analysis of slab by different methods

Upload: ks-lee

Post on 07-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Analysis of Slab by Different Methods

    1/28

    ANALYSIS OF SLAB BY DIFFERENT METHODS 

    Ing. Paul Guerrero * 

    Ing. Pablo Sanchez Caiza, Msc. ** 

    * Consorcio Santos CMI 

    [email protected] 

    ** Center for Scientific Research, CEINCI-ESPE 

    [email protected] 

    Summary 

    Different methods for the design of two-way slabs are made;

    Marcelo Romo method Eng.; Rigid beams method; Directmethod; Method Federal District and the results obtained withETABS moments are compared. It is intended that ETABSusers have more confidence in designing a slab in this programand in case you have doubts on the results obtained resortingto use a simple manual method and provides reliable results.

    1. INTRODUCTION. 

    There are numerous methods for the analysis and design of reinforced concrete slabs,interested however find the easy and safe. For this purpose the results obtained with thesemethods are compared:- Ing method, Marcelo Romo.- rigid beams.- direct method.- method Federal District (Mexico).- ETABS results.

    Moments for cores in the slab and not to the fringes of columns are calculated as the timefor these bands are much lower in all the methods listed above.

    2. OBJECTIVES. 

    The main aim of this article is to present the design of slabs used to compare the resultsobtained with the modeling and design of a slab ETABS methods.

    It is intended that ETABS users have more confidence in designing a slab in this programand in case you have doubts on the results obtained resorting to use a simple manual methodand provides reliable results.

    3. ANALYSIS MODEL.(1,2,4,5)

     

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Analysis of Slab by Different Methods

    2/28

     

    For analysis the following structure is proposed:

    2.8

    3.0

    3.0 4.0  3.5 

    Figure 1 Plan View and l i f t gantr y A  

    Figure 2 Dimens ional Vista  

    The characteristics of the materials, and structural elements used in sections of beams andcolumns are shown in table 1 and 2

    Table 1 Characterist ics o f materials  

    MATERIAL FEATURES

    CONCRETE  fc = 210 Kg / cm ; 12000v210 = E = 173,897 Kg / cm  

    STEEL  fy = 4200 Kg / cm  

    Table 2 Characterist ics o f struc tural elements  

    ELEMENT FEATURES

    BEAM  BASE HEIGHT = = 30cms 35cms

    COLUMN  BASE HEIGHT = = 35cms 35cms

    LOSA  Lightened, 20 cm thick, with tile compression of 5 cm

  • 8/18/2019 Analysis of Slab by Different Methods

    3/28

    Alivianadas use the slabs 20 cm to their right ful a sol id slab equivalent of 14.5 cm is

    proposed. 

    4. CRITICAL ANALYSIS PANEL.(2)

     

    To start the design will prevail h = thickness of the slab = 20 cm

    The critical panel is larger corresponds to that between the axles 2-3 - C - D; To determine therelationship between the inertia of the beams and the slab is usedfollowingexpression:

    to  Iv 

     I slab  (1)

    on each axis of the panel are shown in the following table:Table 3 Calculation inert ia ratio at the cr i t ical panel  

    ITEM CALCULATI

     

    RESULT

    Iv (Inertia beams) (0,30x0,35 ^ 3) / 12 0.001072 m  to

     

    (0.001072) / (3.75 * 0.145 ^ 3/12) 1,125

    to

     

    (0.001072) / (3.5 * 0.145 ^ 3/12) 1,205

    to

     

    (0.001072) / (4.35 * 0.145 ^ 3/12) 0.969

    to

     

    (0.001072) / ((2.25 + 0.175) * 0.145 ^ 3/12) 1,739

    tom  1+ 2+ C + D) / 4 1,259

    The minimum height for a flat slab is calculated with:

     Ln 0.8  

     fy  

    h min

         14000 

    13cm.36 5am 0.12 (2)

    Where Ln is the free length of side 4.5 to 0.3 = 4.2 m; fy is the yield stress of the steel (4200

    kg / cm2); Factor is free lights relationship between major / minor vain m is the factor slab / beam stiffness average (1,259). 

