that will be capable of recording many thousands of readings per second. If it is difficult or prohibitively expensive to find equipment that will take a sufficient number of readings per second, it may be adequate to find less expensive equipment and only measure maximum deflections as opposed to a deflection-time history. It will be necessary to provide a means of ensuring that the equipment will be safe during testing. This may be done by keeping the recording devices in a specially constructed safe box perhaps buried under the structure, or it may be accomplished by keeping the more sensitive equipment in a more remote area further away from the source of the impulse. The instruments used for measuring the actual deflections are called LVDTs. They are telescoping electrical instruments that are used to measure deflections between two points. During testing, one end of the LVDT will need to be attached to a point on the structure that we need deflection readings for and the other end will need to be kept immobile. This presents another problem in that during testing, one end of the LVDT will need to be fixed in a point in space, allowing the other end to track the movements of the structure. If the fixed end does not stay immobilized, it can result in incorrect readings of the deflections. The best place to take measurements of the deflections of the structure will be from within the ISO container. The ISO container will provide some degree of protection to the equipment (LVDTs) from blast pressures and it will reduce the chances of the fixed ends of the LVDTs to be moved by the pressure wave. In order to provide a fixed anchoring position for the LVDTs, it will be necessary to cast small footings below the ISO container. These footings may simply be 0.5 m x 0.5 m x 0.3 m thick un-reinforced concrete pads. Onto these pads, we will need to attach 76x76x6 HSS steel tubes. This can simply be done with 6 mm thick base plates welded to the HSS posts and a pair of concrete expansion anchors (1/2” diameter HILTI Kwik bolts will suffice) to fasten the posts to the footings. Holes will have to be cut into the floor of the ISO container in order to fasten the HSS tubes to the concrete footings below. The holes in the floor of the ISO container should be large enough such that small movements of the ISO container will not result in the ISO container making contact with the HSS posts. The HSS posts within the ISO container will then provide a solid location to attach the immobile end of the LVDTs. The end of the LVDTs that moves with the structure will be fixed to locations in the structure for which we will want to take measurements of deflection. We will also need to provide holes in the ISO container for the LVDTs to pass through and attach to the structure. A 100 mm diameter hole should be plenty for this purpose. As a minimum, measurements of the deflection of the structure should be taken at the top of the HESCO bastions along the middle of the long side. Deflections should also be recorded for one HSS roof member near the centre of the structure and at the mid-span of the HSS roof member.

Page 21: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 13

A plate may need to be buried into one of the HESCO bastions in order to provide a solid mounting point for the LVDT. LVDTs can only measure deflections at one location and along one axis; therefore multiple LVDTs will be required to measure deflections in different locations and different axis. It will be most important to measure deflections of the wall facing the direction of loading, in the direction of the loading. It is expected that this wall facing the full-reflected pressure will be subject to the most distress. Measuring Pressure It is important to find out how much of the blast pressure will ingress into the ISO container. Regardless of how the structure behaves during an impulse, large changes of pressure within the ISO container may cause injury and even fatality to personnel taking shelter in the SBHS. At the very minimum, pressure sensors should be placed at both ends of the ISO container and also in the middle of the container. The sensors should be capable of recording the change in pressure with respect to time and be able to do so many thousands of times per second as the pressure wave will have a very short duration time. Barring the ability to locate sophisticated equipment, it may suffice to get pressure sensors that merely record the maximum pressure.

Page 22: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

14 DRDC Suffield CR 2005-033

APPENDIX A: Isometric Views of STAAD Model

Page 23: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 15

Page 24: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

16 DRDC Suffield CR 2005-033

APPENDIX B: Horizontal Sections through STAAD Model Horizontal section through model at elevation 0.0 m showing node numbers: Note: HESCO walls were modelled using 0.5 m x 0.5 m x 0.5 m solid elements

Page 25: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 17

Horizontal section through model at elevation 0.5 m:

Page 26: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

18 DRDC Suffield CR 2005-033

Horizontal section through model at elevation 1.0 m:

Page 27: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 19

Horizontal section through model at elevation 1.5 m:

Page 28: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

20 DRDC Suffield CR 2005-033

Horizontal section through model at elevation 2.0 m:

Page 29: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 21

Horizontal section through model at elevation 2.5 m:

Page 30: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

22 DRDC Suffield CR 2005-033

Horizontal section through model at elevation 3.0 m:

Page 31: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 23

Horizontal section through top of observation tower roof:

Page 32: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

24 DRDC Suffield CR 2005-033

APPENDIX C: Vertical Sections through STAAD Model Section in Y-Z plane through node 1 showing node numbers:

Page 33: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 25

Section in Y-Z Plane through node 136 showing node numbers:

Page 34: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

26 DRDC Suffield CR 2005-033

Section in Y-Z plane through node 1597 showing node numbers:

Page 35: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 27

Section in Y-Z plane through node 1603 showing node numbers:

Page 36: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

28 DRDC Suffield CR 2005-033

Section in Y-Z plane through node 1609 showing node numbers:

Page 37: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 29

Section in Y-Z plane through node 17 showing node numbers:

Page 38: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

30 DRDC Suffield CR 2005-033

Isometric view of section cut in Y-Z plane through node 1 showing node numbers:

Page 39: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 31

Section cut in Y-Z plane at node 1813 showing node numbers:

Page 40: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

32 DRDC Suffield CR 2005-033

Section cut in Y-Z plane through node 1942:

Page 41: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 33

Section cut in Y-Z plane through node 1959:

Page 42: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

34 DRDC Suffield CR 2005-033

APPENDIX D: Nodal Time-Displacement Curves from STAAD Nodal displacements for dynamic excitation in x coordinate direction:

Page 43: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 35

Page 44: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

36 DRDC Suffield CR 2005-033

Nodal displacements for dynamic excitation in y coordinate direction:

Page 45: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 37

Page 46: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

38 DRDC Suffield CR 2005-033

Page 47: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 39

Page 48: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

40 DRDC Suffield CR 2005-033

Nodal displacements for dynamic excitation in z coordinate direction:

Page 49: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 41

Page 50: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

42 DRDC Suffield CR 2005-033

Page 51: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 43

Page 52: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

44 DRDC Suffield CR 2005-033

Page 53: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 45

Page 54: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

46 DRDC Suffield CR 2005-033

Page 55: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 47

APPENDIX E: Solid Stress Contour Plots for Solid Elements in Global Y Direction from STAAD Analysis for Statically Loaded Model. Note: negative stress corresponds to compressive load Solid stress contour plot for load in Z direction:

Page 56: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

48 DRDC Suffield CR 2005-033

Solid stress contour plot for load in Z direction:

Page 57: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 49

Solid stress contour plot for load in X direction:

Page 58: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

50 DRDC Suffield CR 2005-033

Solid stress contour plot for load in Y direction:

Page 59: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 51

APPENDIX F: Deflected shape of SBHS:

Page 60: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

52 DRDC Suffield CR 2005-033

Deflected shape of SBHS:

Page 61: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 53

APPENDIX G: STAAD Input Files STAAD Input File for Dynamic Load in Z direction *STAAD MODEL HSCOTHIN DYNAMIC LOADING IN Z DIRECTION STAAD SPACE ANALYSIS OF HESCO FORTIFICATION FOR BLAST LOADS START JOB INFORMATION JOB NAME MASTER'S PROJECT FOR ARDA OZUM JOB CLIENT DEFENCE R & D CANADA ENGINEER DATE 20-Mar-03 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0.3923 0 0.3923; 2 0.5 0 0.3923; 3 0.6077 0 0.3923; 4 1.5 0 0.3923; 5 2 0 0.3923; 6 2.5 0 0.3923; 7 3 0 0.3923; 8 3.5 0 0.3923; 9 4 0 0.3923; 10 4.5 0 0.3923; 11 5 0 0.3923; 12 5.5 0 0.3923; 13 6 0 0.3923; 14 6.5 0 0.3923; 15 7 0 0.3923; 16 7.5 0 0.3923; 17 8 0 0.3923; 18 8.5 0 0.3923; 19 9 0 0.3923; 20 9.5 0 0.3923; 21 10 0 0.3923; 22 10.5 0 0.3923; 23 11 0 0.3923; 24 11.5 0 0.3923; 25 12 0 0.3923; 26 12.5 0 0.3923; 27 13 0 0.3923; 28 13.5 0 0.3923; 29 14 0 0.3923; 30 14.5 0 0.3923; 31 15.3923 0 0.3923; 32 15.5 0 0.3923; 33 15.6077 0 0.3923; 34 0.3923 0 0.5; 35 0.5 0 0.5; 36 0.6077 0 0.5; 37 1.5 0 0.5; 38 2 0 0.5; 39 2.5 0 0.5; 40 3 0 0.5; 41 3.5 0 0.5; 42 4 0 0.5; 43 4.5 0 0.5; 44 5 0 0.5; 45 5.5 0 0.5; 46 6 0 0.5; 47 6.5 0 0.5; 48 7 0 0.5; 49 7.5 0 0.5; 50 8 0 0.5; 51 8.5 0 0.5; 52 9 0 0.5; 53 9.5 0 0.5; 54 10 0 0.5; 55 10.5 0 0.5; 56 11 0 0.5; 57 11.5 0 0.5; 58 12 0 0.5; 59 12.5 0 0.5; 60 13 0 0.5; 61 13.5 0 0.5; 62 14 0 0.5; 63 14.5 0 0.5; 64 15.3923 0 0.5; 65 15.5 0 0.5; 66 15.6077 0 0.5; 67 0.3923 0 0.6077; 68 0.5 0 0.6077; 69 0.6077 0 0.6077; 70 1.5 0 0.6077; 71 2 0 0.6077; 72 2.5 0 0.6077; 73 3 0 0.6077; 74 3.5 0 0.6077; 75 4 0 0.6077; 76 4.5 0 0.6077; 77 5 0 0.6077; 78 5.5 0 0.6077; 79 6 0 0.6077; 80 6.5 0 0.6077; 81 7 0 0.6077; 82 7.5 0 0.6077; 83 8 0 0.6077; 84 8.5 0 0.6077; 85 9 0 0.6077; 86 9.5 0 0.6077; 87 10 0 0.6077; 88 10.5 0 0.6077; 89 11 0 0.6077; 90 11.5 0 0.6077; 91 12 0 0.6077; 92 12.5 0 0.6077; 93 13 0 0.6077; 94 13.5 0 0.6077; 95 14 0 0.6077; 96 14.5 0 0.6077; 97 15.3923 0 0.6077; 98 15.5 0 0.6077; 99 15.6077 0 0.6077; 100 0.3923 0 1.5; 101 0.3923 0 2; 102 0.3923 0 2.5; 103 0.3923 0 3; 104 0.3923 0 3.5; 105 0.3923 0 4; 106 0.5 0 1.5; 107 0.5 0 2; 108 0.5 0 2.5; 109 0.5 0 3; 110 0.5 0 3.5; 111 0.5 0 4; 112 0.6077 0 1.5; 113 0.6077 0 2; 114 0.6077 0 2.5; 115 0.6077 0 3; 116 0.6077 0 3.5; 117 0.6077 0 4; 118 15.3923 0 1.5; 119 15.3923 0 2; 120 15.3923 0 2.5; 121 15.3923 0 3; 122 15.3923 0 3.5; 123 15.3923 0 4; 124 15.5 0 1.5; 125 15.5 0 2; 126 15.5 0 2.5; 127 15.5 0 3; 128 15.5 0 3.5; 129 15.5 0 4; 130 15.6077 0 1.5; 131 15.6077 0 2; 132 15.6077 0 2.5; 133 15.6077 0 3; 134 15.6077 0 3.5; 135 15.6077 0 4; 136 2.8923 0 2.5; 137 2.8923 0 3; 138 2.8923 0 3.5; 139 2.8923 0 4; 140 2.8923 0 4.8923; 141 2.8923 0 5; 142 2.8923 0 5.1077; 143 3 0 2.5; 144 3 0 3; 145 3 0 3.5; 146 3 0 4; 147 3 0 4.8923; 148 3 0 5; 149 3 0 5.1077; 150 3.1077 0 2.5; 151 3.1077 0 3; 152 3.1077 0 3.5; 153 3.1077 0 4; 154 3.1077 0 4.8923; 155 3.1077 0 5; 156 3.1077 0 5.1077; 157 4 0 4.8923; 158 4.5 0 4.8923; 159 5 0 4.8923; 160 5.5 0 4.8923; 161 6 0 4.8923; 162 6.5 0 4.8923; 163 7 0 4.8923; 164 7.5 0 4.8923; 165 8 0 4.8923;

Page 62: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

54 DRDC Suffield CR 2005-033

166 8.5 0 4.8923; 167 9 0 4.8923; 168 9.5 0 4.8923; 169 10 0 4.8923; 170 10.5 0 4.8923; 171 11 0 4.8923; 172 11.5 0 4.8923; 173 12 0 4.8923; 174 4 0 5; 175 4.5 0 5; 176 5 0 5; 177 5.5 0 5; 178 6 0 5; 179 6.5 0 5; 180 7 0 5; 181 7.5 0 5; 182 8 0 5; 183 8.5 0 5; 184 9 0 5; 185 9.5 0 5; 186 10 0 5; 187 10.5 0 5; 188 11 0 5; 189 11.5 0 5; 190 12 0 5; 191 4 0 5.1077; 192 4.5 0 5.1077; 193 5 0 5.1077; 194 5.5 0 5.1077; 195 6 0 5.1077; 196 6.5 0 5.1077; 197 7 0 5.1077; 198 7.5 0 5.1077; 199 8 0 5.1077; 200 8.5 0 5.1077; 201 9 0 5.1077; 202 9.5 0 5.1077; 203 10 0 5.1077; 204 10.5 0 5.1077; 205 11 0 5.1077; 206 11.5 0 5.1077; 207 12 0 5.1077; 208 12.8923 0 2.5; 209 12.8923 0 3; 210 12.8923 0 3.5; 211 12.8923 0 4; 212 12.8923 0 4.8923; 213 12.8923 0 5; 214 12.8923 0 5.1077; 215 13 0 2.5; 216 13 0 3; 217 13 0 3.5; 218 13 0 4; 219 13 0 4.8923; 220 13 0 5; 221 13 0 5.1077; 222 13.1077 0 2.5; 223 13.1077 0 3; 224 13.1077 0 3.5; 225 13.1077 0 4; 226 13.1077 0 4.8923; 227 13.1077 0 5; 228 13.1077 0 5.1077; 229 0.3923 0.5 0.3923; 230 0.5 0.5 0.3923; 231 0.6077 0.5 0.3923; 232 1.5 0.5 0.3923; 233 2 0.5 0.3923; 234 2.5 0.5 0.3923; 235 3 0.5 0.3923; 236 3.5 0.5 0.3923; 237 4 0.5 0.3923; 238 4.5 0.5 0.3923; 239 5 0.5 0.3923; 240 5.5 0.5 0.3923; 241 6 0.5 0.3923; 242 6.5 0.5 0.3923; 243 7 0.5 0.3923; 244 7.5 0.5 0.3923; 245 8 0.5 0.3923; 246 8.5 0.5 0.3923; 247 9 0.5 0.3923; 248 9.5 0.5 0.3923; 249 10 0.5 0.3923; 250 10.5 0.5 0.3923; 251 11 0.5 0.3923; 252 11.5 0.5 0.3923; 253 12 0.5 0.3923; 254 12.5 0.5 0.3923; 255 13 0.5 0.3923; 256 13.5 0.5 0.3923; 257 14 0.5 0.3923; 258 14.5 0.5 0.3923; 259 15.3923 0.5 0.3923; 260 15.5 0.5 0.3923; 261 15.6077 0.5 0.3923; 262 0.3923 0.5 0.5; 263 0.5 0.5 0.5; 264 0.6077 0.5 0.5; 265 1.5 0.5 0.5; 266 2 0.5 0.5; 267 2.5 0.5 0.5; 268 3 0.5 0.5; 269 3.5 0.5 0.5; 270 4 0.5 0.5; 271 4.5 0.5 0.5; 272 5 0.5 0.5; 273 5.5 0.5 0.5; 274 6 0.5 0.5; 275 6.5 0.5 0.5; 276 7 0.5 0.5; 277 7.5 0.5 0.5; 278 8 0.5 0.5; 279 8.5 0.5 0.5; 280 9 0.5 0.5; 281 9.5 0.5 0.5; 282 10 0.5 0.5; 283 10.5 0.5 0.5; 284 11 0.5 0.5; 285 11.5 0.5 0.5; 286 12 0.5 0.5; 287 12.5 0.5 0.5; 288 13 0.5 0.5; 289 13.5 0.5 0.5; 290 14 0.5 0.5; 291 14.5 0.5 0.5; 292 15.3923 0.5 0.5; 293 15.5 0.5 0.5; 294 15.6077 0.5 0.5; 295 0.3923 0.5 0.6077; 296 0.5 0.5 0.6077; 297 0.6077 0.5 0.6077; 298 1.5 0.5 0.6077; 299 2 0.5 0.6077; 300 2.5 0.5 0.6077; 301 3 0.5 0.6077; 302 3.5 0.5 0.6077; 303 4 0.5 0.6077; 304 4.5 0.5 0.6077; 305 5 0.5 0.6077; 306 5.5 0.5 0.6077; 307 6 0.5 0.6077; 308 6.5 0.5 0.6077; 309 7 0.5 0.6077; 310 7.5 0.5 0.6077; 311 8 0.5 0.6077; 312 8.5 0.5 0.6077; 313 9 0.5 0.6077; 314 9.5 0.5 0.6077; 315 10 0.5 0.6077; 316 10.5 0.5 0.6077; 317 11 0.5 0.6077; 318 11.5 0.5 0.6077; 319 12 0.5 0.6077; 320 12.5 0.5 0.6077; 321 13 0.5 0.6077; 322 13.5 0.5 0.6077; 323 14 0.5 0.6077; 324 14.5 0.5 0.6077; 325 15.3923 0.5 0.6077; 326 15.5 0.5 0.6077; 327 15.6077 0.5 0.6077; 328 0.3923 0.5 1.5; 329 0.3923 0.5 2; 330 0.3923 0.5 2.5; 331 0.3923 0.5 3; 332 0.3923 0.5 3.5; 333 0.3923 0.5 4; 334 0.5 0.5 1.5; 335 0.5 0.5 2; 336 0.5 0.5 2.5; 337 0.5 0.5 3; 338 0.5 0.5 3.5; 339 0.5 0.5 4; 340 0.6077 0.5 1.5; 341 0.6077 0.5 2; 342 0.6077 0.5 2.5; 343 0.6077 0.5 3; 344 0.6077 0.5 3.5; 345 0.6077 0.5 4; 346 15.3923 0.5 1.5; 347 15.3923 0.5 2; 348 15.3923 0.5 2.5; 349 15.3923 0.5 3; 350 15.3923 0.5 3.5; 351 15.3923 0.5 4; 352 15.5 0.5 1.5; 353 15.5 0.5 2; 354 15.5 0.5 2.5; 355 15.5 0.5 3; 356 15.5 0.5 3.5; 357 15.5 0.5 4; 358 15.6077 0.5 1.5; 359 15.6077 0.5 2; 360 15.6077 0.5 2.5; 361 15.6077 0.5 3; 362 15.6077 0.5 3.5; 363 15.6077 0.5 4; 364 2.8923 0.5 2.5; 365 2.8923 0.5 3; 366 2.8923 0.5 3.5; 367 2.8923 0.5 4; 368 2.8923 0.5 4.8923; 369 2.8923 0.5 5; 370 2.8923 0.5 5.1077; 371 3 0.5 2.5; 372 3 0.5 3; 373 3 0.5 3.5; 374 3 0.5 4; 375 3 0.5 4.8923; 376 3 0.5 5; 377 3 0.5 5.1077; 378 3.1077 0.5 2.5; 379 3.1077 0.5 3; 380 3.1077 0.5 3.5;

