analysis of dioxins and pops using atmospheric pressure gc/ms

54
Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS Ingrid Ericson Jogsten MTM research centre, Örebro University 2014-12-16 1

Upload: others

Post on 10-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Analysis of Dioxins and POPs using

Atmospheric Pressure GC/MS

Ingrid Ericson Jogsten

MTM research centre, Örebro University

2014-12-16 1

Page 2: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

2014-12-16 2

Outline

POPs and related environmental pollutants

POPs analysis

APGC

Dioxins

Other POPs

APGC vs high res for PCBs and OCPs

BFRs

PBDEs

Other environmental pollutants

Page 3: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Progress of scientific knowledge

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Scientific publications

Knowledge on effects

"PCBs and effects"

"PFOS and effects"

0

50

100

150

200

250

300

350

400 Scientific publications

Analytical development

"Analytical Chemistry"

Slide courtesy of Samira Salihovic

Page 4: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Environment and Health Research focussed on POPs

• Health and exposure

• Environmental Levels

• Chemical and Bioassay Analysis

• UNEP reference laboratory

Page 5: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Stockholm Convention

Parties (179), Signatories (152)

Page 6: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Chemical Parent POPs Transformation products

Aldrin aldrin

Dieldrin dieldrin

Endrin endrin

Chlordane cis- and trans-chlordane cis- and trans nonachlor, oxychlordane

Heptachlor heptachlor -heptachlorepoxide

DDT 4,4’-DDT, 2,4’-DDT 4,4’-DDE, 2,4’ DDE, 4,4’-DDD, 2,4’-DDD

HCB hexachlorobenzene

Mirex mirex

Toxaphene congeners P26, P50, P62

PCB Σ7 ‘marker’ congeners: #28,#52,#101,#118,#138,#153,#180

12 congeners with TEFs: #77, #81, #105, #114, #118, #123, #126, #156, #157,

#167, #169, #189

PCDD/PCDF 2,3,7,8-PCDD/PCDF (17 congeners)

New POPs on SC 2009

HCHs hexachlorocyclohexane

PCBz pentachlorobenzene

BFRs PBDEs (not DeBDE #209), PBB

PFAS PFOS and its salts, POSFs

Substances to Be Monitored

Substances to be monitored (GMP guidance)

Page 7: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

ESI

APCI

APPI

GC/MS

MALDI PFOS (LC-MS/MS)

Dioxins (HRGC/HRMS)

PBDEs (NCI m/z 79/81 non-specific)

Toxaphene, Drins (large fragmentation EI -> NCI)

Different Ionization Techniques?

Page 8: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Universal MS platform for POPs

analysis

2014-12-16 8

Page 9: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Atmospheric Pressure Ionisation

APGC

Plasma

Corona Pin

Analyte Molecules

Sample Cone

Make-up gas (N2)

Page 10: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Mechanism of Ionization (I)

N2+●

N2 e-

2e-

2N2

N4+● M●+

M Corona Pin

M●+

M

Charge Transfer

“Dry” source conditions

Favored by relatively non-polar compounds

Horning et al. 1973 (Anal. Chem, 1973, 45, 936-943)

Page 11: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Mechanism of Ionization (II)

N2+●

N4+●

H2O

H2O+●

H2O

H3O+●

+OH●

[M+H]+

M

Protonation

Modified source conditions eg. with water or methanol present

Favored by relatively polar compounds

Corona Pin

Horning et al. 1973 (Anal. Chem, 1973, 45, 936-943)

Page 12: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Analytical difficulties using high

resolution magnetic sectors

instruments

Page 13: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Dioxin analysis on HRGC-HRMS

• GC separation

– Capillary column

• Ionisation

– EI

• Mass detection

– SIR

• Resolution

– > 10 000

– 0.01 amu

Page 14: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Sensitivity 100 fg and 10 fg TCDD on

column

2014-12-16 14

Page 15: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Sensitivity mix; TCDDs

100 fg, 50 fg, 25 fg, 10 fg, 5 fg, 2 fg

Page 16: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Dioxins on APGC

Congener Concentration (pg/µL)

Name 1/10 CSL* CSL CS0.5 CS1 CS2 CS3 CS4

TCDD 0.01 0.1 0.25 0.5 2 10 40

TCDF 0.01 0.1 0.25 0.5 2 10 40

PCDD 0.05 0.5 1.25 2.5 10 50 200

PCDF 0.05 0.5 1.25 2.5 10 50 200

HxCDD 0.05 0.5 1.25 2.5 10 50 200

HxCDF 0.05 0.5 1.25 2.5 10 50 200

HpCDD 0.05 0.5 1.25 2.5 10 50 200

HpCDF 0.05 0.5 1.25 2.5 10 50 200

OCDD 0.1 1 2.5 5 20 100 400

OCDF 0.1 1 2.5 5 20 100 400

Page 17: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

APGC Dioxins

Dilution 1/10 of CSL (10-100 fg/ul), 1 ul injection

Page 18: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Comparing APGC vs HRMS