    4.20 0.8  

    4200 

    h min     14000   13 cm.

    36 5 * 1,135 * 1,259 0.12

    h min = 0.1088 m> = 13cm; h = 13 cm min  

     A slab of 20 cm, has a height of 14.5 cm and the code requires a height of 13 cm so it canbe used without any problem.

  • 8/18/2019 Analysis of Slab by Different Methods

    4/28

    T

     

    5. CALCULATION OF CHARGE. 

    5.1 Dead Lo ad (D):  

    Provides for the calculation of weight of the slab, floor, macillado, ceiling and walls, to the

    design need not calculate the contribution of beams and columns because these are the weight orload of the slab and not vice versa.

    The contribution of the slab is then analyzed

    Figure 3 Plan view and cutt ing slab 1m2  

     As seen in Figure 3 the slab has different components:

    Table 4 Dead weight o f the slab / m2  

    ELEMENT CALCULATI

     

    LOAD T / m2

     

    Compression slab 2.4 T / mree

    * 1m * 1m * 0.05m 0.12

    Jitters 2.4 T / mree

    (2 * (0.1 * 1 * 0.15) + 2 * (0.1 * 0.8 * 0.1296

     Alivianamientos 8 blocks * 0.010 T 0.08

    Dead weigh t slab   0.12 + 0.1296 + 0.08   0.3296  

    It is time to analyze the finished slab

    Table 5 finishes s lab / m 2 

     

    ELEMENT CALCULATI

     

    LOAD T / m2

     

    Ceiling 2.2 T / mree

    * 1m * 1m * 0.01m 0,022

    I putty 2.2 T / mree

    * 1m * 1m * 0.04 m 0,088

    Floor 2.2 T / mree

    * 1m * 1m * 0.01m 0,022

    Fin ish ing slab  mezzanine  

    0.022 + 0.088 + 0.022   0,132  

    It is now necessary to calculate the contribution of the walls, suppose a case critical to bebuilt of brick:

    and a specific 1.6 T /m 

    (+ Brick mortar)

    and a specific *

    Vol PREDES  

    area (slab) 

    (3)

  • 8/18/2019 Analysis of Slab by Different Methods

    5/28

    COEF.  Lesser l ight / greater Light  

    1.00  0.90  0.80  0.70  0.60  0.5 

    265 347 443 545 635 691

    597 736 899 1071 1222 1317

    269 362 473 590 694 759

    718 779 819 829 808 773

    354 368 359 318 239 179

    and wall area (slab) is the area of the slab.

    In the case of this exercise is weigh ing w al ls on the slab assum es mezzanine = 0.15

    T / m2  

    5.2Vivas loads or overloads (L):  

    Standards or local building codes for the case of this structure are:

    Losa mezzanine: L (residences) = 0.2 T / m2 

    To summarize we have the following load values:

    Table 6 Summ ary of loads T / m2  

    ELEMENT CALCULATI

     

    LOAD T / m2

     

    Dead weight slab See Table 4 0.3296

    Finishing slabmezzanine

    See Table 5 0,132

    Weight of wallson the

    mezzanine0.15

    Dead load (qD)  0.3296 + 0.132 + 0.15   0.6116  

    Live load (qL)  0.2  

    Last load (qu)   1.2 qD + 1.6 qL   1,054  

    6. METHOD OF ING. MARCELO ROMO.(7)

     

    In this method the moments per meter width according to the following equation iscalculated:

     M  0.0001 * wor  *  L2 * m x 

    (4)

    Where M is the time to design per meter width, wu is factored load per square meter, Lx is thesmallest axis at the sides of the panel, m is a coefficient for negative and positive momentsobtained from tables as those shown below, which depends on the boundary conditions of thepanel:

