analysis of polarimetric terahertz imaging for non ...cbaird/windmartinthesispresjan2016.pdf ·...

50
Learning with Purpose Learning with Purpose Analysis of Polarimetric Terahertz Imaging for Non-Destructive Detection of Subsurface Defects in Wind Turbine Blades By Robert W. Martin Thesis Advisor: Dr. Christopher Baird Committee Members Dr. Thomas Goyette Dr. Christopher Niezrecki Dr. Viktor Podolskiy

Upload: others

Post on 20-May-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Learning with PurposeLearning with Purpose

Analysis of Polarimetric Terahertz Imaging for Non-Destructive

Detection of Subsurface Defects in Wind Turbine Blades

By Robert W. Martin

Thesis Advisor: Dr. Christopher Baird

Committee MembersDr. Thomas Goyette

Dr. Christopher Niezrecki

Dr. Viktor Podolskiy

Learning with Purpose

Introduction

Methodology

• Theory

• Samples and Radar Ranges

Results

• Composite ISAR Images

• Quantitative Evaluation

Future Work

Conclusions

Literature Cited

OutlineOutline

Learning with Purpose

IntroductionIntroduction

Learning with Purpose

Subsurface defects can form in the interior structure of the blade

Some defects cannot be detected by visual inspection

These defects have been shown to cause premature failure of blades in the field [1]

Fiberglass DefectsFiberglass Defects

Out-of-plane wave defect.

[1] C. Niezrecki, P. Avitabile, J. Chen, J. Sherwood, T. Lundstrom, B. LeBlanc, S. Hughes, M. Desmond, A. Beattie, A., M. Rumsey, S. M. Klute, R. Pedrazzani, R. Werlink, J. Newman, “Inspection and Monitoring of Wind Turbine Blade Embedded Defects During Fatigue Testing,” Proc. of 9th International Workshop on Structural Health Monitoring (2013).

Learning with Purpose

The terahertz region is typically defined as the frequency band between 100 GHz and 10 THz

Terahertz RadiationTerahertz Radiation

[2] http://web.njit.edu/~barat/RBB_research.html

Learning with Purpose

Previous investigations have indicated that terahertz radiation can detect subsurface defects in composite fiberglass

Both terahertz time domain spectroscopy (TDS) and frequency modulated continuous wave (FMCW) techniques have been used to test fiberglass materials for defects

Previous investigations have not included collection of fully polarimetric scattering data

Prior WorkPrior Work

Learning with Purpose

MethodologyMethodology

Learning with Purpose

Radar (Scattering) cross section (σ)

Radar Cross SectionRadar Cross Section

Scattering of polarized radiation can be described using the Sinclair matrix

Learning with Purpose

The Sinclair matrix can be diagonalized and meaningful parameters can be extracted

Euler ParametersEuler Parameters

The parameters m, γ, τ, ψ, and ν are known as the

Euler Parameters

Learning with Purpose

Euler ParametersEuler Parameters

The four angle parameters that contain phenomenological information about the scattering object

Learning with Purpose

Synthetic Aperture RadarSynthetic Aperture Radar

A detector with a small aperture can simulate a large aperture by collecting coherent scattering data as it moves along a path

Learning with Purpose

Alternatively, a small detector can collect scattering data while the sample is rotated to achieve the same effect

Inverse Synthetic Aperture RadarInverse Synthetic Aperture Radar

Data collected as a function of frequency and angle azimuth can be Fourier Transformed to an image in range and crossrange

Learning with Purpose

Image Back RotationImage Back Rotation

Learning with Purpose

The standard discrete Fourier transform is given by:

The coordinate transformation can be applied here, producing:

Fourier Space Back RotationFourier Space Back Rotation

Learning with Purpose

After back-rotation, the pixels from different ISAR images can be averaged to produce and single composite ISAR image

Composite ImagesComposite Images

Learning with Purpose

Pixels within each user defined region are compared to quantify contrast

Quantitative EvaluationQuantitative Evaluation

Learning with Purpose

Defect imaging score

= 0.928

Defect imaging score

= 0.184

Histogram Scoring MethodHistogram Scoring Method

Learning with Purpose

Sample 1 contains out-of-plane wave defects and resin-dry patches.