Page 63: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 55

381 3.1077 0.5 4; 382 3.1077 0.5 4.8923; 383 3.1077 0.5 5; 384 3.1077 0.5 5.1077; 385 4 0.5 4.8923; 386 4.5 0.5 4.8923; 387 5 0.5 4.8923; 388 5.5 0.5 4.8923; 389 6 0.5 4.8923; 390 6.5 0.5 4.8923; 391 7 0.5 4.8923; 392 7.5 0.5 4.8923; 393 8 0.5 4.8923; 394 8.5 0.5 4.8923; 395 9 0.5 4.8923; 396 9.5 0.5 4.8923; 397 10 0.5 4.8923; 398 10.5 0.5 4.8923; 399 11 0.5 4.8923; 400 11.5 0.5 4.8923; 401 12 0.5 4.8923; 402 4 0.5 5; 403 4.5 0.5 5; 404 5 0.5 5; 405 5.5 0.5 5; 406 6 0.5 5; 407 6.5 0.5 5; 408 7 0.5 5; 409 7.5 0.5 5; 410 8 0.5 5; 411 8.5 0.5 5; 412 9 0.5 5; 413 9.5 0.5 5; 414 10 0.5 5; 415 10.5 0.5 5; 416 11 0.5 5; 417 11.5 0.5 5; 418 12 0.5 5; 419 4 0.5 5.1077; 420 4.5 0.5 5.1077; 421 5 0.5 5.1077; 422 5.5 0.5 5.1077; 423 6 0.5 5.1077; 424 6.5 0.5 5.1077; 425 7 0.5 5.1077; 426 7.5 0.5 5.1077; 427 8 0.5 5.1077; 428 8.5 0.5 5.1077; 429 9 0.5 5.1077; 430 9.5 0.5 5.1077; 431 10 0.5 5.1077; 432 10.5 0.5 5.1077; 433 11 0.5 5.1077; 434 11.5 0.5 5.1077; 435 12 0.5 5.1077; 436 12.8923 0.5 2.5; 437 12.8923 0.5 3; 438 12.8923 0.5 3.5; 439 12.8923 0.5 4; 440 12.8923 0.5 4.8923; 441 12.8923 0.5 5; 442 12.8923 0.5 5.1077; 443 13 0.5 2.5; 444 13 0.5 3; 445 13 0.5 3.5; 446 13 0.5 4; 447 13 0.5 4.8923; 448 13 0.5 5; 449 13 0.5 5.1077; 450 13.1077 0.5 2.5; 451 13.1077 0.5 3; 452 13.1077 0.5 3.5; 453 13.1077 0.5 4; 454 13.1077 0.5 4.8923; 455 13.1077 0.5 5; 456 13.1077 0.5 5.1077; 457 0.3923 1 0.3923; 458 0.5 1 0.3923; 459 0.6077 1 0.3923; 460 1.5 1 0.3923; 461 2 1 0.3923; 462 2.5 1 0.3923; 463 3 1 0.3923; 464 3.5 1 0.3923; 465 4 1 0.3923; 466 4.5 1 0.3923; 467 5 1 0.3923; 468 5.5 1 0.3923; 469 6 1 0.3923; 470 6.5 1 0.3923; 471 7 1 0.3923; 472 7.5 1 0.3923; 473 8 1 0.3923; 474 8.5 1 0.3923; 475 9 1 0.3923; 476 9.5 1 0.3923; 477 10 1 0.3923; 478 10.5 1 0.3923; 479 11 1 0.3923; 480 11.5 1 0.3923; 481 12 1 0.3923; 482 12.5 1 0.3923; 483 13 1 0.3923; 484 13.5 1 0.3923; 485 14 1 0.3923; 486 14.5 1 0.3923; 487 15.3923 1 0.3923; 488 15.5 1 0.3923; 489 15.6077 1 0.3923; 490 0.3923 1 0.5; 491 0.5 1 0.5; 492 0.6077 1 0.5; 493 1.5 1 0.5; 494 2 1 0.5; 495 2.5 1 0.5; 496 3 1 0.5; 497 3.5 1 0.5; 498 4 1 0.5; 499 4.5 1 0.5; 500 5 1 0.5; 501 5.5 1 0.5; 502 6 1 0.5; 503 6.5 1 0.5; 504 7 1 0.5; 505 7.5 1 0.5; 506 8 1 0.5; 507 8.5 1 0.5; 508 9 1 0.5; 509 9.5 1 0.5; 510 10 1 0.5; 511 10.5 1 0.5; 512 11 1 0.5; 513 11.5 1 0.5; 514 12 1 0.5; 515 12.5 1 0.5; 516 13 1 0.5; 517 13.5 1 0.5; 518 14 1 0.5; 519 14.5 1 0.5; 520 15.3923 1 0.5; 521 15.5 1 0.5; 522 15.6077 1 0.5; 523 0.3923 1 0.6077; 524 0.5 1 0.6077; 525 0.6077 1 0.6077; 526 1.5 1 0.6077; 527 2 1 0.6077; 528 2.5 1 0.6077; 529 3 1 0.6077; 530 3.5 1 0.6077; 531 4 1 0.6077; 532 4.5 1 0.6077; 533 5 1 0.6077; 534 5.5 1 0.6077; 535 6 1 0.6077; 536 6.5 1 0.6077; 537 7 1 0.6077; 538 7.5 1 0.6077; 539 8 1 0.6077; 540 8.5 1 0.6077; 541 9 1 0.6077; 542 9.5 1 0.6077; 543 10 1 0.6077; 544 10.5 1 0.6077; 545 11 1 0.6077; 546 11.5 1 0.6077; 547 12 1 0.6077; 548 12.5 1 0.6077; 549 13 1 0.6077; 550 13.5 1 0.6077; 551 14 1 0.6077; 552 14.5 1 0.6077; 553 15.3923 1 0.6077; 554 15.5 1 0.6077; 555 15.6077 1 0.6077; 556 0.3923 1 1.5; 557 0.3923 1 2; 558 0.3923 1 2.5; 559 0.3923 1 3; 560 0.3923 1 3.5; 561 0.3923 1 4; 562 0.5 1 1.5; 563 0.5 1 2; 564 0.5 1 2.5; 565 0.5 1 3; 566 0.5 1 3.5; 567 0.5 1 4; 568 0.6077 1 1.5; 569 0.6077 1 2; 570 0.6077 1 2.5; 571 0.6077 1 3; 572 0.6077 1 3.5; 573 0.6077 1 4; 574 15.3923 1 1.5; 575 15.3923 1 2; 576 15.3923 1 2.5; 577 15.3923 1 3; 578 15.3923 1 3.5; 579 15.3923 1 4; 580 15.5 1 1.5; 581 15.5 1 2; 582 15.5 1 2.5; 583 15.5 1 3; 584 15.5 1 3.5; 585 15.5 1 4; 586 15.6077 1 1.5; 587 15.6077 1 2; 588 15.6077 1 2.5; 589 15.6077 1 3; 590 15.6077 1 3.5; 591 15.6077 1 4; 592 2.8923 1 2.5; 593 2.8923 1 3; 594 2.8923 1 3.5; 595 2.8923 1 4; 596 2.8923 1 4.8923; 597 2.8923 1 5; 598 2.8923 1 5.1077; 599 3 1 2.5;

Page 64: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

56 DRDC Suffield CR 2005-033

600 3 1 3; 601 3 1 3.5; 602 3 1 4; 603 3 1 4.8923; 604 3 1 5; 605 3 1 5.1077; 606 3.1077 1 2.5; 607 3.1077 1 3; 608 3.1077 1 3.5; 609 3.1077 1 4; 610 3.1077 1 4.8923; 611 3.1077 1 5; 612 3.1077 1 5.1077; 613 4 1 4.8923; 614 4.5 1 4.8923; 615 5 1 4.8923; 616 5.5 1 4.8923; 617 6 1 4.8923; 618 6.5 1 4.8923; 619 7 1 4.8923; 620 7.5 1 4.8923; 621 8 1 4.8923; 622 8.5 1 4.8923; 623 9 1 4.8923; 624 9.5 1 4.8923; 625 10 1 4.8923; 626 10.5 1 4.8923; 627 11 1 4.8923; 628 11.5 1 4.8923; 629 12 1 4.8923; 630 4 1 5; 631 4.5 1 5; 632 5 1 5; 633 5.5 1 5; 634 6 1 5; 635 6.5 1 5; 636 7 1 5; 637 7.5 1 5; 638 8 1 5; 639 8.5 1 5; 640 9 1 5; 641 9.5 1 5; 642 10 1 5; 643 10.5 1 5; 644 11 1 5; 645 11.5 1 5; 646 12 1 5; 647 4 1 5.1077; 648 4.5 1 5.1077; 649 5 1 5.1077; 650 5.5 1 5.1077; 651 6 1 5.1077; 652 6.5 1 5.1077; 653 7 1 5.1077; 654 7.5 1 5.1077; 655 8 1 5.1077; 656 8.5 1 5.1077; 657 9 1 5.1077; 658 9.5 1 5.1077; 659 10 1 5.1077; 660 10.5 1 5.1077; 661 11 1 5.1077; 662 11.5 1 5.1077; 663 12 1 5.1077; 664 12.8923 1 2.5; 665 12.8923 1 3; 666 12.8923 1 3.5; 667 12.8923 1 4; 668 12.8923 1 4.8923; 669 12.8923 1 5; 670 12.8923 1 5.1077; 671 13 1 2.5; 672 13 1 3; 673 13 1 3.5; 674 13 1 4; 675 13 1 4.8923; 676 13 1 5; 677 13 1 5.1077; 678 13.1077 1 2.5; 679 13.1077 1 3; 680 13.1077 1 3.5; 681 13.1077 1 4; 682 13.1077 1 4.8923; 683 13.1077 1 5; 684 13.1077 1 5.1077; 685 0.3923 1.5 0.3923; 686 0.5 1.5 0.3923; 687 0.6077 1.5 0.3923; 688 1.5 1.5 0.3923; 689 2 1.5 0.3923; 690 2.5 1.5 0.3923; 691 3 1.5 0.3923; 692 3.5 1.5 0.3923; 693 4 1.5 0.3923; 694 4.5 1.5 0.3923; 695 5 1.5 0.3923; 696 5.5 1.5 0.3923; 697 6 1.5 0.3923; 698 6.5 1.5 0.3923; 699 7 1.5 0.3923; 700 7.5 1.5 0.3923; 701 8 1.5 0.3923; 702 8.5 1.5 0.3923; 703 9 1.5 0.3923; 704 9.5 1.5 0.3923; 705 10 1.5 0.3923; 706 10.5 1.5 0.3923; 707 11 1.5 0.3923; 708 11.5 1.5 0.3923; 709 12 1.5 0.3923; 710 12.5 1.5 0.3923; 711 13 1.5 0.3923; 712 13.5 1.5 0.3923; 713 14 1.5 0.3923; 714 14.5 1.5 0.3923; 715 15.3923 1.5 0.3923; 716 15.5 1.5 0.3923; 717 15.6077 1.5 0.3923; 718 0.3923 1.5 0.5; 719 0.5 1.5 0.5; 720 0.6077 1.5 0.5; 721 1.5 1.5 0.5; 722 2 1.5 0.5; 723 2.5 1.5 0.5; 724 3 1.5 0.5; 725 3.5 1.5 0.5; 726 4 1.5 0.5; 727 4.5 1.5 0.5; 728 5 1.5 0.5; 729 5.5 1.5 0.5; 730 6 1.5 0.5; 731 6.5 1.5 0.5; 732 7 1.5 0.5; 733 7.5 1.5 0.5; 734 8 1.5 0.5; 735 8.5 1.5 0.5; 736 9 1.5 0.5; 737 9.5 1.5 0.5; 738 10 1.5 0.5; 739 10.5 1.5 0.5; 740 11 1.5 0.5; 741 11.5 1.5 0.5; 742 12 1.5 0.5; 743 12.5 1.5 0.5; 744 13 1.5 0.5; 745 13.5 1.5 0.5; 746 14 1.5 0.5; 747 14.5 1.5 0.5; 748 15.3923 1.5 0.5; 749 15.5 1.5 0.5; 750 15.6077 1.5 0.5; 751 0.3923 1.5 0.6077; 752 0.5 1.5 0.6077; 753 0.6077 1.5 0.6077; 754 1.5 1.5 0.6077; 755 2 1.5 0.6077; 756 2.5 1.5 0.6077; 757 3 1.5 0.6077; 758 3.5 1.5 0.6077; 759 4 1.5 0.6077; 760 4.5 1.5 0.6077; 761 5 1.5 0.6077; 762 5.5 1.5 0.6077; 763 6 1.5 0.6077; 764 6.5 1.5 0.6077; 765 7 1.5 0.6077; 766 7.5 1.5 0.6077; 767 8 1.5 0.6077; 768 8.5 1.5 0.6077; 769 9 1.5 0.6077; 770 9.5 1.5 0.6077; 771 10 1.5 0.6077; 772 10.5 1.5 0.6077; 773 11 1.5 0.6077; 774 11.5 1.5 0.6077; 775 12 1.5 0.6077; 776 12.5 1.5 0.6077; 777 13 1.5 0.6077; 778 13.5 1.5 0.6077; 779 14 1.5 0.6077; 780 14.5 1.5 0.6077; 781 15.3923 1.5 0.6077; 782 15.5 1.5 0.6077; 783 15.6077 1.5 0.6077; 784 0.3923 1.5 1.5; 785 0.3923 1.5 2; 786 0.3923 1.5 2.5; 787 0.3923 1.5 3; 788 0.3923 1.5 3.5; 789 0.3923 1.5 4; 790 0.5 1.5 1.5; 791 0.5 1.5 2; 792 0.5 1.5 2.5; 793 0.5 1.5 3; 794 0.5 1.5 3.5; 795 0.5 1.5 4; 796 0.6077 1.5 1.5; 797 0.6077 1.5 2; 798 0.6077 1.5 2.5; 799 0.6077 1.5 3; 800 0.6077 1.5 3.5; 801 0.6077 1.5 4; 802 15.3923 1.5 1.5; 803 15.3923 1.5 2; 804 15.3923 1.5 2.5; 805 15.3923 1.5 3; 806 15.3923 1.5 3.5; 807 15.3923 1.5 4; 808 15.5 1.5 1.5; 809 15.5 1.5 2; 810 15.5 1.5 2.5; 811 15.5 1.5 3; 812 15.5 1.5 3.5; 813 15.5 1.5 4; 814 15.6077 1.5 1.5; 815 15.6077 1.5 2;

Page 65: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 57

816 15.6077 1.5 2.5; 817 15.6077 1.5 3; 818 15.6077 1.5 3.5; 819 15.6077 1.5 4; 820 2.8923 1.5 2.5; 821 2.8923 1.5 3; 822 2.8923 1.5 3.5; 823 2.8923 1.5 4; 824 2.8923 1.5 4.8923; 825 2.8923 1.5 5; 826 2.8923 1.5 5.1077; 827 3 1.5 2.5; 828 3 1.5 3; 829 3 1.5 3.5; 830 3 1.5 4; 831 3 1.5 4.8923; 832 3 1.5 5; 833 3 1.5 5.1077; 834 3.1077 1.5 2.5; 835 3.1077 1.5 3; 836 3.1077 1.5 3.5; 837 3.1077 1.5 4; 838 3.1077 1.5 4.8923; 839 3.1077 1.5 5; 840 3.1077 1.5 5.1077; 841 4 1.5 4.8923; 842 4.5 1.5 4.8923; 843 5 1.5 4.8923; 844 5.5 1.5 4.8923; 845 6 1.5 4.8923; 846 6.5 1.5 4.8923; 847 7 1.5 4.8923; 848 7.5 1.5 4.8923; 849 8 1.5 4.8923; 850 8.5 1.5 4.8923; 851 9 1.5 4.8923; 852 9.5 1.5 4.8923; 853 10 1.5 4.8923; 854 10.5 1.5 4.8923; 855 11 1.5 4.8923; 856 11.5 1.5 4.8923; 857 12 1.5 4.8923; 858 4 1.5 5; 859 4.5 1.5 5; 860 5 1.5 5; 861 5.5 1.5 5; 862 6 1.5 5; 863 6.5 1.5 5; 864 7 1.5 5; 865 7.5 1.5 5; 866 8 1.5 5; 867 8.5 1.5 5; 868 9 1.5 5; 869 9.5 1.5 5; 870 10 1.5 5; 871 10.5 1.5 5; 872 11 1.5 5; 873 11.5 1.5 5; 874 12 1.5 5; 875 4 1.5 5.1077; 876 4.5 1.5 5.1077; 877 5 1.5 5.1077; 878 5.5 1.5 5.1077; 879 6 1.5 5.1077; 880 6.5 1.5 5.1077; 881 7 1.5 5.1077; 882 7.5 1.5 5.1077; 883 8 1.5 5.1077; 884 8.5 1.5 5.1077; 885 9 1.5 5.1077; 886 9.5 1.5 5.1077; 887 10 1.5 5.1077; 888 10.5 1.5 5.1077; 889 11 1.5 5.1077; 890 11.5 1.5 5.1077; 891 12 1.5 5.1077; 892 12.8923 1.5 2.5; 893 12.8923 1.5 3; 894 12.8923 1.5 3.5; 895 12.8923 1.5 4; 896 12.8923 1.5 4.8923; 897 12.8923 1.5 5; 898 12.8923 1.5 5.1077; 899 13 1.5 2.5; 900 13 1.5 3; 901 13 1.5 3.5; 902 13 1.5 4; 903 13 1.5 4.8923; 904 13 1.5 5; 905 13 1.5 5.1077; 906 13.1077 1.5 2.5; 907 13.1077 1.5 3; 908 13.1077 1.5 3.5; 909 13.1077 1.5 4; 910 13.1077 1.5 4.8923; 911 13.1077 1.5 5; 912 13.1077 1.5 5.1077; 913 0.3923 2 0.3923; 914 0.5 2 0.3923; 915 0.6077 2 0.3923; 916 1.5 2 0.3923; 917 2 2 0.3923; 918 2.5 2 0.3923; 919 3 2 0.3923; 920 3.5 2 0.3923; 921 4 2 0.3923; 922 4.5 2 0.3923; 923 5 2 0.3923; 924 5.5 2 0.3923; 925 6 2 0.3923; 926 6.5 2 0.3923; 927 7 2 0.3923; 928 7.5 2 0.3923; 929 8 2 0.3923; 930 8.5 2 0.3923; 931 9 2 0.3923; 932 9.5 2 0.3923; 933 10 2 0.3923; 934 10.5 2 0.3923; 935 11 2 0.3923; 936 11.5 2 0.3923; 937 12 2 0.3923; 938 12.5 2 0.3923; 939 13 2 0.3923; 940 13.5 2 0.3923; 941 14 2 0.3923; 942 14.5 2 0.3923; 943 15.3923 2 0.3923; 944 15.5 2 0.3923; 945 15.6077 2 0.3923; 946 0.3923 2 0.5; 947 0.5 2 0.5; 948 0.6077 2 0.5; 949 1.5 2 0.5; 950 2 2 0.5; 951 2.5 2 0.5; 952 3 2 0.5; 953 3.5 2 0.5; 954 4 2 0.5; 955 4.5 2 0.5; 956 5 2 0.5; 957 5.5 2 0.5; 958 6 2 0.5; 959 6.5 2 0.5; 960 7 2 0.5; 961 7.5 2 0.5; 962 8 2 0.5; 963 8.5 2 0.5; 964 9 2 0.5; 965 9.5 2 0.5; 966 10 2 0.5; 967 10.5 2 0.5; 968 11 2 0.5; 969 11.5 2 0.5; 970 12 2 0.5; 971 12.5 2 0.5; 972 13 2 0.5; 973 13.5 2 0.5; 974 14 2 0.5; 975 14.5 2 0.5; 976 15.3923 2 0.5; 977 15.5 2 0.5; 978 15.6077 2 0.5; 979 0.3923 2 0.6077; 980 0.5 2 0.6077; 981 0.6077 2 0.6077; 982 1.5 2 0.6077; 983 2 2 0.6077; 984 2.5 2 0.6077; 985 3 2 0.6077; 986 3.5 2 0.6077; 987 4 2 0.6077; 988 4.5 2 0.6077; 989 5 2 0.6077; 990 5.5 2 0.6077; 991 6 2 0.6077; 992 6.5 2 0.6077; 993 7 2 0.6077; 994 7.5 2 0.6077; 995 8 2 0.6077; 996 8.5 2 0.6077; 997 9 2 0.6077; 998 9.5 2 0.6077; 999 10 2 0.6077; 1000 10.5 2 0.6077; 1001 11 2 0.6077; 1002 11.5 2 0.6077; 1003 12 2 0.6077; 1004 12.5 2 0.6077; 1005 13 2 0.6077; 1006 13.5 2 0.6077; 1007 14 2 0.6077; 1008 14.5 2 0.6077; 1009 15.3923 2 0.6077; 1010 15.5 2 0.6077; 1011 15.6077 2 0.6077; 1012 0.3923 2 1.5; 1013 0.3923 2 2; 1014 0.3923 2 2.5; 1015 0.3923 2 3; 1016 0.3923 2 3.5; 1017 0.3923 2 4; 1018 0.5 2 1.5; 1019 0.5 2 2; 1020 0.5 2 2.5; 1021 0.5 2 3; 1022 0.5 2 3.5; 1023 0.5 2 4; 1024 0.6077 2 1.5; 1025 0.6077 2 2; 1026 0.6077 2 2.5; 1027 0.6077 2 3; 1028 0.6077 2 3.5; 1029 0.6077 2 4; 1030 15.3923 2 1.5; 1031 15.3923 2 2; 1032 15.3923 2 2.5;