    Table 7 Coeff icients Ing method Romo  

    Ribbed rectangular slab TYPE 1 Ribbed rectangular slab TYPE 2 

    (Bordes wardrobes) (High side unrestricted) COEF.  Lesser l ight / greater Light  

    1.00  0.90  0.80  0.70  0.60  0.5 

    200 241 281 315 336 339

    564 659 752 830 878 887

    258 319 378 428 459 464

    564 577 574 559 538 520

    258 242 208 157 126 123

  • 8/18/2019 Analysis of Slab by Different Methods

    6/28

    COEF.  Lesser l ight / greater Light  

    1.00  0.90  0.80  0.70  0.60  0.5 

    406 489 572 644 693 712839 980 1120 1240 1323 1353

    428 525 621 704 761 782

    839 857 852 827 793 764

    428 409 369 310 271 238

    Ribbed rectangular slab TYPE 3 Ribbed rectangular slab TYPE 6 (Lower side unrestricted) (Higher side and lower side without restriction) 

    COEF.  Lesser l ight / greater Light  

    1.00  0.90  0.80  0.70  0.60  0.5 

    265 297 322 339 345 339718 790 850 888 902 888

    354 401 439 464 473 464

    597 586 568 548 532 520

    269 240 205 185 167 177

    The explanation for the different coefficients of Table 7 is graphically in Figure 4, where the xmoments about the horizontal axis X and m moments around the vertical axis Y; secondly Ly is thesmaller dimension of the panel sides.

    TYPE 1 TYPE 2 TYPE 3 TYPE 6 

    Figure 4 Models used by M. Romo 

    6.1 CALCULATION OF MOMENTS IN 9 PANELS. 

    Using tables, created at the Polytechnic School of the Army by Ing. Marcelo Romo. Designingthe slab includes the following panels, corresponding to the same one of the different types ofpanels offering these tables:

    Table 8 Panels designed and match wi th m odels of Ing. Romo  

    Number   Panel (Axis)  Type (Tables) 

    O

     

    1-2 - A - B 6

    2 1 - 2 - B - C 2

    T

     

    1-2 - C - D 6

    4 2 - 3 - A - B 2

    5 2 - 3 - B - C O

     6 2-3 - C - D T

     

    7 3 - 4 - A - B 6

    8 3 - 4 - B - C 2

    9 3-4 - C - D 6

    The result of the calculated moments in each panel can be appreciated in Table 9.

  • 8/18/2019 Analysis of Slab by Different Methods

    7/28

    PANEL  TIME   ING. ROMO  

    2-3-C-D 

    Mx -1.343 

    0.683 

    My -0.985 

    0,398 

    3-4-A-B 

    Mx -1.074 

    0.597 

    My -0.806 

    0,344 

    3-4-B-C 

    Mx -0.993 

    0.544 

    My -0.785 

    0.307 

    3-4-C-D 

    Mx -1.202 

    0.686 

    My -0.774 

    0.282 

    Table 9 Moments calculated on the slab 

    PANEL  TIME   ING. ROMO  

    1-2-A-B

    Mx-1.227

    0.651

    My-1.102

    0.533

    1-2-B-C

    Mx-1.091

    0.563

    My-1.04

    0.467

    1-2-C-D

    Mx-1.48

    0.826

    My-1.093

    0,459

    2-3-A-B

    Mx-1.139

    0.549

    My-1.014

    0.48

    2-3-B-C

    Mx-1.027

    0.484

    My-0.961

    0.422

    7. METHOD OF RIGID BEAMS(1)

     

     As the name suggests this method applies only if props are sufficiently rigid slab, is consideredto be so if the value of a is greater than 0.5 as indeed happens.