Fiberglass Sample 1Fiberglass Sample 1

Learning with Purpose

Sample 2 contains microballoons, mold and grease inserts, and voids in an adhesive layer

Fiberglass Sample 2Fiberglass Sample 2

Learning with Purpose

Sample 3 contains two kinds of out-of-plane wave defects and a thickness variation

Fiberglass Sample 3Fiberglass Sample 3

Learning with Purpose

Sample 4 contains three out-of-plane wave defects

Fiberglass Sample 4Fiberglass Sample 4

Learning with Purpose

Sample 5 contains an uneven layer of adhesive material with embedded Kapton tape inserts

Fiberglass Sample 5Fiberglass Sample 5

Learning with Purpose

Sample 6 (similar to sample 1) contains out-of-plane wave defects and resin dry patches

The sample also contains an unintentional surface defect

Fiberglass Sample 6Fiberglass Sample 6

Learning with Purpose

Ranges operate at 100 GHz and 160 GHz

Terahertz Radar RangesTerahertz Radar Ranges

[15] G. B. DeMartinis, M. J. Coulombe ,T. Horgan, B. W. Soper, J. C. Dickinson, R. H. Giles, W.

Nixon, "A 100 GHz Polarimetric Compact Radar Range for Scale-Model Radar Cross Section

Measurements", Proceedings of the Antenna Measurements Techniques Association (AMTA), pp. 276-281.

(2013)

Learning with Purpose

ResultsResults

Learning with Purpose

0° azimuth, 25° elevation, 160 GHz

Single Azimuth ISAR ImagesSingle Azimuth ISAR Images

Single Azimuth HH ISAR Image of Sample 1

Learning with Purpose

360 images composited, 25° elevation, 160 GHz

Composite ISAR ImagesComposite ISAR Images

Composite HH ISAR Image of Sample 1

Learning with Purpose

360 images composited, 25° elevation, 160 GHz

Composite ISAR ImagesComposite ISAR Images

Composite HH ISAR Image of Sample 2

Learning with Purpose

360 images composited, 30° elevation, 100 GHz

Composite ISAR ImagesComposite ISAR Images

Composite HH ISAR Image of Sample 3

Learning with Purpose

360 images composited, 30° elevation, 100 GHz

Composite ISAR ImagesComposite ISAR Images

Composite m parameter ISAR image of Sample 3

Learning with Purpose

Composite ISAR ImagesComposite ISAR Images

Composite angular Euler parameter ISAR images

ν

parameter

τ

parameter

ψ

parameter

γ

parameter

Learning with Purpose

360 images composited, 100 GHz

Composite ISAR ImagesComposite ISAR ImagesComposite m parameter ISAR images at other

elevations

45° elevation 60° elevation

Learning with Purpose

360 images composited, 100 GHz

Back-Rotation Algorithm AnalysisBack-Rotation Algorithm AnalysisComposite m parameter ISAR image using Fourier

space back-rotation

Fourier Space Rotation

Normal Space

Rotation

Learning with Purpose

360 images composited, 30° elevation, 100 GHz

Composite ISAR ImagesComposite ISAR Images

Sample 4 composite m parameter ISAR image

Learning with Purpose

360 images composited, 30° elevation, 100 GHz

Composite ISAR ImagesComposite ISAR Images

Sample 5 composite m parameter ISAR image

Learning with Purpose

360 images composited, 30° elevation, 100 GHz

Composite ISAR ImagesComposite ISAR Images

Sample 6 composite m parameter ISAR image

Learning with Purpose

Quantitative EvaluationQuantitative Evaluation

Defect Imaging Scores for a defect in Sample 3

ISAR image type defect

imaging

score

HH polarization RCS 0.715

HV polarization RCS 0.619

VH polarization RCS 0.640

VV polarization RCS 0.635

m Euler parameter 0.532

γ Euler parameter 0.864

τ Euler parameter 0.910

ψ Euler parameter 0.828

υ Euler parameter 0.636

Learning with Purpose

The scores for this defect were determined using different numbers of ISAR images in the composite