Page 66: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

58 DRDC Suffield CR 2005-033

1033 15.3923 2 3; 1034 15.3923 2 3.5; 1035 15.3923 2 4; 1036 15.5 2 1.5; 1037 15.5 2 2; 1038 15.5 2 2.5; 1039 15.5 2 3; 1040 15.5 2 3.5; 1041 15.5 2 4; 1042 15.6077 2 1.5; 1043 15.6077 2 2; 1044 15.6077 2 2.5; 1045 15.6077 2 3; 1046 15.6077 2 3.5; 1047 15.6077 2 4; 1048 2.8923 2 2.5; 1049 2.8923 2 3; 1050 2.8923 2 3.5; 1051 2.8923 2 4; 1052 2.8923 2 4.8923; 1053 2.8923 2 5; 1054 2.8923 2 5.1077; 1055 3 2 2.5; 1056 3 2 3; 1057 3 2 3.5; 1058 3 2 4; 1059 3 2 4.8923; 1060 3 2 5; 1061 3 2 5.1077; 1062 3.1077 2 2.5; 1063 3.1077 2 3; 1064 3.1077 2 3.5; 1065 3.1077 2 4; 1066 3.1077 2 4.8923; 1067 3.1077 2 5; 1068 3.1077 2 5.1077; 1069 4 2 4.8923; 1070 4.5 2 4.8923; 1071 5 2 4.8923; 1072 5.5 2 4.8923; 1073 6 2 4.8923; 1074 6.5 2 4.8923; 1075 7 2 4.8923; 1076 7.5 2 4.8923; 1077 8 2 4.8923; 1078 8.5 2 4.8923; 1079 9 2 4.8923; 1080 9.5 2 4.8923; 1081 10 2 4.8923; 1082 10.5 2 4.8923; 1083 11 2 4.8923; 1084 11.5 2 4.8923; 1085 12 2 4.8923; 1086 4 2 5; 1087 4.5 2 5; 1088 5 2 5; 1089 5.5 2 5; 1090 6 2 5; 1091 6.5 2 5; 1092 7 2 5; 1093 7.5 2 5; 1094 8 2 5; 1095 8.5 2 5; 1096 9 2 5; 1097 9.5 2 5; 1098 10 2 5; 1099 10.5 2 5; 1100 11 2 5; 1101 11.5 2 5; 1102 12 2 5; 1103 4 2 5.1077; 1104 4.5 2 5.1077; 1105 5 2 5.1077; 1106 5.5 2 5.1077; 1107 6 2 5.1077; 1108 6.5 2 5.1077; 1109 7 2 5.1077; 1110 7.5 2 5.1077; 1111 8 2 5.1077; 1112 8.5 2 5.1077; 1113 9 2 5.1077; 1114 9.5 2 5.1077; 1115 10 2 5.1077; 1116 10.5 2 5.1077; 1117 11 2 5.1077; 1118 11.5 2 5.1077; 1119 12 2 5.1077; 1120 12.8923 2 2.5; 1121 12.8923 2 3; 1122 12.8923 2 3.5; 1123 12.8923 2 4; 1124 12.8923 2 4.8923; 1125 12.8923 2 5; 1126 12.8923 2 5.1077; 1127 13 2 2.5; 1128 13 2 3; 1129 13 2 3.5; 1130 13 2 4; 1131 13 2 4.8923; 1132 13 2 5; 1133 13 2 5.1077; 1134 13.1077 2 2.5; 1135 13.1077 2 3; 1136 13.1077 2 3.5; 1137 13.1077 2 4; 1138 13.1077 2 4.8923; 1139 13.1077 2 5; 1140 13.1077 2 5.1077; 1141 0.3923 2.5 0.3923; 1142 0.5 2.5 0.3923; 1143 0.6077 2.5 0.3923; 1144 1.5 2.5 0.3923; 1145 2 2.5 0.3923; 1146 2.5 2.5 0.3923; 1147 3 2.5 0.3923; 1148 3.5 2.5 0.3923; 1149 4 2.5 0.3923; 1150 4.5 2.5 0.3923; 1151 5 2.5 0.3923; 1152 5.5 2.5 0.3923; 1153 6 2.5 0.3923; 1154 6.5 2.5 0.3923; 1155 7 2.5 0.3923; 1156 7.5 2.5 0.3923; 1157 8 2.5 0.3923; 1158 8.5 2.5 0.3923; 1159 9 2.5 0.3923; 1160 9.5 2.5 0.3923; 1161 10 2.5 0.3923; 1162 10.5 2.5 0.3923; 1163 11 2.5 0.3923; 1164 11.5 2.5 0.3923; 1165 12 2.5 0.3923; 1166 12.5 2.5 0.3923; 1167 13 2.5 0.3923; 1168 13.5 2.5 0.3923; 1169 14 2.5 0.3923; 1170 14.5 2.5 0.3923; 1171 15.3923 2.5 0.3923; 1172 15.5 2.5 0.3923; 1173 15.6077 2.5 0.3923; 1174 0.3923 2.5 0.5; 1175 0.5 2.5 0.5; 1176 0.6077 2.5 0.5; 1177 1.5 2.5 0.5; 1178 2 2.5 0.5; 1179 2.5 2.5 0.5; 1180 3 2.5 0.5; 1181 3.5 2.5 0.5; 1182 4 2.5 0.5; 1183 4.5 2.5 0.5; 1184 5 2.5 0.5; 1185 5.5 2.5 0.5; 1186 6 2.5 0.5; 1187 6.5 2.5 0.5; 1188 7 2.5 0.5; 1189 7.5 2.5 0.5; 1190 8 2.5 0.5; 1191 8.5 2.5 0.5; 1192 9 2.5 0.5; 1193 9.5 2.5 0.5; 1194 10 2.5 0.5; 1195 10.5 2.5 0.5; 1196 11 2.5 0.5; 1197 11.5 2.5 0.5; 1198 12 2.5 0.5; 1199 12.5 2.5 0.5; 1200 13 2.5 0.5; 1201 13.5 2.5 0.5; 1202 14 2.5 0.5; 1203 14.5 2.5 0.5; 1204 15.3923 2.5 0.5; 1205 15.5 2.5 0.5; 1206 15.6077 2.5 0.5; 1207 0.3923 2.5 0.6077; 1208 0.5 2.5 0.6077; 1209 0.6077 2.5 0.6077; 1210 1.5 2.5 0.6077; 1211 2 2.5 0.6077; 1212 2.5 2.5 0.6077; 1213 3 2.5 0.6077; 1214 3.5 2.5 0.6077; 1215 4 2.5 0.6077; 1216 4.5 2.5 0.6077; 1217 5 2.5 0.6077; 1218 5.5 2.5 0.6077; 1219 6 2.5 0.6077; 1220 6.5 2.5 0.6077; 1221 7 2.5 0.6077; 1222 7.5 2.5 0.6077; 1223 8 2.5 0.6077; 1224 8.5 2.5 0.6077; 1225 9 2.5 0.6077; 1226 9.5 2.5 0.6077; 1227 10 2.5 0.6077; 1228 10.5 2.5 0.6077; 1229 11 2.5 0.6077; 1230 11.5 2.5 0.6077; 1231 12 2.5 0.6077; 1232 12.5 2.5 0.6077; 1233 13 2.5 0.6077; 1234 13.5 2.5 0.6077; 1235 14 2.5 0.6077; 1236 14.5 2.5 0.6077; 1237 15.3923 2.5 0.6077;

Page 67: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 59

1238 15.5 2.5 0.6077; 1239 15.6077 2.5 0.6077; 1240 0.3923 2.5 1.5; 1241 0.3923 2.5 2; 1242 0.3923 2.5 2.5; 1243 0.3923 2.5 3; 1244 0.3923 2.5 3.5; 1245 0.3923 2.5 4; 1246 0.5 2.5 1.5; 1247 0.5 2.5 2; 1248 0.5 2.5 2.5; 1249 0.5 2.5 3; 1250 0.5 2.5 3.5; 1251 0.5 2.5 4; 1252 0.6077 2.5 1.5; 1253 0.6077 2.5 2; 1254 0.6077 2.5 2.5; 1255 0.6077 2.5 3; 1256 0.6077 2.5 3.5; 1257 0.6077 2.5 4; 1258 15.3923 2.5 1.5; 1259 15.3923 2.5 2; 1260 15.3923 2.5 2.5; 1261 15.3923 2.5 3; 1262 15.3923 2.5 3.5; 1263 15.3923 2.5 4; 1264 15.5 2.5 1.5; 1265 15.5 2.5 2; 1266 15.5 2.5 2.5; 1267 15.5 2.5 3; 1268 15.5 2.5 3.5; 1269 15.5 2.5 4; 1270 15.6077 2.5 1.5; 1271 15.6077 2.5 2; 1272 15.6077 2.5 2.5; 1273 15.6077 2.5 3; 1274 15.6077 2.5 3.5; 1275 15.6077 2.5 4; 1276 2.8923 2.5 2.5; 1277 2.8923 2.5 3; 1278 2.8923 2.5 3.5; 1279 2.8923 2.5 4; 1280 2.8923 2.5 4.8923; 1281 2.8923 2.5 5; 1282 2.8923 2.5 5.1077; 1283 3 2.5 2.5; 1284 3 2.5 3; 1285 3 2.5 3.5; 1286 3 2.5 4; 1287 3 2.5 4.8923; 1288 3 2.5 5; 1289 3 2.5 5.1077; 1290 3.1077 2.5 2.5; 1291 3.1077 2.5 3; 1292 3.1077 2.5 3.5; 1293 3.1077 2.5 4; 1294 3.1077 2.5 4.8923; 1295 3.1077 2.5 5; 1296 3.1077 2.5 5.1077; 1297 4 2.5 4.8923; 1298 4.5 2.5 4.8923; 1299 5 2.5 4.8923; 1300 5.5 2.5 4.8923; 1301 6 2.5 4.8923; 1302 6.5 2.5 4.8923; 1303 7 2.5 4.8923; 1304 7.5 2.5 4.8923; 1305 8 2.5 4.8923; 1306 8.5 2.5 4.8923; 1307 9 2.5 4.8923; 1308 9.5 2.5 4.8923; 1309 10 2.5 4.8923; 1310 10.5 2.5 4.8923; 1311 11 2.5 4.8923; 1312 11.5 2.5 4.8923; 1313 12 2.5 4.8923; 1314 4 2.5 5; 1315 4.5 2.5 5; 1316 5 2.5 5; 1317 5.5 2.5 5; 1318 6 2.5 5; 1319 6.5 2.5 5; 1320 7 2.5 5; 1321 7.5 2.5 5; 1322 8 2.5 5; 1323 8.5 2.5 5; 1324 9 2.5 5; 1325 9.5 2.5 5; 1326 10 2.5 5; 1327 10.5 2.5 5; 1328 11 2.5 5; 1329 11.5 2.5 5; 1330 12 2.5 5; 1331 4 2.5 5.1077; 1332 4.5 2.5 5.1077; 1333 5 2.5 5.1077; 1334 5.5 2.5 5.1077; 1335 6 2.5 5.1077; 1336 6.5 2.5 5.1077; 1337 7 2.5 5.1077; 1338 7.5 2.5 5.1077; 1339 8 2.5 5.1077; 1340 8.5 2.5 5.1077; 1341 9 2.5 5.1077; 1342 9.5 2.5 5.1077; 1343 10 2.5 5.1077; 1344 10.5 2.5 5.1077; 1345 11 2.5 5.1077; 1346 11.5 2.5 5.1077; 1347 12 2.5 5.1077; 1348 12.8923 2.5 2.5; 1349 12.8923 2.5 3; 1350 12.8923 2.5 3.5; 1351 12.8923 2.5 4; 1352 12.8923 2.5 4.8923; 1353 12.8923 2.5 5; 1354 12.8923 2.5 5.1077; 1355 13 2.5 2.5; 1356 13 2.5 3; 1357 13 2.5 3.5; 1358 13 2.5 4; 1359 13 2.5 4.8923; 1360 13 2.5 5; 1361 13 2.5 5.1077; 1362 13.1077 2.5 2.5; 1363 13.1077 2.5 3; 1364 13.1077 2.5 3.5; 1365 13.1077 2.5 4; 1366 13.1077 2.5 4.8923; 1367 13.1077 2.5 5; 1368 13.1077 2.5 5.1077; 1369 0.3923 3 0.3923; 1370 0.5 3 0.3923; 1371 0.6077 3 0.3923; 1372 1.5 3 0.3923; 1373 2 3 0.3923; 1374 2.5 3 0.3923; 1375 3 3 0.3923; 1376 3.5 3 0.3923; 1377 4 3 0.3923; 1378 4.5 3 0.3923; 1379 5 3 0.3923; 1380 5.5 3 0.3923; 1381 6 3 0.3923; 1382 6.5 3 0.3923; 1383 7 3 0.3923; 1384 7.5 3 0.3923; 1385 8 3 0.3923; 1386 8.5 3 0.3923; 1387 9 3 0.3923; 1388 9.5 3 0.3923; 1389 10 3 0.3923; 1390 10.5 3 0.3923; 1391 11 3 0.3923; 1392 11.5 3 0.3923; 1393 12 3 0.3923; 1394 12.5 3 0.3923; 1395 13 3 0.3923; 1396 13.5 3 0.3923; 1397 14 3 0.3923; 1398 14.5 3 0.3923; 1399 15.3923 3 0.3923; 1400 15.5 3 0.3923; 1401 15.6077 3 0.3923; 1402 0.3923 3 0.5; 1403 0.5 3 0.5; 1404 0.6077 3 0.5; 1405 1.5 3 0.5; 1406 2 3 0.5; 1407 2.5 3 0.5; 1408 3 3 0.5; 1409 3.5 3 0.5; 1410 4 3 0.5; 1411 4.5 3 0.5; 1412 5 3 0.5; 1413 5.5 3 0.5; 1414 6 3 0.5; 1415 6.5 3 0.5; 1416 7 3 0.5; 1417 7.5 3 0.5; 1418 8 3 0.5; 1419 8.5 3 0.5; 1420 9 3 0.5; 1421 9.5 3 0.5; 1422 10 3 0.5; 1423 10.5 3 0.5; 1424 11 3 0.5; 1425 11.5 3 0.5; 1426 12 3 0.5; 1427 12.5 3 0.5; 1428 13 3 0.5; 1429 13.5 3 0.5; 1430 14 3 0.5; 1431 14.5 3 0.5; 1432 15.3923 3 0.5; 1433 15.5 3 0.5; 1434 15.6077 3 0.5; 1435 0.3923 3 0.6077; 1436 0.5 3 0.6077; 1437 0.6077 3 0.6077;

Page 68: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

60 DRDC Suffield CR 2005-033

1438 1.5 3 0.6077; 1439 2 3 0.6077; 1440 2.5 3 0.6077; 1441 3 3 0.6077; 1442 3.5 3 0.6077; 1443 4 3 0.6077; 1444 4.5 3 0.6077; 1445 5 3 0.6077; 1446 5.5 3 0.6077; 1447 6 3 0.6077; 1448 6.5 3 0.6077; 1449 7 3 0.6077; 1450 7.5 3 0.6077; 1451 8 3 0.6077; 1452 8.5 3 0.6077; 1453 9 3 0.6077; 1454 9.5 3 0.6077; 1455 10 3 0.6077; 1456 10.5 3 0.6077; 1457 11 3 0.6077; 1458 11.5 3 0.6077; 1459 12 3 0.6077; 1460 12.5 3 0.6077; 1461 13 3 0.6077; 1462 13.5 3 0.6077; 1463 14 3 0.6077; 1464 14.5 3 0.6077; 1465 15.3923 3 0.6077; 1466 15.5 3 0.6077; 1467 15.6077 3 0.6077; 1468 0.3923 3 1.5; 1469 0.3923 3 2; 1470 0.3923 3 2.5; 1471 0.3923 3 3; 1472 0.3923 3 3.5; 1473 0.3923 3 4; 1474 0.5 3 1.5; 1475 0.5 3 2; 1476 0.5 3 2.5; 1477 0.5 3 3; 1478 0.5 3 3.5; 1479 0.5 3 4; 1480 0.6077 3 1.5; 1481 0.6077 3 2; 1482 0.6077 3 2.5; 1483 0.6077 3 3; 1484 0.6077 3 3.5; 1485 0.6077 3 4; 1486 15.3923 3 1.5; 1487 15.3923 3 2; 1488 15.3923 3 2.5; 1489 15.3923 3 3; 1490 15.3923 3 3.5; 1491 15.3923 3 4; 1492 15.5 3 1.5; 1493 15.5 3 2; 1494 15.5 3 2.5; 1495 15.5 3 3; 1496 15.5 3 3.5; 1497 15.5 3 4; 1498 15.6077 3 1.5; 1499 15.6077 3 2; 1500 15.6077 3 2.5; 1501 15.6077 3 3; 1502 15.6077 3 3.5; 1503 15.6077 3 4; 1504 2.8923 3 2.5; 1505 2.8923 3 3; 1506 2.8923 3 3.5; 1507 2.8923 3 4; 1508 2.8923 3 4.8923; 1509 2.8923 3 5; 1510 2.8923 3 5.1077; 1511 3 3 2.5; 1512 3 3 3; 1513 3 3 3.5; 1514 3 3 4; 1515 3 3 4.8923; 1516 3 3 5; 1517 3 3 5.1077; 1518 3.1077 3 2.5; 1519 3.1077 3 3; 1520 3.1077 3 3.5; 1521 3.1077 3 4; 1522 3.1077 3 4.8923; 1523 3.1077 3 5; 1524 3.1077 3 5.1077; 1525 4 3 4.8923; 1526 4.5 3 4.8923; 1527 5 3 4.8923; 1528 5.5 3 4.8923; 1529 6 3 4.8923; 1530 6.5 3 4.8923; 1531 7 3 4.8923; 1532 7.5 3 4.8923; 1533 8 3 4.8923; 1534 8.5 3 4.8923; 1535 9 3 4.8923; 1536 9.5 3 4.8923; 1537 10 3 4.8923; 1538 10.5 3 4.8923; 1539 11 3 4.8923; 1540 11.5 3 4.8923; 1541 12 3 4.8923; 1542 4 3 5; 1543 4.5 3 5; 1544 5 3 5; 1545 5.5 3 5; 1546 6 3 5; 1547 6.5 3 5; 1548 7 3 5; 1549 7.5 3 5; 1550 8 3 5; 1551 8.5 3 5; 1552 9 3 5; 1553 9.5 3 5; 1554 10 3 5; 1555 10.5 3 5; 1556 11 3 5; 1557 11.5 3 5; 1558 12 3 5; 1559 4 3 5.1077; 1560 4.5 3 5.1077; 1561 5 3 5.1077; 1562 5.5 3 5.1077; 1563 6 3 5.1077; 1564 6.5 3 5.1077; 1565 7 3 5.1077; 1566 7.5 3 5.1077; 1567 8 3 5.1077; 1568 8.5 3 5.1077; 1569 9 3 5.1077; 1570 9.5 3 5.1077; 1571 10 3 5.1077; 1572 10.5 3 5.1077; 1573 11 3 5.1077; 1574 11.5 3 5.1077; 1575 12 3 5.1077; 1576 12.8923 3 2.5; 1577 12.8923 3 3; 1578 12.8923 3 3.5; 1579 12.8923 3 4; 1580 12.8923 3 4.8923; 1581 12.8923 3 5; 1582 12.8923 3 5.1077; 1583 13 3 2.5; 1584 13 3 3; 1585 13 3 3.5; 1586 13 3 4; 1587 13 3 4.8923; 1588 13 3 5; 1589 13 3 5.1077; 1590 13.1077 3 2.5; 1591 13.1077 3 3; 1592 13.1077 3 3.5; 1593 13.1077 3 4; 1594 13.1077 3 4.8923; 1595 13.1077 3 5; 1596 13.1077 3 5.1077; 1597 3.625 0 1.125; 1598 3.625 0.5 1.125; 1599 3.625 1 1.125; 1600 3.625 1.5 1.125; 1601 3.625 2 1.125; 1602 3.625 2.5 1.125; 1603 6.5 0 1.125; 1604 6.5 0.5 1.125; 1605 6.5 1 1.125; 1606 6.5 1.5 1.125; 1607 6.5 2 1.125; 1608 6.5 2.5 1.125; 1609 9.5 0 1.125; 1610 9.5 0.5 1.125; 1611 9.5 1 1.125; 1612 9.5 1.5 1.125; 1613 9.5 2 1.125; 1614 9.5 2.5 1.125; 1615 12.375 0 1.125; 1616 12.375 0.5 1.125; 1617 12.375 1 1.125; 1618 12.375 1.5 1.125; 1619 12.375 2 1.125; 1620 12.375 2.5 1.125; 1621 3.625 0 4.375; 1622 3.625 0.5 4.375; 1623 3.625 1 4.375; 1624 3.625 1.5 4.375; 1625 3.625 2 4.375; 1626 3.625 2.5 4.375; 1627 6.5 0 4.375; 1628 6.5 0.5 4.375; 1629 6.5 1 4.375; 1630 6.5 1.5 4.375; 1631 6.5 2 4.375; 1632 6.5 2.5 4.375; 1633 9.5 0 4.375; 1634 9.5 0.5 4.375; 1635 9.5 1 4.375; 1636 9.5 1.5 4.375; 1637 9.5 2 4.375; 1638 9.5 2.5 4.375; 1639 12.375 0 4.375; 1640 12.375 0.5 4.375; 1641 12.375 1 4.375; 1642 12.375 1.5 4.375; 1643 12.375 2 4.375; 1644 12.375 2.5 4.375; 1645 3.625 2.865 1.125; 1646 6.5 2.865 1.125;