    Moments design center strip (middle portion of the slab wheelbase) are calculated using thefollowing expressions:

     X M C

     x M and

    C and  

    * w *

     L2  x 

    * w *

     L2 and  

    (5)

    (6)

    Where Mx is when the short direction of the panel, Cx is a coefficient obtained from tables, w isthe load per square meter, Lx is the length in the short direction of the panel, My is the moment inthe long direction panel, Cy is another factor obtained from tables and Ly is the length in the long

    direction of the panel, the following values are obtained:

    7.1 CALCULATION 9 MOMENTS IN PANELS 

    Using the tables, the method, the slab has the following design panels, corresponding to thesame one of the different types of panels offering these tables:

  • 8/18/2019 Analysis of Slab by Different Methods

    8/28

     

    Table 10 Panels designed and m atch ing mo dels wi th r ig id beams method  

    Number   Panel (Axis)  Type (Tables) 

    O

     

    1-2 - A - B Case 4

    2 1 - 2 - B - C Case 8

    T

     

    1-2 - C - D Case 4

    4 2 - 3 - A - B Case 8

    5 2 - 3 - B - C Case 2

    6 2-3 - C - D Case 9

    7 3 - 4 - A - B Case 4

    8 3 - 4 - B - C Case 8

    9 3-4 - C - D Case 4

    Table 11 Design coefficients 

    PANEL LIGHTS (m)  DESIGN FACTORS 

    lx   ly   m = lx / Cx neg.  Cy neg.  Cx + Cy + Cx + Cy +

    1-2-A-B Case 4 3.50 3.80 0.92 0,058 0,042 0,032 0,023 0,037 0,027

    1-2-B-C Case 8 3.50 4.20 0.83 0,051 0,044 0,030 0,016 0,042 0,0211-2-C-D Case 4 3.50 4.50 0.78 0.073 0,027 0,040 0,012 0,050 0,018

    2-3-A-B Case 8 3.80 4.00 0.95 0,038 0.056 0,022 0,021 0,031 0,027

    2-3-B-C Case 2 4.00 4.20 0.95 0,050 0.041 0,020 0,016 0,030 0,025

    2-3-C-D Case 9 4.00 4.50 0.89 0,069 0,024 0,026 0,015 0,037 0,022

    3-4-A-B Case 4 3.00 3.80 0.79 0,072 0,028 0,040 0,016 0,049 0,019

    3-4-B-C Case 8 3.00 4.20 0.71 0,067 0,030 0,039 0,011 0,053 0,014

    3-4-C-D Case 4 3.00 4.50 0.67 0,087 0,017 0,048 0,010 0,060 0,012

    Table design 12Momentos 

    PANEL LIGHTS (m)  MOMENTS OF DESIGN (T m) 

    lx  

    ly  

    Mx neg. My neg.

     Mx + (1.2d + 1.6L) 

     My + (1.2d + 1.6L) 

     1-2-A-B Case 4 3.50 3.80 0.749  0.639  0,433  0.369 

    1-2-B-C Case 8 3.50 4.20 0.658  0.818  0.434  0.326 

    1-2-C-D Case 4 3.50 4.50 0.943  0.576  0.556  0,295 

    2-3-A-B Case 8 3.80 4.00 0.578  0.944  0.376  0.385 

    2-3-B-C Case 2 4.00 4.20 0.843  0,762  0.388  0.348 

    2-3-C-D Case 9 4.00 4.50 1,164  0.512  0,495  0.365 

    3-4-A-B Case 4 3.00 3.80 0.683  0,426  0,405  0.257 

    3-4-B-C Case 8 3.00 4.20 0,636  0.558  0.410  0.221 

    3-4-C-D Case 4 3.00 4.50 0,825  0,363  0.490  0.226 

    To compare the results of different methods in the following table design moments previously

    calculated according to its coincidence with the X axis is displayed and the Y axis

    The central strip is an intermediate strip between two strips of columns with a width equal to half of the

    analyzed vain.