APGC HRMS

EURL 0.85 0.83 2%

(pg/g lipids) 0.69 0.72 -3%

1.24 1.31 -6%

1.07 1.14 -7%

1.86 1.89 -2%

3.46 3.39 2%

MTM 6.1 5.8 5%

(pg/PUF) 13.9 14.0 -1%

45.6 47.7 -5%

63.8 62.0 3%

172 168 3%

17.3 16.2 7%

CSIC/IUPA 2.19 2.12 3%

(pg/g) 0.40 0.41 -2%

0.62 0.59 4%

238 228 4%

3640 3470 5%

96.2 89.4 7%

2014-12-16 20

Page 19: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Favorable ionization for OCDD

2014-12-16 21

CS4_H2O

m/z310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

%

0

100

m/z310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

%

0

100

DIOXINS0065 6062 (30.654) MS2 AP+ 3.00e7

443.70

423.74407.74

405.74372.04355.01329.08315.08

301.23342.08 388.90

439.71445.69

446.71

DIOXINS0006 6054 (30.614) MS2 AP+ 3.00e7

443.68

441.68

439.69

423.73

422.72407.73

404.95385.78373.85371.12329.91314.95 333.02 348.96

436.71

445.67

446.69

448.67

H2O

N2

Page 20: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

2014-12-16 24

Additional POPs

PCBs and organochlorine pesticides

Page 21: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

2014-12-16 25

Instrumental comparison

APGC vs high resolution GC/MS

N=8

Page 22: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

03-Nov-200910 ng/ul pestmix 13 coneflow at 30

Time9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50

%

0

100

XTQ_021109_010 1: MS2 AP+ TIC

2.62e8

11.96

11.66

9.26

9.19

10.91

10.47

9.66

9.53 10.17

10.03

10.67

11.16

11.54

11.70

12.48

12.14

12.38

13.39

13.0812.88

12.75

14.2314.06

13.95

14.75

Pest mix 13, 10 ng/ul, no modifier, fullscan APGC

Stockholm Convention POP mix (APCI) Pesticide-Mix 13

PCB No. 28

PCB No. 52

PCB No. 101

PCB No. 138

PCB No. 153

PCB No. 180

Aldrin

cis-Chlordane

trans-Chlordane

oxy-Chlordane

2,4’-DDD

4,4’-DDD

2,4’-DDE

4,4’-DDE

2,4’-DDT

4,4’-DDT

Dieldrin

alpha-Endosulfan

beta-Endosulfan

Endrin

alpha-HCH

beta-HCH

gamma-HCH

delta-HCH

epsilon-HCH

Heptachlor

cis-Heptachlor

Page 23: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Several halogenated Non-BDE Replacement Flame Retardants were

analysed using APGC by Reiner et al. (2010)

2014-12-16 27

Brominated flame retardants (BFRs)

- 2,2',4,4',5,5'-Hexabromobiphenyl (BB-153)

- Hexabromocylcododecane (HBCD) (α, β, γ)

- Tetrabromobisphenyl-A (TBBPA)

- Allyl 2,4,6-tribromophenyl ether (ATE)

- 2-Bromoallyl-2,4,6-tribromophenyl ether (BATE)

- 2,3-Dibromopropyl-2,4,6-tribromophenyl ether (DPTE)

- Octabromotrimethylphenylindane (OBIND)

- Pentabromoethylbenzene (PBEB)

- Hexabromobenzene (HBB)

- 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE)

- Decabromodiphenylethane (DBDPE)

- Dechlorane Plus (DP) (anti, syn)

- Hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO)

- 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTeBB)

- Bis(2-ethly-1-hexyl)tetrabromophthalate (BEHTBP)

- 2,2',3,3',4,5,5',6,6'-Nonabromo-4'-chlorodiphenyl ether (4PC-BDE208)

- Dechloranes – 602, 603, 604

Page 24: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Polybrominated diphenyl ethers (PBDEs)

Optimization of collision energy

2014-12-16 28

CE 20 V CE 45 V

Page 25: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Total ion chromatogram by