Page 69: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 61

1647 6.5 3.3745 1.125; 1648 6.5 3.884 1.125; 1649 6.5 4.3935 1.125; 1650 6.5 4.903 1.125; 1651 9.5 2.865 1.125; 1652 9.5 3.3745 1.125; 1653 9.5 3.884 1.125; 1654 9.5 4.3935 1.125; 1655 9.5 4.903 1.125; 1656 12.375 2.865 1.125; 1657 3.625 2.865 4.375; 1658 6.5 2.865 4.375; 1659 6.5 3.3745 4.375; 1660 6.5 3.884 4.375; 1661 6.5 4.3935 4.375; 1662 6.5 4.903 4.375; 1663 9.5 2.865 4.375; 1664 9.5 3.3745 4.375; 1665 9.5 3.884 4.375; 1666 9.5 4.3935 4.375; 1667 9.5 4.903 4.375; 1668 12.375 2.865 4.375; 1669 6.5 3 4.375; 1670 6.5 3 1.125; 1671 9.5 3 4.375; 1672 9.5 3 1.125; 1673 0.5 3.127 0.5; 1674 0.75 3.127 0.5; 1675 0.6077 3.127 0.5; 1676 1.25 3.127 0.5; 1677 1.5 3.127 0.5; 1678 1.75 3.127 0.5; 1679 2 3.127 0.5; 1680 2.25 3.127 0.5; 1681 2.5 3.127 0.5; 1682 2.75 3.127 0.5; 1683 3 3.127 0.5; 1684 3.25 3.127 0.5; 1685 3.5 3.127 0.5; 1686 3.75 3.127 0.5; 1687 4 3.127 0.5; 1688 4.25 3.127 0.5; 1689 4.5 3.127 0.5; 1690 4.75 3.127 0.5; 1691 5 3.127 0.5; 1692 5.25 3.127 0.5; 1693 5.5 3.127 0.5; 1694 5.75 3.127 0.5; 1695 6 3.127 0.5; 1696 6.25 3.127 0.5; 1697 6.5 3.127 0.5; 1698 6.75 3.127 0.5; 1699 7 3.127 0.5; 1700 7.25 3.127 0.5; 1701 7.5 3.127 0.5; 1702 7.75 3.127 0.5; 1703 8 3.127 0.5; 1704 8.25 3.127 0.5; 1705 8.5 3.127 0.5; 1706 8.75 3.127 0.5; 1707 9 3.127 0.5; 1708 9.25 3.127 0.5; 1709 9.5 3.127 0.5; 1710 9.75 3.127 0.5; 1711 10 3.127 0.5; 1712 10.25 3.127 0.5; 1713 10.5 3.127 0.5; 1714 10.75 3.127 0.5; 1715 11 3.127 0.5; 1716 11.25 3.127 0.5; 1717 11.5 3.127 0.5; 1718 11.75 3.127 0.5; 1719 12 3.127 0.5; 1720 12.25 3.127 0.5; 1721 12.5 3.127 0.5; 1722 12.75 3.127 0.5; 1723 13 3.127 0.5; 1724 13.25 3.127 0.5; 1725 13.5 3.127 0.5; 1726 13.75 3.127 0.5; 1727 14 3.127 0.5; 1728 14.25 3.127 0.5; 1729 14.5 3.127 0.5; 1730 14.75 3.127 0.5; 1731 15.3923 3.127 0.5; 1732 15.25 3.127 0.5; 1733 15.5 3.127 0.5; 1734 0.5 3.127 3.5; 1735 0.75 3.127 3.5; 1736 0.6077 3.127 3.5; 1737 1.25 3.127 3.5; 1738 1.5 3.127 3.5; 1739 1.75 3.127 3.5; 1740 2 3.127 3.5; 1741 2.25 3.127 3.5; 1742 2.8923 3.127 3.5; 1743 2.75 3.127 3.5; 1744 3 3.127 3.5; 1745 3.25 3.127 5; 1746 3.5 3.127 5; 1747 3.75 3.127 5; 1748 4 3.127 5; 1749 4.25 3.127 5; 1750 4.5 3.127 5; 1751 4.75 3.127 5; 1752 5 3.127 5; 1753 5.25 3.127 5; 1754 5.5 3.127 5; 1755 5.75 3.127 5; 1756 6 3.127 5; 1757 6.25 3.127 5; 1758 6.5 3.127 5; 1759 6.75 3.127 5; 1760 7 3.127 5; 1761 7.25 3.127 5; 1762 7.5 3.127 5; 1763 7.75 3.127 5; 1764 8 3.127 5; 1765 8.25 3.127 5; 1766 8.5 3.127 5; 1767 8.75 3.127 5; 1768 9 3.127 5; 1769 9.25 3.127 5; 1770 9.5 3.127 5; 1771 9.75 3.127 5; 1772 10 3.127 5; 1773 10.25 3.127 5; 1774 10.5 3.127 5; 1775 10.75 3.127 5; 1776 11 3.127 5; 1777 11.25 3.127 5; 1778 11.5 3.127 5; 1779 11.75 3.127 5; 1780 12 3.127 5; 1781 12.25 3.127 5; 1782 12.8923 3.127 5; 1783 12.75 3.127 5; 1784 13 3.127 3.5; 1794 15.5 3.127 3.5; 1795 0.5 3.31 0.5; 1796 0.75 3.31 0.5; 1797 0.6077 3.31 0.5; 1798 1.25 3.31 0.5; 1799 1.5 3.31 0.5; 1800 1.75 3.31 0.5; 1801 2 3.31 0.5; 1802 2.25 3.31 0.5; 1803 2.5 3.31 0.5; 1804 2.75 3.31 0.5; 1805 3 3.31 0.5; 1806 3.25 3.31 0.5; 1807 3.5 3.31 0.5; 1808 3.75 3.31 0.5; 1809 4 3.31 0.5; 1810 4.25 3.31 0.5; 1811 4.5 3.31 0.5; 1812 4.75 3.31 0.5; 1813 5 3.31 0.5; 1814 5.25 3.31 0.5; 1815 5.5 3.31 0.5; 1816 5.75 3.31 0.5; 1817 6 3.31 0.5; 1818 6.25 3.31 0.5; 1819 6.5 3.31 0.5; 1820 6.75 3.31 0.5; 1821 7 3.31 0.5; 1822 7.25 3.31 0.5; 1823 7.5 3.31 0.5; 1824 7.75 3.31 0.5; 1825 8 3.31 0.5; 1826 8.25 3.31 0.5; 1827 8.5 3.31 0.5; 1828 8.75 3.31 0.5; 1829 9 3.31 0.5; 1830 9.25 3.31 0.5; 1831 9.5 3.31 0.5; 1832 9.75 3.31 0.5; 1833 10 3.31 0.5; 1834 10.25 3.31 0.5; 1835 10.5 3.31 0.5; 1836 10.75 3.31 0.5; 1837 11 3.31 0.5; 1838 11.25 3.31 0.5; 1839 11.5 3.31 0.5; 1840 11.75 3.31 0.5; 1841 12 3.31 0.5; 1842 12.25 3.31 0.5; 1843 12.5 3.31 0.5; 1844 12.75 3.31 0.5; 1845 13 3.31 0.5; 1846 13.25 3.31 0.5; 1847 13.5 3.31 0.5;

Page 70: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

62 DRDC Suffield CR 2005-033

1848 13.75 3.31 0.5; 1849 14 3.31 0.5; 1850 14.25 3.31 0.5; 1851 14.5 3.31 0.5; 1852 14.75 3.31 0.5; 1853 15.3923 3.31 0.5; 1854 15.25 3.31 0.5; 1855 15.5 3.31 0.5; 1856 0.5 3.31 3.5; 1867 3.25 3.31 5; 1868 3.5 3.31 5; 1869 3.75 3.31 5; 1870 4 3.31 5; 1871 4.25 3.31 5; 1872 4.5 3.31 5; 1873 4.75 3.31 5; 1874 5 3.31 5; 1875 5.25 3.31 5; 1876 5.5 3.31 5; 1877 5.75 3.31 5; 1878 6 3.31 5; 1879 6.25 3.31 5; 1880 6.5 3.31 5; 1881 6.75 3.31 5; 1882 7 3.31 5; 1883 7.25 3.31 5; 1884 7.5 3.31 5; 1885 7.75 3.31 5; 1886 8 3.31 5; 1887 8.25 3.31 5; 1888 8.5 3.31 5; 1889 8.75 3.31 5; 1890 9 3.31 5; 1891 9.25 3.31 5; 1892 9.5 3.31 5; 1893 9.75 3.31 5; 1894 10 3.31 5; 1895 10.25 3.31 5; 1896 10.5 3.31 5; 1897 10.75 3.31 5; 1898 11 3.31 5; 1899 11.25 3.31 5; 1900 11.5 3.31 5; 1901 11.75 3.31 5; 1902 12 3.31 5; 1903 12.25 3.31 5; 1905 12.75 3.31 5; 1906 13 3.31 3.5; 1916 15.5 3.31 3.5; 1917 6.75 4.903 1.125; 1918 7 4.903 1.125; 1919 7.25 4.903 1.125; 1920 7.5 4.903 1.125; 1921 7.75 4.903 1.125; 1922 8 4.903 1.125; 1923 8.25 4.903 1.125; 1924 8.5 4.903 1.125; 1925 8.75 4.903 1.125; 1926 9 4.903 1.125; 1927 9.25 4.903 1.125; 1928 6.75 4.903 4.375; 1929 7 4.903 4.375; 1930 7.25 4.903 4.375; 1931 7.5 4.903 4.375; 1932 7.75 4.903 4.375; 1933 8 4.903 4.375; 1934 8.25 4.903 4.375; 1935 8.5 4.903 4.375; 1936 8.75 4.903 4.375; 1937 9 4.903 4.375; 1938 9.25 4.903 4.375; 1939 6.5 5.13 1.125; 1940 9.5 5.13 1.125; 1941 6.5 5.13 4.375; 1942 9.5 5.13 4.375; 1943 6.75 5.13 1.125; 1944 7 5.13 1.125; 1945 7.25 5.13 1.125; 1946 7.5 5.13 1.125; 1947 7.75 5.13 1.125; 1948 8 5.13 1.125; 1949 8.25 5.13 1.125; 1950 8.5 5.13 1.125; 1951 8.75 5.13 1.125; 1952 9 5.13 1.125; 1953 9.25 5.13 1.125; 1954 6.75 5.13 4.375; 1955 7 5.13 4.375; 1956 7.25 5.13 4.375; 1957 7.5 5.13 4.375; 1958 7.75 5.13 4.375; 1959 8 5.13 4.375; 1960 8.25 5.13 4.375; 1961 8.5 5.13 4.375; 1962 8.75 5.13 4.375; 1963 9 5.13 4.375; 1964 9.25 5.13 4.375; 1993 12.25 3.31 1.625; 1994 12.25 3.31 2.75; 1995 12.25 3.31 3.875; 1996 12 3.31 1.625; 1997 12 3.31 2.75; 1998 12 3.31 3.875; 1999 11.75 3.31 1.625; 2000 11.75 3.31 2.75; 2001 11.75 3.31 3.875; 2002 11.5 3.31 1.625; 2003 11.5 3.31 2.75; 2004 11.5 3.31 3.875; 2005 11.25 3.31 1.625; 2006 11.25 3.31 2.75; 2007 11.25 3.31 3.875; 2008 11 3.31 1.625; 2009 11 3.31 2.75; 2010 11 3.31 3.875; 2011 10.75 3.31 1.625; 2012 10.75 3.31 2.75; 2013 10.75 3.31 3.875; 2014 10.5 3.31 1.625; 2015 10.5 3.31 2.75; 2016 10.5 3.31 3.875; 2017 10.25 3.31 1.625; 2018 10.25 3.31 2.75; 2019 10.25 3.31 3.875; 2020 10 3.31 1.625; 2021 10 3.31 2.75; 2022 10 3.31 3.875; 2023 9.75 3.31 1.625; 2024 9.75 3.31 2.75; 2025 9.75 3.31 3.875; 2026 9.5 3.31 1.625; 2027 9.5 3.31 2.75; 2028 9.5 3.31 3.875; 2029 9.25 3.31 1.625; 2030 9.25 3.31 2.75; 2031 9.25 3.31 3.875; 2032 9 3.31 1.625; 2033 9 3.31 2.75; 2034 9 3.31 3.875; 2035 8.75 3.31 1.625; 2036 8.75 3.31 2.75; 2037 8.75 3.31 3.875; 2038 8.5 3.31 1.625; 2039 8.5 3.31 2.75; 2040 8.5 3.31 3.875; 2041 8.25 3.31 1.625; 2042 8.25 3.31 2.75; 2043 8.25 3.31 3.875; 2044 8 3.31 1.625; 2045 8 3.31 2.75; 2046 8 3.31 3.875; 2047 7.75 3.31 1.625; 2048 7.75 3.31 2.75; 2049 7.75 3.31 3.875; 2050 7.5 3.31 1.625; 2051 7.5 3.31 2.75; 2052 7.5 3.31 3.875; 2053 7.25 3.31 1.625; 2054 7.25 3.31 2.75; 2055 7.25 3.31 3.875; 2056 7 3.31 1.625; 2057 7 3.31 2.75; 2058 7 3.31 3.875; 2059 6.75 3.31 1.625; 2060 6.75 3.31 2.75; 2061 6.75 3.31 3.875; 2062 6.5 3.31 1.625; 2063 6.5 3.31 2.75; 2064 6.5 3.31 3.875; 2065 6.25 3.31 1.625; 2066 6.25 3.31 2.75; 2067 6.25 3.31 3.875; 2068 6 3.31 1.625; 2069 6 3.31 2.75;

Page 71: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 63

2070 6 3.31 3.875; 2071 5.75 3.31 1.625; 2072 5.75 3.31 2.75; 2073 5.75 3.31 3.875; 2074 5.5 3.31 1.625; 2075 5.5 3.31 2.75; 2076 5.5 3.31 3.875; 2077 5.25 3.31 1.625; 2078 5.25 3.31 2.75; 2079 5.25 3.31 3.875; 2080 5 3.31 1.625; 2081 5 3.31 2.75; 2082 5 3.31 3.875; 2083 4.75 3.31 1.625; 2084 4.75 3.31 2.75; 2085 4.75 3.31 3.875; 2086 4.5 3.31 1.625; 2087 4.5 3.31 2.75; 2088 4.5 3.31 3.875; 2089 4.25 3.31 1.625; 2090 4.25 3.31 2.75; 2091 4.25 3.31 3.875; 2092 4 3.31 1.625; 2093 4 3.31 2.75; 2094 4 3.31 3.875; 2095 3.75 3.31 1.625; 2096 3.75 3.31 2.75; 2097 3.75 3.31 3.875; 2126 6.5 5.13 2.20833; 2127 6.5 5.13 3.29167; 2128 6.75 5.13 2.20833; 2129 6.75 5.13 3.29167; 2130 9.5 5.13 2.20833; 2131 9.5 5.13 3.29167; 2132 9.25 5.13 2.20833; 2133 9.25 5.13 3.29167; 2134 9 5.13 2.20833; 2135 9 5.13 3.29167; 2136 8.75 5.13 2.20833; 2137 8.75 5.13 3.29167; 2138 8.5 5.13 2.20833; 2139 8.5 5.13 3.29167; 2140 8.25 5.13 2.20833; 2141 8.25 5.13 3.29167; 2142 8 5.13 2.20833; 2143 8 5.13 3.29167; 2144 7.75 5.13 2.20833; 2145 7.75 5.13 3.29167; 2146 7.5 5.13 2.20833; 2147 7.5 5.13 3.29167; 2148 7.25 5.13 2.20833; 2149 7.25 5.13 3.29167; 2150 7 5.13 2.20833; 2151 7 5.13 3.29167; 2152 0.5 3.31 0.75; 2153 0.5 3.31 1; 2154 0.5 3.31 1.25; 2155 0.5 3.31 1.5; 2156 0.5 3.31 1.75; 2157 0.5 3.31 2; 2158 0.5 3.31 2.25; 2159 0.5 3.31 2.5; 2160 0.5 3.31 2.75; 2161 0.5 3.31 3; 2162 0.5 3.31 3.25; 2163 2.9997 3.127 5; 2164 3 3.31 5; 2165 3 3.31 0.75; 2166 3 3.31 1; 2167 3 3.31 1.25; 2168 3 3.31 1.5; 2169 3 3.31 1.75; 2170 3 3.31 2; 2171 3 3.31 2.25; 2172 3 3.31 2.5; 2173 3 3.31 2.75; 2174 3 3.31 3; 2175 3 3.31 3.25; 2176 3 3.31 3.5; 2177 3 3.31 3.75; 2178 3 3.31 4; 2179 3 3.31 4.25; 2180 3 3.31 4.5; 2181 3 3.31 4.75; 2182 3.25 3.31 0.75; 2183 3.25 3.31 1; 2184 3.25 3.31 1.25; 2185 3.25 3.31 1.5; 2186 3.25 3.31 1.75; 2187 3.25 3.31 2; 2188 3.25 3.31 2.25; 2189 3.25 3.31 2.5; 2190 3.25 3.31 2.75; 2191 3.25 3.31 3; 2192 3.25 3.31 3.25; 2193 3.25 3.31 3.5; 2194 3.25 3.31 3.75; 2195 3.25 3.31 4; 2196 3.25 3.31 4.25; 2197 3.25 3.31 4.5; 2198 3.25 3.31 4.75; 2199 0.5 3.31 4; 2200 0.5 3.31 3.75; 2201 15.5 3.31 4; 2202 15.5 3.31 0.75; 2203 15.5 3.31 1; 2204 15.5 3.31 1.25; 2205 15.5 3.31 1.5; 2206 15.5 3.31 1.75; 2207 15.5 3.31 2; 2208 15.5 3.31 2.25; 2209 15.5 3.31 2.5; 2210 15.5 3.31 2.75; 2211 15.5 3.31 3; 2212 15.5 3.31 3.25; 2213 15.5 3.31 3.75; 2214 13 3.31 5; 2215 13 3.31 0.75; 2216 13 3.31 1; 2217 13 3.31 1.25; 2218 13 3.31 1.5; 2219 13 3.31 1.75; 2220 13 3.31 2; 2221 13 3.31 2.25; 2222 13 3.31 2.5; 2223 13 3.31 2.75; 2224 13 3.31 3; 2225 13 3.31 3.25; 2226 13 3.31 3.75; 2227 13 3.31 4; 2228 13 3.31 4.25; 2229 13 3.31 4.5; 2230 13 3.31 4.75; 2231 13 3.127 5; 2232 12.5 3.31 5; 2233 12.75 3.31 4.75; 2234 12.75 3.31 4.5; 2235 12.75 3.31 4.25; 2236 12.75 3.31 4; 2237 12.75 3.31 3.75; 2238 12.75 3.31 3.5; 2239 12.75 3.31 3.25; 2240 12.75 3.31 3; 2241 12.75 3.31 2.75; 2242 12.75 3.31 2.5; 2243 12.75 3.31 2.25; 2244 12.75 3.31 2; 2245 12.75 3.31 1.75; 2246 12.75 3.31 1.5; 2247 12.75 3.31 1.25; 2248 12.75 3.31 1; 2249 12.75 3.31 0.75; 2250 14.25 3.31 0.75; 2251 14.25 3.31 1; 2252 14.25 3.31 1.25; 2253 14.25 3.31 1.5; 2254 14.25 3.31 1.75; 2255 14.25 3.31 2; 2256 14.25 3.31 2.25; 2257 14.25 3.31 2.5; 2258 14.25 3.31 2.75; 2259 14.25 3.31 3; 2260 14.25 3.31 3.25; 2261 14.25 3.31 3.5; 2262 14.25 3.31 3.75; 2263 14.25 3.31 4; 2264 1.75 3.31 4; 2265 1.75 3.31 3.75; 2266 1.75 3.31 3.5; 2267 1.75 3.31 3.25; 2268 1.75 3.31 0.75; 2269 1.75 3.31 1; 2270 1.75 3.31 1.25; 2271 1.75 3.31 1.75; 2272 1.75 3.31 2.25; 2273 1.75 3.31 2.5; 2274 1.75 3.31 1.5; 2275 1.75 3.31 2; 2276 1.75 3.31 2.75; 2277 1.75 3.31 3; 2278 12.5 3.31 3.875; 2279 12.5 3.31 2.75; 2280 12.5 3.31 1.625; 2281 3.5 3.31 1.625; 2282 3.5 3.31 2.75;

Page 72: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

64 DRDC Suffield CR 2005-033

2283 3.5 3.31 3.875; MEMBER INCIDENCES 889 1603 1604; 890 1604 1605; 891 1605 1606; 892 1606 1607; 893 1607 1608; 894 1608 1646; 895 1646 1670; 896 1647 1648; 897 1648 1649; 898 1649 1650; 899 1627 1628; 900 1628 1629; 901 1629 1630; 902 1630 1631; 903 1631 1632; 904 1632 1658; 905 1658 1669; 906 1659 1660; 907 1660 1661; 908 1661 1662; 909 1609 1610; 910 1610 1611; 911 1611 1612; 912 1612 1613; 913 1613 1614; 914 1614 1651; 915 1651 1672; 916 1652 1653; 917 1653 1654; 918 1654 1655; 919 1633 1634; 920 1634 1635; 921 1635 1636; 922 1636 1637; 923 1637 1638; 924 1638 1663; 925 1663 1671; 926 1664 1665; 927 1665 1666; 928 1666 1667; 929 1621 1622; 930 1622 1623; 931 1623 1624; 932 1624 1625; 933 1625 1626; 934 1626 1657; 935 1597 1598; 936 1598 1599; 937 1599 1600; 938 1600 1601; 939 1601 1602; 940 1602 1645; 941 1639 1640; 942 1640 1641; 943 1641 1642; 944 1642 1643; 945 1643 1644; 946 1644 1668; 947 1615 1616; 948 1616 1617; 949 1617 1618; 950 1618 1619; 951 1619 1620; 952 1620 1656; 953 1645 1646; 954 1646 1651; 955 1651 1656; 956 1657 1658; 957 1658 1663; 958 1663 1668; 959 1645 1657; 960 1646 1658; 961 1651 1663; 962 1656 1668; 963 1650 1917; 964 1662 1928; 965 1650 1662; 966 1655 1667; 967 1669 1659; 968 1670 1647; 969 1671 1664; 970 1672 1652; 971 302 1598; 972 308 1604; 973 314 1610; 974 320 1616; 975 440 1640; 976 396 1634; 977 390 1628; 978 382 1622; 979 530 1599; 980 536 1605; 981 542 1611; 982 548 1617; 983 668 1641; 984 624 1635; 985 618 1629; 986 610 1623; 987 758 1600; 988 764 1606; 989 770 1612; 990 776 1618; 991 896 1642; 992 852 1636; 993 846 1630; 994 838 1624; 995 986 1601; 996 992 1607; 997 998 1613; 998 1004 1619; 999 1124 1643; 1000 1080 1637; 1001 1074 1631; 1002 1066 1625; 1003 1214 1602; 1004 1220 1608; 1005 1226 1614; 1006 1232 1620; 1007 1352 1644; 1008 1308 1638; 1009 1302 1632; 1010 1294 1626; 1011 1448 1670; 1012 1454 1672; 1013 1536 1671; 1014 1530 1669; 1015 1442 1645; 1016 1657 1522; 1017 1580 1668; 1018 1460 1656; 1019 1433 1733; 1020 1432 1731; 1021 1431 1729; 1022 1430 1727; 1023 1429 1725; 1024 1428 1723; 1025 1427 1721; 1026 1426 1719; 1027 1425 1717; 1028 1424 1715; 1029 1423 1713; 1030 1422 1711; 1031 1421 1709; 1032 1420 1707; 1033 1419 1705; 1034 1418 1703; 1035 1417 1701; 1036 1416 1699; 1037 1415 1697; 1038 1414 1695; 1039 1413 1693; 1040 1412 1691; 1041 1411 1689; 1042 1410 1687; 1043 1409 1685; 1044 1408 1683; 1045 1407 1681; 1046 1406 1679; 1047 1405 1677; 1048 1404 1675; 1049 1403 1673; 1050 1478 1734; 1051 1484 1736; 1052 1506 1742; 1053 1513 1744; 1054 1585 1784; 1057 1496 1794; 1058 1516 2163; 1059 1542 1748; 1060 1543 1750; 1061 1544 1752; 1062 1545 1754; 1063 1546 1756; 1064 1547 1758; 1065 1548 1760; 1066 1549 1762; 1067 1550 1764; 1068 1551 1766; 1069 1552 1768; 1070 1553 1770;