Parameter OptimizationParameter Optimization

Number of ISAR images in composite

Learning with Purpose

This process was repeated for multiple defects

The defect imaging scores for each of these defects were averaged together

Parameter OptimizationParameter Optimization

Multiple defects averaged together

Learning with Purpose

Parameter OptimizationParameter Optimization

Average defect imaging scores for multiple defects

ISAR image type defect

imaging

score

HH polarization RCS 0.706

HV polarization RCS 0.679

VH polarization RCS 0.683

VV polarization RCS 0.595

m Euler parameter 0.562

γ Euler parameter 0.850

τ Euler parameter 0.804

ψ Euler parameter 0.748

υ Euler parameter 0.722

Learning with Purpose

Parameter OptimizationParameter Optimization

Effect of Balance Parameter on defect region

Learning with Purpose

Parameter OptimizationParameter Optimization

Effect of balance parameter in non-defect region

Learning with Purpose

Parameter OptimizationParameter Optimization

Difference between balance parameter plots

Learning with Purpose

Different Compositing MethodsDifferent Compositing Methods

compositing method A B C D E F G H

HH polarization RCS 0.706 0.648 0.689 0.737 0.729 0.649 0.642 0.647

HV polarization RCS 0.679 0.631 0.631 0.665 0.686 0.617 0.619 0.608

VH polarization RCS 0.683 0.643 0.637 0.663 0.681 0.632 0.635 0.619

VV polarization RCS 0.595 0.604 0.586 0.632 0.675 0.598 0.605 0.591

m Euler parameter 0.562 0.527 0.580 0.632 0.684 0.529 0.530 0.526

γ Euler parameter 0.850 0.882 0.842 0.809 0.798 0.857 0.856 0.874

τ Euler parameter 0.804 0.748 0.788 0.785 0.804 0.797 0.790 0.808

ψ Euler parameter 0.748 0.704 0.690 0.673 0.605 0.780 0.740 0.742

υ Euler parameter 0.722 0.687 0.724 0.739 0.721 0.702 0.696 0.697

method A mean of all pixels above the threshold for each range/crossrange cell method B median of all pixels above the threshold for each range/crossrange cell

method C include brightest 50% of pixels above the threshold for each range/crossrange cell

method D include brightest 25% of pixels above the threshold for each range/crossrange cell

method E include brightest 10% of pixels above the threshold for each range/crossrange cell

method F exclude brightest 10% of pixels above the threshold for each range/crossrange cell

method G exclude brightest 20% of pixels above the threshold for each range/crossrange cell

method H exclude brightest and dimmest 10% of pixels above the threshold for each range/crossrange cell

Learning with Purpose

360 images composited, median image composition method

Combining the Optimum ParametersCombining the Optimum Parameters

Composite m parameter ISAR image of Sample 3

Learning with Purpose

Continue to apply the technique to different fiberglass defects and other wind turbine blade structures

Investigate the benefits of other SAR techniques, such as interferometric ISAR (IFISAR), az-el scans, and full 3D ISAR

Take full advantage of the electromagnetic characteristics of the sample materials

Investigate other polarimetric transformations

Future WorkFuture Work

Learning with Purpose

Terahertz radiation has been proven capable of detection subsurface defects in fiberglass materials.

The image compositing algorithm offers significant improvements in defect detection over traditional single-azimuth ISAR images.

The Euler m parameter has been shown to produce the best contrast between defect and defect free-regions

ConclusionsConclusions

Learning with Purpose

1. C. Niezrecki, P. Avitabile, J. Chen, J. Sherwood, T. Lundstrom, B. LeBlanc, S. Hughes, M. Desmond, A. Beattie, A., M. Rumsey, S. M. Klute,

R. Pedrazzani, R. Werlink, J. Newman, “Inspection and Monitoring of Wind Turbine Blade Embedded Defects During Fatigue Testing,” Proc. of

9th International Workshop on Structural Health Monitoring (2013).