APGC-MS/MS

Page 26: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

RRF and r2 of the calibration curve

0.04pg/uL 0.6pg/uL 4pg/uL 12pg/uL 60pg/uL average STD RSD(%) r r2

BDE#28 8.247 7.233 7.507 7.536 8.415 7.788 0.51 6.6 0.9990 0.9980

BDE#47 5.57 4.89 4.586 5.096 4.559 4.940 0.42 8.4 0.9991 0.9982

BDE#66 4.526 4.049 4.167 4.761 4.612 4.423 0.30 6.8 0.9996 0.9992

BDE#100 2.026 2.177 2.205 2.26 2.34 2.202 0.12 5.3 0.9998 0.9997

BDE#99 2.477 2.094 2.211 2.13 2.506 2.284 0.19 8.5 0.9981 0.9963

BDE#85 5.44 5.372 5.447 5.591 6.693 5.709 0.56 9.7 0.9973 0.9945

BDE#154 2.175 2.432 2.42 2.478 3.312 2.563 0.43 17 0.9938 0.9876

BDE#153 2.694 2.184 2.233 2.522 3.001 2.527 0.34 13 0.9965 0.9930

BDE#138 1.692 1.731 1.663 1.877 2.074 1.807 0.17 9.4 0.9984 0.9969

2014-12-16

Page 27: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

2014-12-16

Comparison on PBDEs concentrations

analyzed by APGC-MS/MS and HRGC/HRMS

Page 28: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Important to include BDE# 209

2014-12-16 J. Muñoz-Arnanz et al. / Environment International 37 (2011) 572–576

Page 29: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

2014-12-16 33

PBDE analysis on APGC

• Problems in sample transfer – GC-MS

interface – probably activation of GC column

section in the interface region (atmospheric

conditions, cold spots), uneven heat

distribution.

• Sensitive compounds (DBDPE, octa-

decaBDEs) exhibit significant peak

broadening and delays

Page 30: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

APGC problem solving

Page 31: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

APGC problem solving

Page 32: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

APGC problem solving

• Siltek deactivation showed promising

• Siltek deactivated capillary (0.25 mm id, same as column) and

Siltek pressfits (a bit tricky to connect)

• BDE#209 peaks ~15s wide, broadening after 40+ injection

Page 33: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

APGC problem solving

Page 34: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

APGC problem solving

Siltek capillary 0.25mm id, Siltek pressfit, after 35 injections,

He flow 3ml/min, interface 360C

Siltek capillary 0.25mm id, Siltek pressfit, after 76 injections,

He flow 3ml/min, interface 360C

Page 35: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

APGC Final Settings

• Use of Siltek treated capillaries and unions (thermally resistant up to

min. 380°C)

• High column carrier gas flows and high temperatures (to overcome

uneven heat distribution and minimize “dwell time” of analytes in

interface region)

Page 36: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Optimized APGC Conditions

GC

Column Rtx®-1614, 15 m ×

0.25 mm, 0.10 μm

Carrier gas Helium 3 mL/min

Injector mode Pulsed Splitless,

450 kPa (1 min)

Column pneumatics Constant flow

Injection volume(μL) 1

Injector temp(℃) 280

2014-12-16

MS

Ionization APGC with Dry N2

Corona current(μA) 2.5

Source offset(V) 70

Cone voltage(V) 30

Source temp(℃) 150

Cone gas flow(L/hr) 160

Collision gas Argon at 3.5·10-3 mbar

Acquisition Multiple Reaction Monitoring

(MRM)

Transfer line

Column Siltek®-Deactivated Guard, 0.25mm(ID), 0.37±0.04 mm(OD)

Temp (℃) 360 Make up gas flow(L/hr) 350

Page 37: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

RRF and r2 of the calibration curve

0.04pg/µL 0.6pg/µL 4pg/µL 12pg/µL 30pg/µL average STD RSD(%) r r2

BDE#28 8.612 8.886 9.425 10.217 9.832 9.394 0.66 7.0 0.9997 0.9994

BDE#47 8.72 7.867 7.677 9.536 8.378 8.436 0.74 8.8 0.9979 0.9954

BDE#66 6.401 6.605 6.775 7.377 7.32 6.896 0.43 6.3 0.9997 0.9994

BDE#100 5.22 5.182 5.791 5.747 6.13 5.614 0.41 7.2 0.9994 0.9989

BDE#99 4.981 4.923 5.765 5.437 5.635 5.348 0.38 7.1 0.9998 0.9995

BDE#85 2.623 2.835 2.937 3.562 3.363 3.064 0.39 13 0.9988 0.9975

BDE#154 2.139 2.245 2.308 2.69 2.541 2.385 0.23 9.5 0.9992 0.9983

BDE#153 1.76 1.802 1.861 2.294 2.077 1.959 0.22 11 0.9982 0.9965

BDE#138 1.375 1.435 1.578 1.869 1.649 1.581 0.19 12 0.9981 0.9961

BDE#183 1.056 1.098 1.193 1.376 1.337 1.212 0.14 12 0.9992 0.9985

BDE#209 1.018 1.089 1.06 1.099 1.041 1.061 0.03 3.2 0.9997 0.9994

2014-12-16

Page 39: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

PBDE results summarized

1. The APGC Xevo TQ-S is a higly sensitive instrument for

the analysis of PBDEs. The results of the APGC-MS/MS

on osprey eggs samples were in very good comparison

with the high res results from tri to hexa-BDEs.