Page 73: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 65

1071 1554 1772; 1072 1555 1774; 1073 1556 1776; 1074 1557 1778; 1075 1558 1780; 1076 1581 1782; 1077 1733 1732; 1078 1732 1731; 1079 1731 1730; 1080 1730 1729; 1081 1729 1728; 1082 1728 1727; 1083 1727 1726; 1084 1726 1725; 1085 1725 1724; 1086 1724 1723; 1087 1723 1722; 1088 1722 1721; 1089 1721 1720; 1090 1720 1719; 1091 1719 1718; 1092 1718 1717; 1093 1717 1716; 1094 1716 1715; 1095 1715 1714; 1096 1714 1713; 1097 1713 1712; 1098 1712 1711; 1099 1711 1710; 1100 1710 1709; 1101 1709 1708; 1102 1708 1707; 1103 1707 1706; 1104 1706 1705; 1105 1705 1704; 1106 1704 1703; 1107 1703 1702; 1108 1702 1701; 1109 1701 1700; 1110 1700 1699; 1111 1699 1698; 1112 1698 1697; 1113 1697 1696; 1114 1696 1695; 1115 1695 1694; 1116 1694 1693; 1117 1693 1692; 1118 1692 1691; 1119 1691 1690; 1120 1690 1689; 1121 1689 1688; 1122 1688 1687; 1123 1687 1686; 1124 1686 1685; 1125 1685 1684; 1126 1684 1683; 1127 1683 1682; 1128 1682 1681; 1129 1681 1680; 1130 1680 1679; 1131 1679 1678; 1132 1678 1677; 1133 1677 1676; 1134 1676 1675; 1135 1675 1674; 1136 1674 1673; 1137 1734 1735; 1138 1735 1736; 1139 1736 1737; 1140 1737 1738; 1141 1738 1739; 1142 1739 1740; 1143 1740 1741; 1144 1741 1742; 1145 1742 1743; 1146 1743 1744; 1157 1745 1746; 1158 1746 1747; 1159 1747 1748; 1160 1748 1749; 1161 1749 1750; 1162 1750 1751; 1163 1751 1752; 1164 1752 1753; 1165 1753 1754; 1166 1754 1755; 1167 1755 1756; 1168 1756 1757; 1169 1757 1758; 1170 1758 1759; 1171 1759 1760; 1172 1760 1761; 1173 1761 1762; 1174 1762 1763; 1175 1763 1764; 1176 1764 1765; 1177 1765 1766; 1178 1766 1767; 1179 1767 1768; 1180 1768 1769; 1181 1769 1770; 1182 1770 1771; 1183 1771 1772; 1184 1772 1773; 1185 1773 1774; 1186 1774 1775; 1187 1775 1776; 1188 1776 1777; 1189 1777 1778; 1190 1778 1779; 1191 1779 1780; 1192 1780 1781; 1193 1781 1782; 1194 1782 1783; 1195 1673 1795; 1196 1674 1796; 1197 1675 1797; 1198 1676 1798; 1199 1677 1799; 1200 1678 1800; 1201 1679 1801; 1202 1680 1802; 1203 1681 1803; 1204 1682 1804; 1205 1683 1805; 1206 1684 1806; 1207 1685 1807; 1208 1686 1808; 1209 1687 1809; 1210 1688 1810;

Page 74: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

66 DRDC Suffield CR 2005-033

1211 1689 1811; 1212 1690 1812; 1213 1691 1813; 1214 1692 1814; 1215 1693 1815; 1216 1694 1816; 1217 1695 1817; 1218 1696 1818; 1219 1697 1819; 1220 1698 1820; 1221 1699 1821; 1222 1700 1822; 1223 1701 1823; 1224 1702 1824; 1225 1703 1825; 1226 1704 1826; 1227 1705 1827; 1228 1706 1828; 1229 1707 1829; 1230 1708 1830; 1231 1709 1831; 1232 1710 1832; 1233 1711 1833; 1234 1712 1834; 1235 1713 1835; 1236 1714 1836; 1237 1715 1837; 1238 1716 1838; 1239 1717 1839; 1240 1718 1840; 1241 1719 1841; 1242 1720 1842; 1243 1721 1843; 1244 1722 1844; 1245 1723 1845; 1246 1724 1846; 1247 1725 1847; 1248 1726 1848; 1249 1727 1849; 1250 1728 1850; 1251 1729 1851; 1252 1730 1852; 1253 1731 1853; 1254 1732 1854; 1255 1733 1855; 1256 1734 1856; 1267 1784 1906; 1277 1794 1916; 1278 1745 1867; 1279 1746 1868; 1280 1747 1869; 1281 1748 1870; 1282 1749 1871; 1283 1750 1872; 1284 1751 1873; 1285 1752 1874; 1286 1753 1875; 1287 1754 1876; 1288 1755 1877; 1289 1756 1878; 1290 1757 1879; 1291 1758 1880; 1292 1759 1881; 1293 1760 1882; 1294 1761 1883; 1295 1762 1884; 1296 1763 1885; 1297 1764 1886; 1298 1765 1887; 1299 1766 1888; 1300 1767 1889; 1301 1768 1890; 1302 1769 1891; 1303 1770 1892; 1304 1771 1893; 1305 1772 1894; 1306 1773 1895; 1307 1774 1896; 1308 1775 1897; 1309 1776 1898; 1310 1777 1899; 1311 1778 1900; 1312 1779 1901; 1313 1780 1902; 1314 1781 1903; 1316 1783 1905; 1329 1807 2281; 1330 1808 2095; 1331 1809 2092; 1332 1810 2089; 1333 1811 2086; 1334 1812 2083; 1335 1813 2080; 1336 1814 2077; 1337 1815 2074; 1338 1816 2071; 1339 1817 2068; 1340 1818 2065; 1341 1819 2062; 1342 1820 2059; 1343 1821 2056; 1344 1822 2053; 1345 1823 2050; 1346 1824 2047; 1347 1825 2044; 1348 1826 2041; 1349 1827 2038; 1350 1828 2035; 1351 1829 2032; 1352 1830 2029; 1353 1831 2026; 1354 1832 2023; 1355 1833 2020; 1356 1834 2017; 1357 1835 2014; 1358 1836 2011; 1359 1837 2008; 1360 1838 2005; 1361 1839 2002; 1362 1840 1999; 1363 1841 1996; 1364 1842 1993; 1378 1917 1918; 1379 1918 1919; 1380 1919 1920; 1381 1920 1921; 1382 1921 1922; 1383 1922 1923; 1384 1923 1924; 1385 1924 1925;

Page 75: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 67

1386 1925 1926; 1387 1926 1927; 1388 1927 1655; 1389 1928 1929; 1390 1929 1930; 1391 1930 1931; 1392 1931 1932; 1393 1932 1933; 1394 1933 1934; 1395 1934 1935; 1396 1935 1936; 1397 1936 1937; 1398 1937 1938; 1399 1938 1667; 1400 1650 1939; 1401 1917 1943; 1402 1918 1944; 1403 1919 1945; 1404 1920 1946; 1405 1921 1947; 1406 1922 1948; 1407 1923 1949; 1408 1924 1950; 1409 1925 1951; 1410 1926 1952; 1411 1927 1953; 1412 1655 1940; 1413 1662 1941; 1414 1928 1954; 1415 1929 1955; 1416 1930 1956; 1417 1931 1957; 1418 1932 1958; 1419 1933 1959; 1420 1934 1960; 1421 1935 1961; 1422 1936 1962; 1423 1937 1963; 1424 1938 1964; 1425 1667 1942; 1426 1939 2126; 1427 1943 2128; 1428 1944 2150; 1429 1945 2148; 1430 1946 2146; 1431 1947 2144; 1432 1948 2142; 1433 1949 2140; 1434 1950 2138; 1435 1951 2136; 1436 1952 2134; 1437 1953 2132; 1438 1940 2130; 1439 1650 1667; 1440 1662 1655; 1441 1657 1646; 1442 1645 1658; 1443 1658 1651; 1444 1646 1663; 1445 1663 1656; 1446 1651 1668; 1447 1597 1646; 1448 1645 1603; 1449 1603 1651; 1450 1646 1609; 1451 1609 1656; 1452 1651 1615; 1453 1639 1663; 1454 1668 1633; 1455 1633 1658; 1456 1663 1627; 1457 1627 1657; 1458 1658 1621; 1487 1993 1994; 1488 1994 1995; 1489 1995 1903; 1490 1996 1997; 1491 1997 1998; 1492 1998 1902; 1493 1999 2000; 1494 2000 2001; 1495 2001 1901; 1496 2002 2003; 1497 2003 2004; 1498 2004 1900; 1499 2005 2006; 1500 2006 2007; 1501 2007 1899; 1502 2008 2009; 1503 2009 2010; 1504 2010 1898; 1505 2011 2012; 1506 2012 2013; 1507 2013 1897; 1508 2014 2015; 1509 2015 2016; 1510 2016 1896; 1511 2017 2018; 1512 2018 2019; 1513 2019 1895; 1514 2020 2021; 1515 2021 2022; 1516 2022 1894; 1517 2023 2024; 1518 2024 2025; 1519 2025 1893; 1520 2026 2027; 1521 2027 2028; 1522 2028 1892; 1523 2029 2030; 1524 2030 2031; 1525 2031 1891; 1526 2032 2033; 1527 2033 2034; 1528 2034 1890; 1529 2035 2036; 1530 2036 2037; 1531 2037 1889; 1532 2038 2039; 1533 2039 2040; 1534 2040 1888; 1535 2041 2042; 1536 2042 2043; 1537 2043 1887; 1538 2044 2045; 1539 2045 2046; 1540 2046 1886; 1541 2047 2048; 1542 2048 2049; 1543 2049 1885;

Page 76: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

68 DRDC Suffield CR 2005-033

1544 2050 2051; 1545 2051 2052; 1546 2052 1884; 1547 2053 2054; 1548 2054 2055; 1549 2055 1883; 1550 2056 2057; 1551 2057 2058; 1552 2058 1882; 1553 2059 2060; 1554 2060 2061; 1555 2061 1881; 1556 2062 2063; 1557 2063 2064; 1558 2064 1880; 1559 2065 2066; 1560 2066 2067; 1561 2067 1879; 1562 2068 2069; 1563 2069 2070; 1564 2070 1878; 1565 2071 2072; 1566 2072 2073; 1567 2073 1877; 1568 2074 2075; 1569 2075 2076; 1570 2076 1876; 1571 2077 2078; 1572 2078 2079; 1573 2079 1875; 1574 2080 2081; 1575 2081 2082; 1576 2082 1874; 1577 2083 2084; 1578 2084 2085; 1579 2085 1873; 1580 2086 2087; 1581 2087 2088; 1582 2088 1872; 1583 2089 2090; 1584 2090 2091; 1585 2091 1871; 1586 2092 2093; 1587 2093 2094; 1588 2094 1870; 1589 2095 2096; 1590 2096 2097; 1591 2097 1869; 1620 2126 2127; 1621 2127 1941; 1622 2128 2129; 1623 2129 1954; 1624 2130 2131; 1625 2131 1942; 1626 2132 2133; 1627 2133 1964; 1628 2134 2135; 1629 2135 1963; 1630 2136 2137; 1631 2137 1962; 1632 2138 2139; 1633 2139 1961; 1634 2140 2141; 1635 2141 1960; 1636 2142 2143; 1637 2143 1959; 1638 2144 2145; 1639 2145 1958; 1640 2146 2147; 1641 2147 1957; 1642 2148 2149; 1643 2149 1956; 1644 2150 2151; 1645 2151 1955; 1646 1795 2152; 1647 2152 2153; 1648 2153 2154; 1649 2154 2155; 1650 2155 2156; 1651 2156 2157; 1652 2157 2158; 1653 2158 2159; 1654 2159 2160; 1655 2160 2161; 1656 2161 2162; 1657 2162 1856; 1658 2163 1745; 1659 2163 2164; 1660 1806 2182; 1661 1805 2165; 1662 2165 2166; 1663 2166 2167; 1664 2167 2168; 1665 2168 2169; 1666 2169 2170; 1667 2170 2171; 1668 2171 2172; 1669 2172 2173; 1670 2173 2174; 1671 2174 2175; 1672 2175 2176; 1673 2176 2177; 1674 2177 2178; 1675 2178 2179; 1676 2179 2180; 1677 2180 2181; 1678 2181 2164; 1679 2182 2183; 1680 2183 2184; 1681 2184 2185; 1682 2185 2186; 1683 2186 2187; 1684 2187 2188; 1685 2188 2189; 1686 2189 2190; 1687 2190 2191; 1688 2191 2192; 1689 2192 2193; 1690 2193 2194; 1691 2194 2195; 1692 2195 2196; 1693 2196 2197; 1694 2197 2198; 1695 2198 1867; 1696 1795 1797; 1697 1797 1796; 1698 1796 1798; 1699 1798 1799; 1700 1799 1800; 1701 1800 1801;

Page 77: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 69

1702 1801 1802; 1703 1802 1803; 1704 1803 1804; 1705 1804 1805; 1706 2152 2268; 1707 2153 2166; 1708 2165 2182; 1709 1805 1806; 1710 2153 2269; 1711 2166 2183; 1712 2154 2270; 1713 2167 2184; 1714 2155 2274; 1715 2168 2185; 1716 2156 2271; 1717 2169 2186; 1718 2157 2275; 1719 2170 2187; 1720 2158 2272; 1721 2171 2188; 1722 2159 2273; 1723 2172 2189; 1724 2160 2276; 1725 2173 2190; 1726 2161 2277; 1727 2174 2191; 1728 2162 2267; 1729 2175 2192; 1730 1856 2266; 1731 2176 2193; 1732 1856 2200; 1733 1479 2199; 1734 2200 2199; 1735 2200 2265; 1736 2177 2194; 1737 2199 2264; 1738 2178 2195; 1739 1497 2201; 1740 1855 2202; 1741 1916 2213; 1742 2202 2203; 1743 2203 2204; 1744 2204 2205; 1745 2205 2206; 1746 2206 2207; 1747 2207 2208; 1748 2208 2209; 1749 2209 2210; 1750 2210 2211; 1751 2211 2212; 1752 2212 1916; 1753 2213 2201; 1754 1845 2215; 1755 1906 2226; 1756 2215 2216; 1757 2216 2217; 1758 2217 2218; 1759 2218 2219; 1760 2219 2220; 1761 2220 2221; 1762 2221 2222; 1763 2222 2223; 1764 2223 2224; 1765 2224 2225; 1766 2225 1906; 1767 2226 2227; 1768 2227 2228; 1769 2228 2229; 1770 2229 2230; 1771 2230 2214; 1772 1583 2222; 1773 1584 2224; 1774 1586 2227; 1775 1588 2231; 1776 2231 2214; 1777 1782 2231; 1778 1903 2232; 1779 2232 1905; 1780 2232 2278; 1781 1905 2233; 1782 2233 2234; 1783 2234 2235; 1784 2235 2236; 1785 2236 2237; 1786 2237 2238; 1787 2238 2239; 1788 2239 2240; 1789 2240 2241; 1790 2241 2242; 1791 2242 2243; 1792 2243 2244; 1793 2244 2245; 1794 2245 2246; 1795 2246 2247; 1796 2247 2248; 1797 2248 2249; 1798 2249 1844; 1799 2202 2250; 1800 2215 2249; 1801 2203 2251; 1802 2216 2248; 1803 2204 2252; 1804 2217 2247; 1805 2205 2253; 1806 2218 2246; 1807 2206 2254; 1808 2219 2245; 1809 2207 2255; 1810 2220 2244; 1811 2208 2256; 1812 2221 2243; 1813 2209 2257; 1814 2222 2242; 1815 2210 2258; 1816 2223 2241; 1817 2211 2259; 1818 2224 2240; 1819 2212 2260; 1820 2225 2239; 1821 1916 2261; 1822 1906 2238; 1823 2213 2262; 1824 2226 2237; 1825 2201 2263; 1826 2227 2236; 1827 2250 2215; 1828 2251 2216; 1829 2252 2217; 1830 2253 2218; 1831 2254 2219;

Page 78: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

70 DRDC Suffield CR 2005-033

1832 2255 2220; 1833 2256 2221; 1834 2257 2222; 1835 2258 2223; 1836 2259 2224; 1837 2260 2225; 1838 2261 1906; 1839 2262 2226; 1840 2263 2227; 1841 2264 2178; 1842 2265 2177; 1843 2266 2176; 1844 2267 2175; 1845 2268 2165; 1846 2269 2166; 1847 2270 2167; 1848 2271 2169; 1849 2272 2171; 1850 2273 2172; 1851 2274 2168; 1852 2275 2170; 1853 2276 2173; 1854 2277 2174; 1855 1474 2155; 1856 1475 2157; 1857 1476 2159; 1858 1477 2161; 1859 1495 2211; 1860 1494 2209; 1861 1493 2207; 1862 1492 2205; 1863 1844 1845; 1864 1845 1846; 1865 1846 1847; 1866 1847 1848; 1867 1848 1849; 1868 1849 1850; 1869 1850 1851; 1870 1851 1852; 1871 1852 1854; 1872 1854 1853; 1873 1853 1855; 1874 2278 2279; 1875 2279 2280; 1876 2280 1843; 1877 2281 2282; 1878 2282 2283; 1879 2283 1868; ELEMENT INCIDENCES SOLID 1 34 35 263 262 1 2 230 229; 2 35 36 264 263 2 3 231 230; 3 36 37 265 264 3 4 232 231; 4 37 38 266 265 4 5 233 232; 5 38 39 267 266 5 6 234 233; 6 39 40 268 267 6 7 235 234; 7 40 41 269 268 7 8 236 235; 8 41 42 270 269 8 9 237 236; 9 42 43 271 270 9 10 238 237; 10 43 44 272 271 10 11 239 238; 11 44 45 273 272 11 12 240 239; 12 45 46 274 273 12 13 241 240; 13 46 47 275 274 13 14 242 241; 14 47 48 276 275 14 15 243 242; 15 48 49 277 276 15 16 244 243; 16 49 50 278 277 16 17 245 244; 17 50 51 279 278 17 18 246 245; 18 51 52 280 279 18 19 247 246; 19 52 53 281 280 19 20 248 247; 20 53 54 282 281 20 21 249 248; 21 54 55 283 282 21 22 250 249; 22 55 56 284 283 22 23 251 250; 23 56 57 285 284 23 24 252 251; 24 57 58 286 285 24 25 253 252; 25 58 59 287 286 25 26 254 253; 26 59 60 288 287 26 27 255 254; 27 60 61 289 288 27 28 256 255; 28 61 62 290 289 28 29 257 256; 29 62 63 291 290 29 30 258 257; 30 63 64 292 291 30 31 259 258; 31 64 65 293 292 31 32 260 259; 32 65 66 294 293 32 33 261 260; 33 67 68 296 295 34 35 263 262; 34 68 69 297 296 35 36 264 263; 35 69 70 298 297 36 37 265 264; 36 70 71 299 298 37 38 266 265; 37 71 72 300 299 38 39 267 266; 38 72 73 301 300 39 40 268 267; 39 73 74 302 301 40 41 269 268; 40 74 75 303 302 41 42 270 269; 41 75 76 304 303 42 43 271 270; 42 76 77 305 304 43 44 272 271; 43 77 78 306 305 44 45 273 272; 44 78 79 307 306 45 46 274 273; 45 79 80 308 307 46 47 275 274; 46 80 81 309 308 47 48 276 275; 47 81 82 310 309 48 49 277 276; 48 82 83 311 310 49 50 278 277; 49 83 84 312 311 50 51 279 278; 50 84 85 313 312 51 52 280 279; 51 85 86 314 313 52 53 281 280; 52 86 87 315 314 53 54 282 281; 53 87 88 316 315 54 55 283 282; 54 88 89 317 316 55 56 284 283; 55 89 90 318 317 56 57 285 284; 56 90 91 319 318 57 58 286 285; 57 91 92 320 319 58 59 287 286; 58 92 93 321 320 59 60 288 287; 59 93 94 322 321 60 61 289 288; 60 94 95 323 322 61 62 290 289; 61 95 96 324 323 62 63 291 290; 62 96 97 325 324 63 64 292 291; 63 97 98 326 325 64 65 293 292; 64 98 99 327 326 65 66 294 293; 65 101 107 335 329 100 106 334 328; 66 102 108 336 330 101 107 335 329;