2. http://web.njit.edu/~barat/RBB_research.html

3. B. LeBlanc, C. Niezrecki, P. Avitabile, J. Chen, J. Sherwood, “Damage Detection and Full Surface Characterization of a Wind Turbine Blade

Using Three-Dimensional Digital Image Correlation,” Structural Health Monitoring, 12, 430-439, (2013).

4. D. Roach, S. Neidigk, T. Rice, R. Duvall, J. Paquette, “Blade Reliability Collaborative: Development and Evaluation of Nondestructive

Inspection Methods for Wind Turbine Blades,” Sandia National Labs, Sandia Report SAND2014-16965 (2014).

5. E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vendewal, R. Beigang, “Nondestructive Testing Potential Evaluation

of a Terahertz Frequency-Modulated Continuous-Wave Imager for Composite Materials Inspection,” Optical Engineering 53(3), 031211 (2014).

6. M. Vandewal, E. Cristofani, A. Brook, W. Vleugels, F. Ospald, R. Beigang, S. Wohnsiedler, C. Matheis, J. Jonuscheit, J. P. Guillet, B. Recur,

P. Mounaix, I. Manek Honninger, P. Venegas, I. Lopez, R. Martinez, Y. Sternburg, “Structural Health Monitoring using a Scanning THz System,”

38th International Conference on Infrared, Millimeter, and Terahertz Waves, 6665870 (2013).

7. R. Osplad, W. Zouaghi, R. Beigang, C. Matheis, J. Jonuscheit, B. Recur, J. P. Guillet, P. Mounaix, W. Vleugels, P. V. Bosom, L. V. Gonzalez,

I. Lopez, R. M. Edo, “Aeronautic composite material inspection with a terahertz time-domain spectroscopy system,” Optical Engineering 53(3),

031208 (2014).

8. F. Friederich, E. Cristofani, C. Matheis, J. Jonuscheit, R. Beigang, M. Vandewal, “Continuous Wave Terahertz Inspection of Glass Fiber

Reinforced Plastics with Semi-automatic 3D Image Processing for Enhanced Defect Detection,” IEEE International Microwave Symposium,

6848486 (2014).

9. J. W. Park, K. H. Im, I. Y. Yang, S. K. Kim, S. J. Kang, Y. T. Cho, J. A. Jung, D. K. Hsu, “Terahertz Radiation NDE of Composite Materials

for Wind Turbine Applications,” International Journal of Precision Engineering and Manufacturing 15(6), 1247-1254 (2014).

10. D. J. Barnard, C. P. Chiou, Presented on the Iowa State University Center for Nondestructive Evaluation Website

https://www.cnde.iastate.edu/research-areas/terahertz-imaging/wind-energy Retrieved September 2014 (Unpublished).

11. E. F. Knott, J. F. Shaeffer, M. T. Tuley, Radar Cross Section, 2nd Ed. (Artech House, Boston, 1993).

12. C. S. Baird, “Design and Analysis of an Euler Transformation Algorithm Applied to Full-Polarimetric ISAR Imagery,” PhD dissertation, STL,

University of Massachusetts Lowell, 2007.

13. J. D. Jackson, Classical Electrodynamics, 3rd Ed. (John Wiley & Sons, New York, 1999).

14. D. L. Mensa, High Resolution Cross–Section Imaging (Artech House, Boston, 1991).

15. G. B. DeMartinis, M. J. Coulombe ,T. Horgan, B. W. Soper, J. C. Dickinson, R. H. Giles, W. Nixon, "A 100 GHz Polarimetric Compact

Radar Range for Scale-Model Radar Cross Section Measurements", Proceedings of the Antenna Measurements Techniques Association (AMTA),

pp. 276-281. (2013)

Literature CitedLiterature Cited

Learning with Purpose

Dr. Christopher Baird

Dr. Christopher Niezrecki

The WINDSTAR IAB

Sandia National Laboratories

TPI Composites Inc.

Submillimeter-Wave Technology Laboratory

• Tom Horgan, Larry Horgan, and Lucy Deroeck

• Dr. Robert Giles, Jason Dickinson, Dr. Tom Goyette, and Michael Coulombe

AcknowledgmentsAcknowledgments

Learning with Purpose

Questions?Questions?