2. All target compounds were successfully detected in the

low level standards in a single run.

3. Excellent linearity was obtained for all compounds over

the range 40fg/µL to 30 pg/µL.

4. The detection of higher brmomated compounds in osprey

eggs looks promising.

2014-12-16

Page 40: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

What is new?

Dave Stalling et al. 1982

Page 42: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

PBDD/F

2014-12-16 46

Overlaid chromatograms of

three consecutive injections of

500 fg TBDD on column

Precursor ion Product

ion

Area Time

499.7 392.8 792 8.25

499.7 392.8 739 8.25

499.7 392.8 760 8.25

Std dev (area) 26.7

RSD (area) 3.5%

Page 44: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

PBDD/Fs 0.5-50 pg on column

2014-12-16 48

Page 45: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Late eluters

2014-12-16 49

Page 46: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

2 µl – 1 050 000

1 µl – 570 000

3 µl – 1 520 000

4 µl – 2 000 000

APGC – Injection volume vs area

Page 48: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

FTOH – APCI+

2014-12-16 52

70 V

30 V

[M-HF]+

[M-H]+

[M+H]+

Page 49: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

100 fg FTOH on column

2014-12-16 53

Page 50: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

FOSA/FOSE – APCI-

2014-12-16 54

Page 51: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Universal MS platform

UPLC analysis of PFASs

2014-12-16 55

Perfluoroalkylcarboxylic acids (PFCAs):

PFBA (C4)

PFPePA (C5)

PFHxA (C6)

PFHpA (C7)

PFOA (C8)

PFNA (C9)

PFDA (C10)

PFUnDA (C11)

PFDoDA (C12)

PFTrDA (C13)

PFTDA (C14)

Perfluoroalkylsufonic acids

(PFSAs):

PFBuS (C4)

PFHxS (C6)

PFOS (C8)

PFDS (C10)

Structural PFOS isomers:

L-PFOS (linear PFOS)

1-PFOS

6/2-PFOS

3/4/5-PFOS

4.4/4.5/5.5-PFOS

Fluorotelomer carboxylic acids (FTCA)

3:3 FTCA

5:3 FTCA

7:3 FTCA

Fluorotelomer unsaturated acids (FTUCA)

6:2 FTUCA

8:2 FTUCA

10:2 FTUCA

Polyfluoroalkyl phosphate surfactants (PAPS)

6:2 monoPAP, 8:2 monoPAP, 10:2 monoPAP 6:2 diPAP (including isomers 4:2/8:2, 2:2/10:2), 6:2/8:2 diPAP (including isomers 4:2/10:2) 8:2 diPAP (including isomers 6:2/10:2, 4:2/12:2), 8:2/10:2 diPAP (including isomer 6:2/12:2) 10:2 diPAP (including isomers 8:2/12:2, 6:2/14:2),

Page 52: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

• APCI

– Similar to electrospray

– Soft ionisation

– Efficient ionisation

– Two mechanisms

• Charge transfer

• Protonation

– Interface

• TOF (High Res)

• MS/MS

• Universal instrumentation

for POPs analysis and

related compounds

– APGC • Dioxins (PCDD/Fs,

PBDD/Fs)

• PCBs

• Organochlorine pesticides

• Brominated flame retardants (PBDEs)

– UPLC-ESI • PFCAs/PFSAs

• FTCA/FTUCA

• PAPS

56

Conclusions

Page 53: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Acknowledgements

2014-12-16 57

MTM research centre, Örebro University

Bert van Bavel, Dawei Geng, Filip Bjurlid

RECETOX; Petr Kukucka

Waters Corporation: Jody Dunstan, Keith Worrall, Rhys Jones

Laura Cherta, Jaime Nácher-Mestre, Tania Portolés, Manuela Ábalos, Jordi Sauló, Esteban

Abad, Jody Dunstan, Rhys Jones, Alexander Kotz, Helmut Winterhalter, Rainer Malisch, Wim

Traag, Joaquim Beltran, Félix Hernández

Page 54: Analysis of Dioxins and POPs using Atmospheric Pressure GC/MS

Thank you for your time!

Ingrid Ericson Jogsten

[email protected]

MTM research centre, Örebro University

2014-12-16 58