Page 79: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 71

67 103 109 337 331 102 108 336 330; 68 104 110 338 332 103 109 337 331; 69 105 111 339 333 104 110 338 332; 70 107 113 341 335 106 112 340 334; 71 108 114 342 336 107 113 341 335; 72 109 115 343 337 108 114 342 336; 73 110 116 344 338 109 115 343 337; 74 111 117 345 339 110 116 344 338; 75 100 106 334 328 67 68 296 295; 76 106 112 340 334 68 69 297 296; 77 119 125 353 347 118 124 352 346; 78 120 126 354 348 119 125 353 347; 79 121 127 355 349 120 126 354 348; 80 122 128 356 350 121 127 355 349; 81 123 129 357 351 122 128 356 350; 82 125 131 359 353 124 130 358 352; 83 126 132 360 354 125 131 359 353; 84 127 133 361 355 126 132 360 354; 85 128 134 362 356 127 133 361 355; 86 129 135 363 357 128 134 362 356; 87 118 124 352 346 97 98 326 325; 88 124 130 358 352 98 99 327 326; 89 137 144 372 365 136 143 371 364; 90 138 145 373 366 137 144 372 365; 91 139 146 374 367 138 145 373 366; 92 140 147 375 368 139 146 374 367; 93 141 148 376 369 140 147 375 368; 94 142 149 377 370 141 148 376 369; 95 144 151 379 372 143 150 378 371; 96 145 152 380 373 144 151 379 372; 97 146 153 381 374 145 152 380 373; 98 147 154 382 375 146 153 381 374; 99 148 155 383 376 147 154 382 375; 100 149 156 384 377 148 155 383 376; 101 174 175 403 402 157 158 386 385; 102 175 176 404 403 158 159 387 386; 103 176 177 405 404 159 160 388 387; 104 177 178 406 405 160 161 389 388; 105 178 179 407 406 161 162 390 389; 106 179 180 408 407 162 163 391 390; 107 180 181 409 408 163 164 392 391; 108 181 182 410 409 164 165 393 392; 109 182 183 411 410 165 166 394 393; 110 183 184 412 411 166 167 395 394; 111 184 185 413 412 167 168 396 395; 112 185 186 414 413 168 169 397 396; 113 186 187 415 414 169 170 398 397; 114 187 188 416 415 170 171 399 398; 115 188 189 417 416 171 172 400 399; 116 189 190 418 417 172 173 401 400; 117 191 192 420 419 174 175 403 402; 118 192 193 421 420 175 176 404 403; 119 193 194 422 421 176 177 405 404; 120 194 195 423 422 177 178 406 405; 121 195 196 424 423 178 179 407 406; 122 196 197 425 424 179 180 408 407; 123 197 198 426 425 180 181 409 408; 124 198 199 427 426 181 182 410 409; 125 199 200 428 427 182 183 411 410; 126 200 201 429 428 183 184 412 411; 127 201 202 430 429 184 185 413 412; 128 202 203 431 430 185 186 414 413; 129 203 204 432 431 186 187 415 414; 130 204 205 433 432 187 188 416 415; 131 205 206 434 433 188 189 417 416; 132 206 207 435 434 189 190 418 417; 133 209 216 444 437 208 215 443 436; 134 210 217 445 438 209 216 444 437; 135 211 218 446 439 210 217 445 438; 136 212 219 447 440 211 218 446 439; 137 213 220 448 441 212 219 447 440; 138 214 221 449 442 213 220 448 441; 139 216 223 451 444 215 222 450 443; 140 217 224 452 445 216 223 451 444; 141 218 225 453 446 217 224 452 445; 142 219 226 454 447 218 225 453 446; 143 220 227 455 448 219 226 454 447; 144 221 228 456 449 220 227 455 448; 145 156 191 419 384 155 174 402 383; 146 155 174 402 383 154 157 385 382; 147 207 214 442 435 190 213 441 418; 148 190 213 441 418 173 212 440 401; 149 262 263 491 490 229 230 458 457; 150 263 264 492 491 230 231 459 458; 151 264 265 493 492 231 232 460 459; 152 265 266 494 493 232 233 461 460; 153 266 267 495 494 233 234 462 461; 154 267 268 496 495 234 235 463 462; 155 268 269 497 496 235 236 464 463; 156 269 270 498 497 236 237 465 464; 157 270 271 499 498 237 238 466 465; 158 271 272 500 499 238 239 467 466; 159 272 273 501 500 239 240 468 467; 160 273 274 502 501 240 241 469 468; 161 274 275 503 502 241 242 470 469; 162 275 276 504 503 242 243 471 470; 163 276 277 505 504 243 244 472 471; 164 277 278 506 505 244 245 473 472; 165 278 279 507 506 245 246 474 473; 166 279 280 508 507 246 247 475 474; 167 280 281 509 508 247 248 476 475; 168 281 282 510 509 248 249 477 476; 169 282 283 511 510 249 250 478 477; 170 283 284 512 511 250 251 479 478; 171 284 285 513 512 251 252 480 479; 172 285 286 514 513 252 253 481 480;

Page 80: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

72 DRDC Suffield CR 2005-033

173 286 287 515 514 253 254 482 481; 174 287 288 516 515 254 255 483 482; 175 288 289 517 516 255 256 484 483; 176 289 290 518 517 256 257 485 484; 177 290 291 519 518 257 258 486 485; 178 291 292 520 519 258 259 487 486; 179 292 293 521 520 259 260 488 487; 180 293 294 522 521 260 261 489 488; 181 295 296 524 523 262 263 491 490; 182 296 297 525 524 263 264 492 491; 183 297 298 526 525 264 265 493 492; 184 298 299 527 526 265 266 494 493; 185 299 300 528 527 266 267 495 494; 186 300 301 529 528 267 268 496 495; 187 301 302 530 529 268 269 497 496; 188 302 303 531 530 269 270 498 497; 189 303 304 532 531 270 271 499 498; 190 304 305 533 532 271 272 500 499; 191 305 306 534 533 272 273 501 500; 192 306 307 535 534 273 274 502 501; 193 307 308 536 535 274 275 503 502; 194 308 309 537 536 275 276 504 503; 195 309 310 538 537 276 277 505 504; 196 310 311 539 538 277 278 506 505; 197 311 312 540 539 278 279 507 506; 198 312 313 541 540 279 280 508 507; 199 313 314 542 541 280 281 509 508; 200 314 315 543 542 281 282 510 509; 201 315 316 544 543 282 283 511 510; 202 316 317 545 544 283 284 512 511; 203 317 318 546 545 284 285 513 512; 204 318 319 547 546 285 286 514 513; 205 319 320 548 547 286 287 515 514; 206 320 321 549 548 287 288 516 515; 207 321 322 550 549 288 289 517 516; 208 322 323 551 550 289 290 518 517; 209 323 324 552 551 290 291 519 518; 210 324 325 553 552 291 292 520 519; 211 325 326 554 553 292 293 521 520; 212 326 327 555 554 293 294 522 521; 213 329 335 563 557 328 334 562 556; 214 330 336 564 558 329 335 563 557; 215 331 337 565 559 330 336 564 558; 216 332 338 566 560 331 337 565 559; 217 333 339 567 561 332 338 566 560; 218 335 341 569 563 334 340 568 562; 219 336 342 570 564 335 341 569 563; 220 337 343 571 565 336 342 570 564; 221 338 344 572 566 337 343 571 565; 222 339 345 573 567 338 344 572 566; 223 328 334 562 556 295 296 524 523; 224 334 340 568 562 296 297 525 524; 225 347 353 581 575 346 352 580 574; 226 348 354 582 576 347 353 581 575; 227 349 355 583 577 348 354 582 576; 228 350 356 584 578 349 355 583 577; 229 351 357 585 579 350 356 584 578; 230 353 359 587 581 352 358 586 580; 231 354 360 588 582 353 359 587 581; 232 355 361 589 583 354 360 588 582; 233 356 362 590 584 355 361 589 583; 234 357 363 591 585 356 362 590 584; 235 346 352 580 574 325 326 554 553; 236 352 358 586 580 326 327 555 554; 237 365 372 600 593 364 371 599 592; 238 366 373 601 594 365 372 600 593; 239 367 374 602 595 366 373 601 594; 240 368 375 603 596 367 374 602 595; 241 369 376 604 597 368 375 603 596; 242 370 377 605 598 369 376 604 597; 243 372 379 607 600 371 378 606 599; 244 373 380 608 601 372 379 607 600; 245 374 381 609 602 373 380 608 601; 246 375 382 610 603 374 381 609 602; 247 376 383 611 604 375 382 610 603; 248 377 384 612 605 376 383 611 604; 249 402 403 631 630 385 386 614 613; 250 403 404 632 631 386 387 615 614; 251 404 405 633 632 387 388 616 615; 252 405 406 634 633 388 389 617 616; 253 406 407 635 634 389 390 618 617; 254 407 408 636 635 390 391 619 618; 255 408 409 637 636 391 392 620 619; 256 409 410 638 637 392 393 621 620; 257 410 411 639 638 393 394 622 621; 258 411 412 640 639 394 395 623 622; 259 412 413 641 640 395 396 624 623; 260 413 414 642 641 396 397 625 624; 261 414 415 643 642 397 398 626 625; 262 415 416 644 643 398 399 627 626; 263 416 417 645 644 399 400 628 627; 264 417 418 646 645 400 401 629 628; 265 419 420 648 647 402 403 631 630; 266 420 421 649 648 403 404 632 631; 267 421 422 650 649 404 405 633 632; 268 422 423 651 650 405 406 634 633; 269 423 424 652 651 406 407 635 634; 270 424 425 653 652 407 408 636 635; 271 425 426 654 653 408 409 637 636; 272 426 427 655 654 409 410 638 637; 273 427 428 656 655 410 411 639 638; 274 428 429 657 656 411 412 640 639; 275 429 430 658 657 412 413 641 640; 276 430 431 659 658 413 414 642 641; 277 431 432 660 659 414 415 643 642; 278 432 433 661 660 415 416 644 643;

Page 81: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 73

279 433 434 662 661 416 417 645 644; 280 434 435 663 662 417 418 646 645; 281 437 444 672 665 436 443 671 664; 282 438 445 673 666 437 444 672 665; 283 439 446 674 667 438 445 673 666; 284 440 447 675 668 439 446 674 667; 285 441 448 676 669 440 447 675 668; 286 442 449 677 670 441 448 676 669; 287 444 451 679 672 443 450 678 671; 288 445 452 680 673 444 451 679 672; 289 446 453 681 674 445 452 680 673; 290 447 454 682 675 446 453 681 674; 291 448 455 683 676 447 454 682 675; 292 449 456 684 677 448 455 683 676; 293 384 419 647 612 383 402 630 611; 294 383 402 630 611 382 385 613 610; 295 435 442 670 663 418 441 669 646; 296 418 441 669 646 401 440 668 629; 297 490 491 719 718 457 458 686 685; 298 491 492 720 719 458 459 687 686; 299 492 493 721 720 459 460 688 687; 300 493 494 722 721 460 461 689 688; 301 494 495 723 722 461 462 690 689; 302 495 496 724 723 462 463 691 690; 303 496 497 725 724 463 464 692 691; 304 497 498 726 725 464 465 693 692; 305 498 499 727 726 465 466 694 693; 306 499 500 728 727 466 467 695 694; 307 500 501 729 728 467 468 696 695; 308 501 502 730 729 468 469 697 696; 309 502 503 731 730 469 470 698 697; 310 503 504 732 731 470 471 699 698; 311 504 505 733 732 471 472 700 699; 312 505 506 734 733 472 473 701 700; 313 506 507 735 734 473 474 702 701; 314 507 508 736 735 474 475 703 702; 315 508 509 737 736 475 476 704 703; 316 509 510 738 737 476 477 705 704; 317 510 511 739 738 477 478 706 705; 318 511 512 740 739 478 479 707 706; 319 512 513 741 740 479 480 708 707; 320 513 514 742 741 480 481 709 708; 321 514 515 743 742 481 482 710 709; 322 515 516 744 743 482 483 711 710; 323 516 517 745 744 483 484 712 711; 324 517 518 746 745 484 485 713 712; 325 518 519 747 746 485 486 714 713; 326 519 520 748 747 486 487 715 714; 327 520 521 749 748 487 488 716 715; 328 521 522 750 749 488 489 717 716; 329 523 524 752 751 490 491 719 718; 330 524 525 753 752 491 492 720 719; 331 525 526 754 753 492 493 721 720; 332 526 527 755 754 493 494 722 721; 333 527 528 756 755 494 495 723 722; 334 528 529 757 756 495 496 724 723; 335 529 530 758 757 496 497 725 724; 336 530 531 759 758 497 498 726 725; 337 531 532 760 759 498 499 727 726; 338 532 533 761 760 499 500 728 727; 339 533 534 762 761 500 501 729 728; 340 534 535 763 762 501 502 730 729; 341 535 536 764 763 502 503 731 730; 342 536 537 765 764 503 504 732 731; 343 537 538 766 765 504 505 733 732; 344 538 539 767 766 505 506 734 733; 345 539 540 768 767 506 507 735 734; 346 540 541 769 768 507 508 736 735; 347 541 542 770 769 508 509 737 736; 348 542 543 771 770 509 510 738 737; 349 543 544 772 771 510 511 739 738; 350 544 545 773 772 511 512 740 739; 351 545 546 774 773 512 513 741 740; 352 546 547 775 774 513 514 742 741; 353 547 548 776 775 514 515 743 742; 354 548 549 777 776 515 516 744 743; 355 549 550 778 777 516 517 745 744; 356 550 551 779 778 517 518 746 745; 357 551 552 780 779 518 519 747 746; 358 552 553 781 780 519 520 748 747; 359 553 554 782 781 520 521 749 748; 360 554 555 783 782 521 522 750 749; 361 557 563 791 785 556 562 790 784; 362 558 564 792 786 557 563 791 785; 363 559 565 793 787 558 564 792 786; 364 560 566 794 788 559 565 793 787; 365 561 567 795 789 560 566 794 788; 366 563 569 797 791 562 568 796 790; 367 564 570 798 792 563 569 797 791; 368 565 571 799 793 564 570 798 792; 369 566 572 800 794 565 571 799 793; 370 567 573 801 795 566 572 800 794; 371 556 562 790 784 523 524 752 751; 372 562 568 796 790 524 525 753 752; 373 575 581 809 803 574 580 808 802; 374 576 582 810 804 575 581 809 803; 375 577 583 811 805 576 582 810 804; 376 578 584 812 806 577 583 811 805; 377 579 585 813 807 578 584 812 806; 378 581 587 815 809 580 586 814 808; 379 582 588 816 810 581 587 815 809; 380 583 589 817 811 582 588 816 810; 381 584 590 818 812 583 589 817 811; 382 585 591 819 813 584 590 818 812; 383 574 580 808 802 553 554 782 781; 384 580 586 814 808 554 555 783 782;

Page 82: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

74 DRDC Suffield CR 2005-033

385 593 600 828 821 592 599 827 820; 386 594 601 829 822 593 600 828 821; 387 595 602 830 823 594 601 829 822; 388 596 603 831 824 595 602 830 823; 389 597 604 832 825 596 603 831 824; 390 598 605 833 826 597 604 832 825; 391 600 607 835 828 599 606 834 827; 392 601 608 836 829 600 607 835 828; 393 602 609 837 830 601 608 836 829; 394 603 610 838 831 602 609 837 830; 395 604 611 839 832 603 610 838 831; 396 605 612 840 833 604 611 839 832; 397 630 631 859 858 613 614 842 841; 398 631 632 860 859 614 615 843 842; 399 632 633 861 860 615 616 844 843; 400 633 634 862 861 616 617 845 844; 401 634 635 863 862 617 618 846 845; 402 635 636 864 863 618 619 847 846; 403 636 637 865 864 619 620 848 847; 404 637 638 866 865 620 621 849 848; 405 638 639 867 866 621 622 850 849; 406 639 640 868 867 622 623 851 850; 407 640 641 869 868 623 624 852 851; 408 641 642 870 869 624 625 853 852; 409 642 643 871 870 625 626 854 853; 410 643 644 872 871 626 627 855 854; 411 644 645 873 872 627 628 856 855; 412 645 646 874 873 628 629 857 856; 413 647 648 876 875 630 631 859 858; 414 648 649 877 876 631 632 860 859; 415 649 650 878 877 632 633 861 860; 416 650 651 879 878 633 634 862 861; 417 651 652 880 879 634 635 863 862; 418 652 653 881 880 635 636 864 863; 419 653 654 882 881 636 637 865 864; 420 654 655 883 882 637 638 866 865; 421 655 656 884 883 638 639 867 866; 422 656 657 885 884 639 640 868 867; 423 657 658 886 885 640 641 869 868; 424 658 659 887 886 641 642 870 869; 425 659 660 888 887 642 643 871 870; 426 660 661 889 888 643 644 872 871; 427 661 662 890 889 644 645 873 872; 428 662 663 891 890 645 646 874 873; 429 665 672 900 893 664 671 899 892; 430 666 673 901 894 665 672 900 893; 431 667 674 902 895 666 673 901 894; 432 668 675 903 896 667 674 902 895; 433 669 676 904 897 668 675 903 896; 434 670 677 905 898 669 676 904 897; 435 672 679 907 900 671 678 906 899; 436 673 680 908 901 672 679 907 900; 437 674 681 909 902 673 680 908 901; 438 675 682 910 903 674 681 909 902; 439 676 683 911 904 675 682 910 903; 440 677 684 912 905 676 683 911 904; 441 612 647 875 840 611 630 858 839; 442 611 630 858 839 610 613 841 838; 443 663 670 898 891 646 669 897 874; 444 646 669 897 874 629 668 896 857; 445 718 719 947 946 685 686 914 913; 446 719 720 948 947 686 687 915 914; 447 720 721 949 948 687 688 916 915; 448 721 722 950 949 688 689 917 916; 449 722 723 951 950 689 690 918 917; 450 723 724 952 951 690 691 919 918; 451 724 725 953 952 691 692 920 919; 452 725 726 954 953 692 693 921 920; 453 726 727 955 954 693 694 922 921; 454 727 728 956 955 694 695 923 922; 455 728 729 957 956 695 696 924 923; 456 729 730 958 957 696 697 925 924; 457 730 731 959 958 697 698 926 925; 458 731 732 960 959 698 699 927 926; 459 732 733 961 960 699 700 928 927; 460 733 734 962 961 700 701 929 928; 461 734 735 963 962 701 702 930 929; 462 735 736 964 963 702 703 931 930; 463 736 737 965 964 703 704 932 931; 464 737 738 966 965 704 705 933 932; 465 738 739 967 966 705 706 934 933; 466 739 740 968 967 706 707 935 934; 467 740 741 969 968 707 708 936 935; 468 741 742 970 969 708 709 937 936; 469 742 743 971 970 709 710 938 937; 470 743 744 972 971 710 711 939 938; 471 744 745 973 972 711 712 940 939; 472 745 746 974 973 712 713 941 940; 473 746 747 975 974 713 714 942 941; 474 747 748 976 975 714 715 943 942; 475 748 749 977 976 715 716 944 943; 476 749 750 978 977 716 717 945 944; 477 751 752 980 979 718 719 947 946; 478 752 753 981 980 719 720 948 947; 479 753 754 982 981 720 721 949 948; 480 754 755 983 982 721 722 950 949; 481 755 756 984 983 722 723 951 950; 482 756 757 985 984 723 724 952 951; 483 757 758 986 985 724 725 953 952; 484 758 759 987 986 725 726 954 953; 485 759 760 988 987 726 727 955 954; 486 760 761 989 988 727 728 956 955; 487 761 762 990 989 728 729 957 956; 488 762 763 991 990 729 730 958 957; 489 763 764 992 991 730 731 959 958; 490 764 765 993 992 731 732 960 959;

Page 83: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 75

491 765 766 994 993 732 733 961 960; 492 766 767 995 994 733 734 962 961; 493 767 768 996 995 734 735 963 962; 494 768 769 997 996 735 736 964 963; 495 769 770 998 997 736 737 965 964; 496 770 771 999 998 737 738 966 965; 497 771 772 1000 999 738 739 967 966; 498 772 773 1001 1000 739 740 968 967; 499 773 774 1002 1001 740 741 969 968; 500 774 775 1003 1002 741 742 970 969; 501 775 776 1004 1003 742 743 971 970; 502 776 777 1005 1004 743 744 972 971; 503 777 778 1006 1005 744 745 973 972; 504 778 779 1007 1006 745 746 974 973; 505 779 780 1008 1007 746 747 975 974; 506 780 781 1009 1008 747 748 976 975; 507 781 782 1010 1009 748 749 977 976; 508 782 783 1011 1010 749 750 978 977; 509 785 791 1019 1013 784 790 1018 1012; 510 786 792 1020 1014 785 791 1019 1013; 511 787 793 1021 1015 786 792 1020 1014; 512 788 794 1022 1016 787 793 1021 1015; 513 789 795 1023 1017 788 794 1022 1016; 514 791 797 1025 1019 790 796 1024 1018; 515 792 798 1026 1020 791 797 1025 1019; 516 793 799 1027 1021 792 798 1026 1020; 517 794 800 1028 1022 793 799 1027 1021; 518 795 801 1029 1023 794 800 1028 1022; 519 784 790 1018 1012 751 752 980 979; 520 790 796 1024 1018 752 753 981 980; 521 803 809 1037 1031 802 808 1036 1030; 522 804 810 1038 1032 803 809 1037 1031; 523 805 811 1039 1033 804 810 1038 1032; 524 806 812 1040 1034 805 811 1039 1033; 525 807 813 1041 1035 806 812 1040 1034; 526 809 815 1043 1037 808 814 1042 1036; 527 810 816 1044 1038 809 815 1043 1037; 528 811 817 1045 1039 810 816 1044 1038; 529 812 818 1046 1040 811 817 1045 1039; 530 813 819 1047 1041 812 818 1046 1040; 531 802 808 1036 1030 781 782 1010 1009; 532 808 814 1042 1036 782 783 1011 1010; 533 821 828 1056 1049 820 827 1055 1048; 534 822 829 1057 1050 821 828 1056 1049; 535 823 830 1058 1051 822 829 1057 1050; 536 824 831 1059 1052 823 830 1058 1051; 537 825 832 1060 1053 824 831 1059 1052; 538 826 833 1061 1054 825 832 1060 1053; 539 828 835 1063 1056 827 834 1062 1055; 540 829 836 1064 1057 828 835 1063 1056; 541 830 837 1065 1058 829 836 1064 1057; 542 831 838 1066 1059 830 837 1065 1058; 543 832 839 1067 1060 831 838 1066 1059; 544 833 840 1068 1061 832 839 1067 1060; 545 858 859 1087 1086 841 842 1070 1069; 546 859 860 1088 1087 842 843 1071 1070; 547 860 861 1089 1088 843 844 1072 1071;

Page 84: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

76 DRDC Suffield CR 2005-033

548 861 862 1090 1089 844 845 1073 1072; 549 862 863 1091 1090 845 846 1074 1073; 550 863 864 1092 1091 846 847 1075 1074; 551 864 865 1093 1092 847 848 1076 1075; 552 865 866 1094 1093 848 849 1077 1076; 553 866 867 1095 1094 849 850 1078 1077; 554 867 868 1096 1095 850 851 1079 1078; 555 868 869 1097 1096 851 852 1080 1079; 556 869 870 1098 1097 852 853 1081 1080; 557 870 871 1099 1098 853 854 1082 1081; 558 871 872 1100 1099 854 855 1083 1082; 559 872 873 1101 1100 855 856 1084 1083; 560 873 874 1102 1101 856 857 1085 1084; 561 875 876 1104 1103 858 859 1087 1086; 562 876 877 1105 1104 859 860 1088 1087; 563 877 878 1106 1105 860 861 1089 1088; 564 878 879 1107 1106 861 862 1090 1089; 565 879 880 1108 1107 862 863 1091 1090; 566 880 881 1109 1108 863 864 1092 1091; 567 881 882 1110 1109 864 865 1093 1092; 568 882 883 1111 1110 865 866 1094 1093; 569 883 884 1112 1111 866 867 1095 1094; 570 884 885 1113 1112 867 868 1096 1095; 571 885 886 1114 1113 868 869 1097 1096; 572 886 887 1115 1114 869 870 1098 1097; 573 887 888 1116 1115 870 871 1099 1098; 574 888 889 1117 1116 871 872 1100 1099; 575 889 890 1118 1117 872 873 1101 1100; 576 890 891 1119 1118 873 874 1102 1101; 577 893 900 1128 1121 892 899 1127 1120; 578 894 901 1129 1122 893 900 1128 1121; 579 895 902 1130 1123 894 901 1129 1122; 580 896 903 1131 1124 895 902 1130 1123; 581 897 904 1132 1125 896 903 1131 1124; 582 898 905 1133 1126 897 904 1132 1125; 583 900 907 1135 1128 899 906 1134 1127; 584 901 908 1136 1129 900 907 1135 1128; 585 902 909 1137 1130 901 908 1136 1129; 586 903 910 1138 1131 902 909 1137 1130; 587 904 911 1139 1132 903 910 1138 1131; 588 905 912 1140 1133 904 911 1139 1132; 589 840 875 1103 1068 839 858 1086 1067; 590 839 858 1086 1067 838 841 1069 1066; 591 891 898 1126 1119 874 897 1125 1102; 592 874 897 1125 1102 857 896 1124 1085; 593 946 947 1175 1174 913 914 1142 1141; 594 947 948 1176 1175 914 915 1143 1142; 595 948 949 1177 1176 915 916 1144 1143; 596 949 950 1178 1177 916 917 1145 1144; 597 950 951 1179 1178 917 918 1146 1145; 598 951 952 1180 1179 918 919 1147 1146; 599 952 953 1181 1180 919 920 1148 1147; 600 953 954 1182 1181 920 921 1149 1148;

Page 85: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 77

601 954 955 1183 1182 921 922 1150 1149; 602 955 956 1184 1183 922 923 1151 1150; 603 956 957 1185 1184 923 924 1152 1151; 604 957 958 1186 1185 924 925 1153 1152; 605 958 959 1187 1186 925 926 1154 1153; 606 959 960 1188 1187 926 927 1155 1154; 607 960 961 1189 1188 927 928 1156 1155; 608 961 962 1190 1189 928 929 1157 1156; 609 962 963 1191 1190 929 930 1158 1157; 610 963 964 1192 1191 930 931 1159 1158; 611 964 965 1193 1192 931 932 1160 1159; 612 965 966 1194 1193 932 933 1161 1160; 613 966 967 1195 1194 933 934 1162 1161; 614 967 968 1196 1195 934 935 1163 1162; 615 968 969 1197 1196 935 936 1164 1163; 616 969 970 1198 1197 936 937 1165 1164; 617 970 971 1199 1198 937 938 1166 1165; 618 971 972 1200 1199 938 939 1167 1166; 619 972 973 1201 1200 939 940 1168 1167; 620 973 974 1202 1201 940 941 1169 1168; 621 974 975 1203 1202 941 942 1170 1169; 622 975 976 1204 1203 942 943 1171 1170; 623 976 977 1205 1204 943 944 1172 1171; 624 977 978 1206 1205 944 945 1173 1172; 625 979 980 1208 1207 946 947 1175 1174; 626 980 981 1209 1208 947 948 1176 1175; 627 981 982 1210 1209 948 949 1177 1176; 628 982 983 1211 1210 949 950 1178 1177; 629 983 984 1212 1211 950 951 1179 1178; 630 984 985 1213 1212 951 952 1180 1179; 631 985 986 1214 1213 952 953 1181 1180; 632 986 987 1215 1214 953 954 1182 1181; 633 987 988 1216 1215 954 955 1183 1182; 634 988 989 1217 1216 955 956 1184 1183; 635 989 990 1218 1217 956 957 1185 1184; 636 990 991 1219 1218 957 958 1186 1185; 637 991 992 1220 1219 958 959 1187 1186; 638 992 993 1221 1220 959 960 1188 1187; 639 993 994 1222 1221 960 961 1189 1188; 640 994 995 1223 1222 961 962 1190 1189; 641 995 996 1224 1223 962 963 1191 1190; 642 996 997 1225 1224 963 964 1192 1191; 643 997 998 1226 1225 964 965 1193 1192; 644 998 999 1227 1226 965 966 1194 1193; 645 999 1000 1228 1227 966 967 1195 1194; 646 1000 1001 1229 1228 967 968 1196 1195; 647 1001 1002 1230 1229 968 969 1197 1196; 648 1002 1003 1231 1230 969 970 1198 1197; 649 1003 1004 1232 1231 970 971 1199 1198; 650 1004 1005 1233 1232 971 972 1200 1199; 651 1005 1006 1234 1233 972 973 1201 1200; 652 1006 1007 1235 1234 973 974 1202 1201; 653 1007 1008 1236 1235 974 975 1203 1202;

Page 86: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

78 DRDC Suffield CR 2005-033

654 1008 1009 1237 1236 975 976 1204 1203; 655 1009 1010 1238 1237 976 977 1205 1204; 656 1010 1011 1239 1238 977 978 1206 1205; 657 1013 1019 1247 1241 1012 1018 1246 1240; 658 1014 1020 1248 1242 1013 1019 1247 1241; 659 1015 1021 1249 1243 1014 1020 1248 1242; 660 1016 1022 1250 1244 1015 1021 1249 1243; 661 1017 1023 1251 1245 1016 1022 1250 1244; 662 1019 1025 1253 1247 1018 1024 1252 1246; 663 1020 1026 1254 1248 1019 1025 1253 1247; 664 1021 1027 1255 1249 1020 1026 1254 1248; 665 1022 1028 1256 1250 1021 1027 1255 1249; 666 1023 1029 1257 1251 1022 1028 1256 1250; 667 1012 1018 1246 1240 979 980 1208 1207; 668 1018 1024 1252 1246 980 981 1209 1208; 669 1031 1037 1265 1259 1030 1036 1264 1258; 670 1032 1038 1266 1260 1031 1037 1265 1259; 671 1033 1039 1267 1261 1032 1038 1266 1260; 672 1034 1040 1268 1262 1033 1039 1267 1261; 673 1035 1041 1269 1263 1034 1040 1268 1262; 674 1037 1043 1271 1265 1036 1042 1270 1264; 675 1038 1044 1272 1266 1037 1043 1271 1265; 676 1039 1045 1273 1267 1038 1044 1272 1266; 677 1040 1046 1274 1268 1039 1045 1273 1267; 678 1041 1047 1275 1269 1040 1046 1274 1268; 679 1030 1036 1264 1258 1009 1010 1238 1237; 680 1036 1042 1270 1264 1010 1011 1239 1238; 681 1049 1056 1284 1277 1048 1055 1283 1276; 682 1050 1057 1285 1278 1049 1056 1284 1277; 683 1051 1058 1286 1279 1050 1057 1285 1278; 684 1052 1059 1287 1280 1051 1058 1286 1279; 685 1053 1060 1288 1281 1052 1059 1287 1280; 686 1054 1061 1289 1282 1053 1060 1288 1281; 687 1056 1063 1291 1284 1055 1062 1290 1283; 688 1057 1064 1292 1285 1056 1063 1291 1284; 689 1058 1065 1293 1286 1057 1064 1292 1285; 690 1059 1066 1294 1287 1058 1065 1293 1286; 691 1060 1067 1295 1288 1059 1066 1294 1287; 692 1061 1068 1296 1289 1060 1067 1295 1288; 693 1086 1087 1315 1314 1069 1070 1298 1297; 694 1087 1088 1316 1315 1070 1071 1299 1298; 695 1088 1089 1317 1316 1071 1072 1300 1299; 696 1089 1090 1318 1317 1072 1073 1301 1300; 697 1090 1091 1319 1318 1073 1074 1302 1301; 698 1091 1092 1320 1319 1074 1075 1303 1302; 699 1092 1093 1321 1320 1075 1076 1304 1303; 700 1093 1094 1322 1321 1076 1077 1305 1304; 701 1094 1095 1323 1322 1077 1078 1306 1305; 702 1095 1096 1324 1323 1078 1079 1307 1306; 703 1096 1097 1325 1324 1079 1080 1308 1307; 704 1097 1098 1326 1325 1080 1081 1309 1308; 705 1098 1099 1327 1326 1081 1082 1310 1309; 706 1099 1100 1328 1327 1082 1083 1311 1310;

Page 87: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 79

707 1100 1101 1329 1328 1083 1084 1312 1311; 708 1101 1102 1330 1329 1084 1085 1313 1312; 709 1103 1104 1332 1331 1086 1087 1315 1314; 710 1104 1105 1333 1332 1087 1088 1316 1315; 711 1105 1106 1334 1333 1088 1089 1317 1316; 712 1106 1107 1335 1334 1089 1090 1318 1317; 713 1107 1108 1336 1335 1090 1091 1319 1318; 714 1108 1109 1337 1336 1091 1092 1320 1319; 715 1109 1110 1338 1337 1092 1093 1321 1320; 716 1110 1111 1339 1338 1093 1094 1322 1321; 717 1111 1112 1340 1339 1094 1095 1323 1322; 718 1112 1113 1341 1340 1095 1096 1324 1323; 719 1113 1114 1342 1341 1096 1097 1325 1324; 720 1114 1115 1343 1342 1097 1098 1326 1325; 721 1115 1116 1344 1343 1098 1099 1327 1326; 722 1116 1117 1345 1344 1099 1100 1328 1327; 723 1117 1118 1346 1345 1100 1101 1329 1328; 724 1118 1119 1347 1346 1101 1102 1330 1329; 725 1121 1128 1356 1349 1120 1127 1355 1348; 726 1122 1129 1357 1350 1121 1128 1356 1349; 727 1123 1130 1358 1351 1122 1129 1357 1350; 728 1124 1131 1359 1352 1123 1130 1358 1351; 729 1125 1132 1360 1353 1124 1131 1359 1352; 730 1126 1133 1361 1354 1125 1132 1360 1353; 731 1128 1135 1363 1356 1127 1134 1362 1355; 732 1129 1136 1364 1357 1128 1135 1363 1356; 733 1130 1137 1365 1358 1129 1136 1364 1357; 734 1131 1138 1366 1359 1130 1137 1365 1358; 735 1132 1139 1367 1360 1131 1138 1366 1359; 736 1133 1140 1368 1361 1132 1139 1367 1360; 737 1068 1103 1331 1296 1067 1086 1314 1295; 738 1067 1086 1314 1295 1066 1069 1297 1294; 739 1119 1126 1354 1347 1102 1125 1353 1330; 740 1102 1125 1353 1330 1085 1124 1352 1313; 741 1174 1175 1403 1402 1141 1142 1370 1369; 742 1175 1176 1404 1403 1142 1143 1371 1370; 743 1176 1177 1405 1404 1143 1144 1372 1371; 744 1177 1178 1406 1405 1144 1145 1373 1372; 745 1178 1179 1407 1406 1145 1146 1374 1373; 746 1179 1180 1408 1407 1146 1147 1375 1374; 747 1180 1181 1409 1408 1147 1148 1376 1375; 748 1181 1182 1410 1409 1148 1149 1377 1376; 749 1182 1183 1411 1410 1149 1150 1378 1377; 750 1183 1184 1412 1411 1150 1151 1379 1378; 751 1184 1185 1413 1412 1151 1152 1380 1379; 752 1185 1186 1414 1413 1152 1153 1381 1380; 753 1186 1187 1415 1414 1153 1154 1382 1381; 754 1187 1188 1416 1415 1154 1155 1383 1382; 755 1188 1189 1417 1416 1155 1156 1384 1383; 756 1189 1190 1418 1417 1156 1157 1385 1384; 757 1190 1191 1419 1418 1157 1158 1386 1385; 758 1191 1192 1420 1419 1158 1159 1387 1386; 759 1192 1193 1421 1420 1159 1160 1388 1387;

Page 88: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

80 DRDC Suffield CR 2005-033

760 1193 1194 1422 1421 1160 1161 1389 1388; 761 1194 1195 1423 1422 1161 1162 1390 1389; 762 1195 1196 1424 1423 1162 1163 1391 1390; 763 1196 1197 1425 1424 1163 1164 1392 1391; 764 1197 1198 1426 1425 1164 1165 1393 1392; 765 1198 1199 1427 1426 1165 1166 1394 1393; 766 1199 1200 1428 1427 1166 1167 1395 1394; 767 1200 1201 1429 1428 1167 1168 1396 1395; 768 1201 1202 1430 1429 1168 1169 1397 1396; 769 1202 1203 1431 1430 1169 1170 1398 1397; 770 1203 1204 1432 1431 1170 1171 1399 1398; 771 1204 1205 1433 1432 1171 1172 1400 1399; 772 1205 1206 1434 1433 1172 1173 1401 1400; 773 1207 1208 1436 1435 1174 1175 1403 1402; 774 1208 1209 1437 1436 1175 1176 1404 1403; 775 1209 1210 1438 1437 1176 1177 1405 1404; 776 1210 1211 1439 1438 1177 1178 1406 1405; 777 1211 1212 1440 1439 1178 1179 1407 1406; 778 1212 1213 1441 1440 1179 1180 1408 1407; 779 1213 1214 1442 1441 1180 1181 1409 1408; 780 1214 1215 1443 1442 1181 1182 1410 1409; 781 1215 1216 1444 1443 1182 1183 1411 1410; 782 1216 1217 1445 1444 1183 1184 1412 1411; 783 1217 1218 1446 1445 1184 1185 1413 1412; 784 1218 1219 1447 1446 1185 1186 1414 1413; 785 1219 1220 1448 1447 1186 1187 1415 1414; 786 1220 1221 1449 1448 1187 1188 1416 1415; 787 1221 1222 1450 1449 1188 1189 1417 1416; 788 1222 1223 1451 1450 1189 1190 1418 1417; 789 1223 1224 1452 1451 1190 1191 1419 1418; 790 1224 1225 1453 1452 1191 1192 1420 1419; 791 1225 1226 1454 1453 1192 1193 1421 1420; 792 1226 1227 1455 1454 1193 1194 1422 1421; 793 1227 1228 1456 1455 1194 1195 1423 1422; 794 1228 1229 1457 1456 1195 1196 1424 1423; 795 1229 1230 1458 1457 1196 1197 1425 1424; 796 1230 1231 1459 1458 1197 1198 1426 1425; 797 1231 1232 1460 1459 1198 1199 1427 1426; 798 1232 1233 1461 1460 1199 1200 1428 1427; 799 1233 1234 1462 1461 1200 1201 1429 1428; 800 1234 1235 1463 1462 1201 1202 1430 1429; 801 1235 1236 1464 1463 1202 1203 1431 1430; 802 1236 1237 1465 1464 1203 1204 1432 1431; 803 1237 1238 1466 1465 1204 1205 1433 1432; 804 1238 1239 1467 1466 1205 1206 1434 1433; 805 1241 1247 1475 1469 1240 1246 1474 1468; 806 1242 1248 1476 1470 1241 1247 1475 1469; 807 1243 1249 1477 1471 1242 1248 1476 1470; 808 1244 1250 1478 1472 1243 1249 1477 1471; 809 1245 1251 1479 1473 1244 1250 1478 1472; 810 1247 1253 1481 1475 1246 1252 1480 1474; 811 1248 1254 1482 1476 1247 1253 1481 1475; 812 1249 1255 1483 1477 1248 1254 1482 1476;

Page 89: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 81

813 1250 1256 1484 1478 1249 1255 1483 1477; 814 1251 1257 1485 1479 1250 1256 1484 1478; 815 1240 1246 1474 1468 1207 1208 1436 1435; 816 1246 1252 1480 1474 1208 1209 1437 1436; 817 1259 1265 1493 1487 1258 1264 1492 1486; 818 1260 1266 1494 1488 1259 1265 1493 1487; 819 1261 1267 1495 1489 1260 1266 1494 1488; 820 1262 1268 1496 1490 1261 1267 1495 1489; 821 1263 1269 1497 1491 1262 1268 1496 1490; 822 1265 1271 1499 1493 1264 1270 1498 1492; 823 1266 1272 1500 1494 1265 1271 1499 1493; 824 1267 1273 1501 1495 1266 1272 1500 1494; 825 1268 1274 1502 1496 1267 1273 1501 1495; 826 1269 1275 1503 1497 1268 1274 1502 1496; 827 1258 1264 1492 1486 1237 1238 1466 1465; 828 1264 1270 1498 1492 1238 1239 1467 1466; 829 1277 1284 1512 1505 1276 1283 1511 1504; 830 1278 1285 1513 1506 1277 1284 1512 1505; 831 1279 1286 1514 1507 1278 1285 1513 1506; 832 1280 1287 1515 1508 1279 1286 1514 1507; 833 1281 1288 1516 1509 1280 1287 1515 1508; 834 1282 1289 1517 1510 1281 1288 1516 1509; 835 1284 1291 1519 1512 1283 1290 1518 1511; 836 1285 1292 1520 1513 1284 1291 1519 1512; 837 1286 1293 1521 1514 1285 1292 1520 1513; 838 1287 1294 1522 1515 1286 1293 1521 1514; 839 1288 1295 1523 1516 1287 1294 1522 1515; 840 1289 1296 1524 1517 1288 1295 1523 1516; 841 1314 1315 1543 1542 1297 1298 1526 1525; 842 1315 1316 1544 1543 1298 1299 1527 1526; 843 1316 1317 1545 1544 1299 1300 1528 1527; 844 1317 1318 1546 1545 1300 1301 1529 1528; 845 1318 1319 1547 1546 1301 1302 1530 1529; 846 1319 1320 1548 1547 1302 1303 1531 1530; 847 1320 1321 1549 1548 1303 1304 1532 1531; 848 1321 1322 1550 1549 1304 1305 1533 1532; 849 1322 1323 1551 1550 1305 1306 1534 1533; 850 1323 1324 1552 1551 1306 1307 1535 1534; 851 1324 1325 1553 1552 1307 1308 1536 1535; 852 1325 1326 1554 1553 1308 1309 1537 1536; 853 1326 1327 1555 1554 1309 1310 1538 1537; 854 1327 1328 1556 1555 1310 1311 1539 1538; 855 1328 1329 1557 1556 1311 1312 1540 1539; 856 1329 1330 1558 1557 1312 1313 1541 1540; 857 1331 1332 1560 1559 1314 1315 1543 1542; 858 1332 1333 1561 1560 1315 1316 1544 1543; 859 1333 1334 1562 1561 1316 1317 1545 1544; 860 1334 1335 1563 1562 1317 1318 1546 1545; 861 1335 1336 1564 1563 1318 1319 1547 1546; 862 1336 1337 1565 1564 1319 1320 1548 1547; 863 1337 1338 1566 1565 1320 1321 1549 1548; 864 1338 1339 1567 1566 1321 1322 1550 1549; 865 1339 1340 1568 1567 1322 1323 1551 1550;

Page 90: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

82 DRDC Suffield CR 2005-033

866 1340 1341 1569 1568 1323 1324 1552 1551; 867 1341 1342 1570 1569 1324 1325 1553 1552; 868 1342 1343 1571 1570 1325 1326 1554 1553; 869 1343 1344 1572 1571 1326 1327 1555 1554; 870 1344 1345 1573 1572 1327 1328 1556 1555; 871 1345 1346 1574 1573 1328 1329 1557 1556; 872 1346 1347 1575 1574 1329 1330 1558 1557; 873 1349 1356 1584 1577 1348 1355 1583 1576; 874 1350 1357 1585 1578 1349 1356 1584 1577; 875 1351 1358 1586 1579 1350 1357 1585 1578; 876 1352 1359 1587 1580 1351 1358 1586 1579; 877 1353 1360 1588 1581 1352 1359 1587 1580; 878 1354 1361 1589 1582 1353 1360 1588 1581; 879 1356 1363 1591 1584 1355 1362 1590 1583; 880 1357 1364 1592 1585 1356 1363 1591 1584; 881 1358 1365 1593 1586 1357 1364 1592 1585; 882 1359 1366 1594 1587 1358 1365 1593 1586; 883 1360 1367 1595 1588 1359 1366 1594 1587; 884 1361 1368 1596 1589 1360 1367 1595 1588; 885 1296 1331 1559 1524 1295 1314 1542 1523; 886 1295 1314 1542 1523 1294 1297 1525 1522; 887 1347 1354 1582 1575 1330 1353 1581 1558; 888 1330 1353 1581 1558 1313 1352 1580 1541; *DEFINE MATERIAL START *3DORTHOTROPIC SOIL *E 30000 30000 30000 *POISSON 0.5 0.5 0.5 *DENSITY 15 *ALPHA 1e-007 1e-007 1e-007 *DAMP 0.1 *G 25 25 25 *END DEFINE MATERIAL *COLUMNS *BEAMS * START GROUP DEFINITION GEOMETRY _COLUMNS 889 TO 952 967 TO 970 _BEAMS 953 TO 966 1378 TO 1399 _COLCNCT 971 TO 1018 _SPRDCNT 1019 TO 1054 1057 TO 1076 _SPREADER 1077 TO 1146 1157 TO 1194 _SPANCNT 1195 TO 1256 1267 1277 TO 1314 1316 _SPANHSS 1329 TO 1364 1487 TO 1591 1877 TO 1879 _OPSTUBS 1400 TO 1425 _OPROOF 1426 TO 1438 1620 TO 1645 _OPBRCNG 1439 1440 _HORBRCNG 1441 TO 1446 _VRTBRCNG 1447 TO 1458 END GROUP DEFINITION MEMBER PROPERTY CANADIAN 1077 TO 1146 1157 TO 1194 TABLE ST TUB100604

Page 91: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 83

1019 1049 1050 1057 1195 1255 1256 1277 1329 TO 1364 1426 TO 1438 1487 TO 1591 - 1620 TO 1879 TABLE ST TUB100604 971 TO 1018 1020 TO 1048 1051 TO 1054 1058 TO 1076 1196 TO 1254 1267 - 1278 TO 1314 1316 1400 TO 1425 TABLE ST TUB100608 1439 TO 1458 TABLE ST L75X75X6 889 TO 952 967 TO 970 TABLE ST W250X58 953 TO 966 1378 TO 1399 TABLE ST W310X60 SUPPORTS 1 TO 228 1597 1603 1609 1615 1621 1627 1633 1639 PINNED CONSTANTS E 2.05e+008 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 1316 - 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879 POISSON 0.3 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 1316 - 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879 ALPHA 6.5e-006 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 1316 - 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879 DENSITY 76.8195 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 - 1316 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879 BETA 90 MEMB 1329 TO 1364 1426 TO 1438 1487 TO 1591 1620 TO 1657 1660 TO 1732 - 1734 TO 1738 1740 TO 1771 1778 TO 1854 1863 TO 1879 * E 2e+006 MEMB 1 TO 888 POISSON 0.4 MEMB 1 TO 888 ALPHA 6.5e-006 MEMB 1 TO 888 DENSITY 69.6 MEMB 1 TO 888 * MEMBER RELEASE 953 TO 958 963 964 1329 TO 1364 1426 TO 1438 1879 START MY MZ 971 TO 1018 START FY *1459 TO 1645 START MY MZ 953 TO 958 1388 1399 1489 1492 1495 1498 1501 1504 1507 1510 1513 1516 1519 - 1522 1525 1528 1531 1534 1537 1540 1543 1546 1549 1552 1555 1558 1561 1564 1567 - 1570 1573 1576 1579 1582 1585 1588 1591 1621 1623 1625 1627 1629 1631 1633 1635 - 1637 1639 1641 1643 1645 END MY 1019 TO 1054 1057 TO 1076 END MZ *DEFINE TIME HISTORY DT 2e-005 *TYPE 1 FORCE *0 0 1e-005 692 0.0004 622.8 0.0008 553.6 0.0012 484.4 0.0016 415.2 0.002 346 *0.0024 276.8 0.0028 207.6 0.0032 138.4 0.0036 69.2 0.004 0 *TYPE 2 FORCE *0 0 0.001 3.21 0.002 6.43 0.003 9.64 0.004 12.86 0.005 16.07 0.006 19.29 *0.007 22.5 0.008 16.88 0.009 11.25 0.01 5.63 0.011 0 0.012 0 0.013 1.4013e-045 *0 0.014 0 0.015 0 0.016 0 0.017 0 0.018 0 0.019 0 0.02 0 0.1 0 0 *TYPE 3 FORCE

Page 92: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

84 DRDC Suffield CR 2005-033

*0 0 0.001 0.32 0.002 0.64 0.003 0.96 0.004 1.29 0.005 1.61 0.006 1.93 *0.007 2.25 0.008 1.69 0.009 1.13 0.01 0.56 0.011 0 0.012 0 0.013 0 0.014 0 *0.015 0 0.016 0 0.017 0 0.018 0 0.019 0 0.02 0 0.1 0 DEFINE TIME HISTORY DT 2e-005 TYPE 1 FORCE 0 0 1e-005 104 0.0004 93.5 0.0008 83 0.0012 72.5 0.0016 62.5 0.002 52 0.0024 41.5 0.0028 31.15 0.0032 20.75 0.0036 10.4 0.004 0 0.3 0 TYPE 2 FORCE 0 0 0.001 .48 0.002 0.965 0.003 1.445 0.004 1.93 0.005 2.41 0.006 2.895 0.007 3.375 0.008 2.53 0.009 1.69 0.01 0.845 0.011 0 0.012 0 0.013 0 0.014 0 0.015 0 0.016 0 0.017 0 0.018 0 0.019 0 0.02 0 0.1 0 0.3 0 TYPE 3 FORCE 0 0 0.001 0.05 0.002 0.095 0.003 0.145 0.004 0.195 0.005 0.24 0.006 0.29 0.007 0.34 0.008 0.255 0.009 0.17 0.01 0.085 0.011 0 0.012 0 0.013 0 0.014 0 0.015 0 0.016 0 0.017 0 0.018 0 0.019 0 0.02 0 0.1 0 0.3 0 ARRIVAL TIME 0 0.001 0.008 DAMPING 0.15 LOAD 1 SELFWEIGHT X 1 SELFWEIGHT Y 1 SELFWEIGHT Z 1 MEMBER LOAD 1329 TO 1364 1426 TO 1438 1487 TO 1591 1620 TO 1657 1660 TO 1732 1734 TO 1738 - 1740 TO 1771 1779 TO 1854 1863 TO 1879 UNI GY -2.32 TIME LOAD 1 TO 33 229 TO 261 457 TO 489 685 TO 717 913 TO 945 1141 TO 1173 1369 TO 1401 - 1650 1655 1670 1672 1918 1920 1922 1924 1926 FZ 1 2 105 111 117 123 129 135 142 149 156 191 TO 207 214 221 228 333 339 345 351 357 - 363 370 377 384 419 TO 435 442 449 456 561 567 573 579 585 591 598 605 612 647 - 648 TO 663 670 677 684 789 795 801 807 813 819 826 833 840 875 TO 891 898 905 - 912 1017 1023 1029 1035 1041 1047 1054 1061 1068 1103 TO 1119 1126 1133 1140 - 1245 1251 1257 1263 1269 1275 1282 1289 1296 1331 TO 1347 1354 1361 1368 1473 - 1479 1485 1491 1497 1503 1510 1517 1524 1559 TO 1575 1582 1589 1596 1662 1667 - 1669 1671 1929 1931 1933 1935 1937 FZ 3 3 PERFORM ANALYSIS FINISH

Page 93: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 85

Changes to STAAD Model for Analysis of Dynamic Load in X Direction *HSCTHIN1 LOAD INFORMATION FOR STAAD INPUT *DYNAMIC LOAD IN X DIRECTION *DEFINE MATERIAL START *3DORTHOTROPIC SOIL *E 30000 30000 30000 *POISSON 0.5 0.5 0.5 *DENSITY 15 *ALPHA 1e-007 1e-007 1e-007 *DAMP 0.1 *G 25 25 25 *END DEFINE MATERIAL *COLUMNS *BEAMS * START GROUP DEFINITION GEOMETRY _COLUMNS 889 TO 952 967 TO 970 _BEAMS 953 TO 966 1378 TO 1399 _COLCNCT 971 TO 1018 _SPRDCNT 1019 TO 1054 1057 TO 1076 _SPREADER 1077 TO 1146 1157 TO 1194 _SPANCNT 1195 TO 1256 1267 1277 TO 1314 1316 _SPANHSS 1329 TO 1364 1487 TO 1591 1877 TO 1879 _OPSTUBS 1400 TO 1425 _OPROOF 1426 TO 1438 1620 TO 1645 _OPBRCNG 1439 1440 _HORBRCNG 1441 TO 1446 _VRTBRCNG 1447 TO 1458 END GROUP DEFINITION MEMBER PROPERTY CANADIAN 1077 TO 1146 1157 TO 1194 TABLE ST TUB100604 1019 1049 1050 1057 1195 1255 1256 1277 1329 TO 1364 1426 TO 1438 1487 TO 1591 - 1620 TO 1879 TABLE ST TUB100604 971 TO 1018 1020 TO 1048 1051 TO 1054 1058 TO 1076 1196 TO 1254 1267 - 1278 TO 1314 1316 1400 TO 1425 TABLE ST TUB100608 1439 TO 1458 TABLE ST L75X75X6 889 TO 952 967 TO 970 TABLE ST W250X58 953 TO 966 1378 TO 1399 TABLE ST W310X60 SUPPORTS 1 TO 228 1597 1603 1609 1615 1621 1627 1633 1639 PINNED CONSTANTS E 2.05e+008 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 1316 - 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879 POISSON 0.3 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 1316 - 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879 ALPHA 6.5e-006 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 1316 - 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879

Page 94: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

86 DRDC Suffield CR 2005-033

DENSITY 76.8195 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 - 1316 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879 BETA 90 MEMB 1329 TO 1364 1426 TO 1438 1487 TO 1591 1620 TO 1657 1660 TO 1732 - 1734 TO 1738 1740 TO 1771 1778 TO 1854 1863 TO 1879 * E 2e+006 MEMB 1 TO 888 POISSON 0.4 MEMB 1 TO 888 ALPHA 6.5e-006 MEMB 1 TO 888 DENSITY 69.6 MEMB 1 TO 888 * MEMBER RELEASE 953 TO 958 963 964 1329 TO 1364 1426 TO 1438 1877 TO 1879 START MY MZ *1459 TO 1645 START MY MZ 953 TO 958 1388 1399 1489 1492 1495 1498 1501 1504 1507 1510 1513 1516 1519 - 1522 1525 1528 1531 1534 1537 1540 1543 1546 1549 1552 1555 1558 1561 1564 1567 - 1570 1573 1576 1579 1582 1585 1588 1591 1621 1623 1625 1627 1629 1631 1633 1635 - 1637 1639 1641 1643 1645 END MY 1019 TO 1054 1057 TO 1076 END MZ DEFINE TIME HISTORY DT 2e-005 TYPE 1 FORCE 0 0 1e-005 2768 0.0004 2491.2 0.0008 2214.4 0.0012 1937.6 0.0016 1660.8 0.002 1384 0.0024 1107.2 0.0028 830.4 0.0032 553.6 0.0036 276.8 0.004 0 0.3 0 TYPE 2 FORCE 0 0 0.001 12.84 0.002 25.72 0.003 38.56 0.004 51.44 0.005 64.28 0.006 77.16 0.007 90 0.008 67.52 0.009 45 0.01 22.52 0.011 0 0.012 0 0.013 1.4013e-045 0 0.014 0 0.015 0 0.016 0 0.017 0 0.018 0 0.019 0 0.02 0 0.1 0 0.3 0 TYPE 3 FORCE 0 0 0.001 1.28 0.002 2.56 0.003 3.84 0.004 5.16 0.005 6.44 0.006 7.72 0.007 9 0.008 6.76 0.009 4.52 0.01 2.24 0.011 0 0.012 0 0.013 0 0.014 0 0.015 0 0.016 0 0.017 0 0.018 0 0.019 0 0.02 0 0.1 0 0.3 0 ARRIVAL TIME 0 0.001 0.008 DAMPING 0.15 LOAD 1 SELFWEIGHT X 1 SELFWEIGHT Y 1 SELFWEIGHT Z 1 MEMBER LOAD 1329 TO 1364 1426 TO 1438 1487 TO 1591 1620 TO 1657 1660 TO 1732 1734 TO 1738 - 1740 TO 1771 1779 TO 1854 1863 TO 1879 UNI GY -2.32 TIME LOAD 1 34 67 100 TO 105 136 TO 142 229 262 295 328 TO 333 364 TO 370 457 490 523 - 556 TO 561 592 TO 598 685 718 751 784 TO 789 820 TO 826 913 946 979 - 1012 TO 1017 1048 TO 1054 1141 1174 1207 1240 TO 1245 1276 TO 1282 1369 1402 -

Page 95: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 87

1435 1468 TO 1473 1504 TO 1510 1648 TO 1650 1660 TO 1662 1742 1939 1941 2126 - 2127 FX 1 2 33 66 99 130 TO 135 222 TO 228 261 294 327 358 TO 363 450 TO 456 489 522 555 - 586 TO 591 678 TO 684 717 750 783 814 TO 819 906 TO 912 945 978 1011 - 1042 TO 1047 1134 TO 1140 1173 1206 1239 1270 TO 1275 1362 TO 1368 1401 1434 - 1467 1498 TO 1503 1590 TO 1596 1653 TO 1655 1665 TO 1667 1940 1942 2130 - 2131 FX 3 3 PERFORM ANALYSIS FINISH

Page 96: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

88 DRDC Suffield CR 2005-033

Changes to STAAD Model for Analysis of Dynamic Load in Y Direction * HSCOTHIN2 INPUT FILE FOR Y DIRECTION DYNAMIC LOAD *DEFINE MATERIAL START *3DORTHOTROPIC SOIL *E 30000 30000 30000 *POISSON 0.5 0.5 0.5 *DENSITY 15 *ALPHA 1e-007 1e-007 1e-007 *DAMP 0.1 *G 25 25 25 *END DEFINE MATERIAL *COLUMNS *BEAMS * START GROUP DEFINITION GEOMETRY _COLUMNS 889 TO 952 967 TO 970 _BEAMS 953 TO 966 1378 TO 1399 _COLCNCT 971 TO 1018 _SPRDCNT 1019 TO 1054 1057 TO 1076 _SPREADER 1077 TO 1146 1157 TO 1194 _SPANCNT 1195 TO 1256 1267 1277 TO 1314 1316 _SPANHSS 1329 TO 1364 1487 TO 1591 1877 TO 1879 _OPSTUBS 1400 TO 1425 _OPROOF 1426 TO 1438 1620 TO 1645 _OPBRCNG 1439 1440 _HORBRCNG 1441 TO 1446 _VRTBRCNG 1447 TO 1458 END GROUP DEFINITION MEMBER PROPERTY CANADIAN 1077 TO 1146 1157 TO 1194 TABLE ST TUB100604 1019 1049 1050 1057 1195 1255 1256 1277 1329 TO 1364 1426 TO 1438 1487 TO 1591 - 1620 TO 1879 TABLE ST TUB100604 971 TO 1018 1020 TO 1048 1051 TO 1054 1058 TO 1076 1196 TO 1254 1267 - 1278 TO 1314 1316 1400 TO 1425 TABLE ST TUB100608 1439 TO 1458 TABLE ST L75X75X6 889 TO 952 967 TO 970 TABLE ST W250X58 953 TO 966 1378 TO 1399 TABLE ST W310X60 SUPPORTS 1 TO 228 1597 1603 1609 1615 1621 1627 1633 1639 PINNED CONSTANTS E 2.05e+008 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 1316 - 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879 POISSON 0.3 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 1316 - 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879 ALPHA 6.5e-006 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 1316 - 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879

Page 97: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 89

DENSITY 76.8195 MEMB 889 TO 1054 1057 TO 1146 1157 TO 1256 1267 1277 TO 1314 - 1316 1329 TO 1364 1378 TO 1458 1487 TO 1591 1620 TO 1879 BETA 90 MEMB 1329 TO 1364 1426 TO 1438 1487 TO 1591 1620 TO 1657 1660 TO 1732 - 1734 TO 1738 1740 TO 1771 1778 TO 1854 1863 TO 1879 * E 2e+006 MEMB 1 TO 888 POISSON 0.4 MEMB 1 TO 888 ALPHA 6.5e-006 MEMB 1 TO 888 DENSITY 69.6 MEMB 1 TO 888 * MEMBER RELEASE 953 TO 958 963 964 1329 TO 1364 1426 TO 1438 1877 TO 1879 START MY MZ *1459 TO 1645 START MY MZ 953 TO 958 1388 1399 1489 1492 1495 1498 1501 1504 1507 1510 1513 1516 1519 - 1522 1525 1528 1531 1534 1537 1540 1543 1546 1549 1552 1555 1558 1561 1564 1567 - 1570 1573 1576 1579 1582 1585 1588 1591 1621 1623 1625 1627 1629 1631 1633 1635 - 1637 1639 1641 1643 1645 END MY 1019 TO 1054 1057 TO 1076 END MZ DEFINE TIME HISTORY DT 2e-005 TYPE 1 FORCE 0 0 1e-005 -60000 0.0004 -54000 0.0008 -48000 0.0012 -42000 0.0016 -36000 0.002 -30000 0.0024 -24000 0.0028 -18000 0.0032 -12000 0.0036 -6000 0.004 0 0.3 0 TYPE 2 FORCE 0 0 0.001 1926 0.002 3858 0.003 5784 0.004 7716 0.005 9642 0.006 11574 0.007 13500 0.008 10128 0.009 6750 0.01 3378 0.011 0 0.012 0 0.013 1.4013e-045 0 0.014 0 0.015 0 0.016 0 0.017 0 0.018 0 0.019 0 0.02 0 0.1 0 0.3 0 TYPE 3 FORCE 0 0 0.001 192 0.002 384 0.003 576 0.004 774 0.005 966 0.006 1158 0.007 1350 0.008 1014 0.009 678 0.01 336 0.011 0 0.012 0 0.013 0 0.014 0 0.015 0 0.016 0 0.017 0 0.018 0 0.019 0 0.02 0 0.1 0 0.3 0 ARRIVAL TIME 0 0.001 0.008 DAMPING 0.05 LOAD 1 SELFWEIGHT X 1 SELFWEIGHT Y 1 SELFWEIGHT Z 1 MEMBER LOAD 1329 TO 1364 1426 TO 1438 1487 TO 1591 1620 TO 1657 1660 TO 1732 1734 TO 1738 - 1740 TO 1771 1779 TO 1854 1863 TO 1879 UNI GY -2.32 TIME LOAD 1795 TO 1856 1867 TO 1903 1905 1906 1916 1993 TO 2097 2152 TO 2162 2164 TO 2230 - 2232 TO 2283 FY 1 2

Page 98: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

90 DRDC Suffield CR 2005-033

*33 66 99 130 TO 135 222 TO 228 261 294 327 358 TO 363 450 TO 456 489 522 555 - *586 TO 591 678 TO 684 717 750 783 814 TO 819 906 TO 912 945 978 1011 - *1042 TO 1047 1134 TO 1140 1173 1206 1239 1270 TO 1275 1362 TO 1368 1401 1434 - *1467 1498 TO 1503 1590 TO 1596 1653 TO 1655 1665 TO 1667 1940 1942 2130 - *2131 FX 3 3 PERFORM ANALYSIS FINISH

Page 99: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 91

APPENDIX H: References 1. Elements of Vibration Analysis, Second Edition, Leonard Meirovitch, ISBN 0-07-041342-8,

McGraw Hill 2. Dynamics of Structures Theory and Application to Earthquake Engineering, Anil K. Chopra,

ISBN 0-13-855214-2, 1995 Prentice-Hall Inc. 3. Dynamics of Structures, Second Edition, Ray W. Clough, Joseph Penzien, ISBN 0-07-

011394-7, McGraw Hill Inc., 1993 4. Structural Dynamics Theory and Computation, Fourth Edition, Mario Paz, 1997, ISBN 0-

412-07461-3, Chapman & Hall 5. Design of Blast Resistant Buildings in Petrochemical Facilities, Prepared by the Task

Committee on Blast Resistant Design of the Petrochemical Committee of the Energy Division of the American Society of Civil Engineers, ISBN 0-7844-0265-5

Page 100: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

92 DRDC Suffield CR 2005-033

APPENDIX I: Structural Drawings

Page 101: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 93

Page 102: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

94 DRDC Suffield CR 2005-033

Page 103: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 95

Page 104: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

96 DRDC Suffield CR 2005-033

Page 105: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 97

Page 106: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

98 DRDC Suffield CR 2005-033

Page 107: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

DRDC Suffield CR 2005-033 99

Page 108: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

100 DRDC Suffield CR 2005-033

Page 109: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

UNCLASSIFIED SECURITY CLASSIFICATION OF FORM (highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA (Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document. Organizations for who the document was prepared, e.g. Establishment sponsoring a contractor's report, or tasking agency, are entered in Section 8.)

Arda Ozum, P.Eng. #603, 9725 – 106 Street Edmonton, AB T5K 1B5

2. SECURITY CLASSIFICATION (overall security classification of the document, including special

warning terms if applicable)

Unclassified

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U) in parentheses after the title).

Analysis of an Expeditionary Structure (U)

4. AUTHORS (Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.)

Ozum, Arda

5. DATE OF PUBLICATION (month and year of publication of document)

February 2005

6a. NO. OF PAGES (total containing information, include Annexes, Appendices, etc) 106

6b. NO. OF REFS (total cited in document)

5

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Contract Final Report

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the address.)

9a. PROJECT OR GRANT NO. (If appropriate, the applicable research and development project or grant number under which the document was written. Please specify whether project or grant.)

9b. CONTRACT NO. (If appropriate, the applicable number under which the document was written.)

W7702-02P149

10a. ORIGINATOR'S DOCUMENT NUMBER (the official document number by which the document is identified by the originating activity. This number must be unique to this document.)

DRDC Suffield CR 2005-033

10b. OTHER DOCUMENT NOs. (Any other numbers which may be assigned this document either by the originator or by the sponsor.)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

( x ) Unlimited distribution ( ) Distribution limited to defence departments and defence contractors; further distribution only as approved ( ) Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved ( ) Distribution limited to government departments and agencies; further distribution only as approved ( ) Distribution limited to defence departments; further distribution only as approved ( ) Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally corresponded to the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is possible, a wider announcement audience may be selected).

UNCLASSIFIED SECURITY CLASSIFICATION OF FORM

Page 110: Analysis of an Expeditionary Structurecradpdf.drdc-rddc.gc.ca/PDFS/unc57/p523437.pdf · Analysis of an Expeditionary Structure Arda ... validate the design a 3-dimensional model of

UNCLASSIFIED SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C) or (U). It is not necessary to include here abstracts in both official languages unless the text is bilingual).

(U) The Canadian Forces designed a steel-framed HESCO/ISO bunker for collective protection. To validate the design a 3-dimensional model of the bunker was analyzed with STAAD (a commercial structural analysis program) under a dynamic impulsive overpressure loading. The structure consists of an ISO shipping container surrounded by a steel frame and perimeter HESCO bastion walls. There is a steel roof supporting smaller HESCO bastions and an observation post on the roof. The objective of the analysis is to determine the maximum loading that the structure should be able to repeatedly withstand.

Based on the analysis of the structure using STAAD and assuming that the dynamic impulse may originate from anywhere, it is the performance of the HESCO walls that limits the elastic load rating for the structure to a maximum reflected overpressure of 420 kPa with a time of duration of 0.004 seconds. This corresponds to a peak side-on pressure of roughly 80 kPa with a time of duration of 0.004 seconds or an impulse of 0.32 kNs/m2. The observation post is a weak link in the design and might fail at a lower load than the rest of the structure.

Recommendations for future improvements include: modifying the entrances to put increased gravity loads on the narrow end walls; saturating the HESCO bastions with a very lean mix concrete fill to decrease the loss of fill, and extend the life of the HESCOs; and having the entrances face opposite directions.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifies, such as equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.) Collective protection

UNCLASSIFIED SECURITY CLASSIFICATION OF FORM