  • 8/18/2019 Analysis of Slab by Different Methods

    9/28

    PANEL  TIME   V. RIGHIDAS  

    2-3-C-D 

    Mx -1.164 

    0,495 

    My -0.512 

    0.365 

    3-4-A-B 

    Mx -0.683 

    0,405 

    My -0.426 

    0.257 

    3-4-B-C 

    Mx -0.636 

    0.41 My 

    -0.558 

    0.221 

    3-4-C-D 

    Mx -0.825 

    0.49 

    My -0.363 

    0.226 

    Table 13 Summary of the final moments in the slab strip 

    PANEL  TIME   V. RIGHIDAS  

    1-2-A-B

    Mx-0.749

    0,433

    My-0.639

    0.369

    1-2-B-C

    Mx-0.658

    0.434

    My-0.818

    0.326

    1-2-C-D

    Mx-0.943

    0.556

    My-0.576

    0,295

    2-3-A-B

    Mx -0.9440.385

    My-0.578

    0.376

    2-3-B-C

    Mx-0.843

    0.388

    My-0.762

    0.348

    8. DIRECT METHOD OF DESIGN.(1,2,3,5,6,9)

     

    Before starting the design constraints are important models designed slabs, which are:

    1. In each direction should be three or more continuous lengths.2. The panels are rectangular slab with a ratio greater light and not more than 2 lesser light

    (measured between the centers of the supports).3. The lengths of the successive lights in each direction (measured between the centers of

    support) should not differ by more than 1/3 of the greater light.4. Columns should not be misaligned with respect to any axis joining centers of successive

    columns more than 10% of the light (in the direction of misalignment).5. The loads should be evenly distributed and not factored overload or

    service must not be greater than twice the dead load or service not factored (L / D = 2).6. For slabs in two directions with all sides supported by beams, the relative stiffness of the

    beams in two perpendicular directions must meet minimum and maximum requirements.7. Not Redistribution of negative moments.

     A total time which is distributed in positive and negative first time and each core and then instripes column is calculated, equations are:

    w * l   * L2

     M or 2 n 0 8 

  • 8/18/2019 Analysis of Slab by Different Methods

    10/28

     

    (7) 

    Where Mo is a global moment, Wu is factored load per square meter, L2 is the transverse distanceanalysis, equal to the average lights adjacent spans, Ln is the clear span of the span considered.

    The method of direct design over time by various authors simplifications suffered so it is importantto know something of its history. With the publication of ACI 318-83, the Direct Design Methodgreatly simplified the analysis of the moments of slab systems in two directions, because allcalculations rigidities were removed to determine the design moments in an end section .Expressions for calculating the distribution function of the stiffness ratio were replaced by acoefficient table to distribute the total time moments in the final stages. Another change was that theapproximate equation for unbalanced momentum transfer between the slab and an inner columnalso simplified. From these changes the Direct Design Method became a truly direct design method,one can determine all stages of design by applying moment coefficients.

    For this article the more simplified form of the direct method is shown by the distribution coefficientsfor global moment, see Figure 5 and Table 14.

    Figure 5 Distr ibut ion of mom ent coeff ic ients design Indoor and

    outdoor sect ions  

    Table 14 Coeff icients desig n time two -way slab with beams  

    List of lights  Time 

    Outer section  Inner section 

    (1)  (2)  (3)  (4)  (5) 

    Negative positive  First inner negative  Positive  Negative

    L2 / L1  Total time  0.16 MB  0.57 MB  0.70 MB  0.35 MB  0.65 MB 

    0.5 Strip columns  Beam  0.12 MB  0.43 MB  0.54 MB  0.27 MB  0.50 MB 

    Column  0.02 MB  0.08 MB  0.09 MB  0.05 MB  0.09 MB 

    Middle ground  0.02 MB  0.06 MB  0.07 MB  0.03 MB  0.06 MB 

    On

     

    Strip columns  Beam  0.1 MB  0.37 MB  0.45 MB  0.22 MB  0.42 MB 

    Column  0.02 MB  0.06 MB  0.08 MB  0.04 MB  0.07 MB 

    Middle ground  0.04 MB  0.14 MB  0.17 MB  0.09 MB  0.16 MB 

    Strip columns  Beam  0.06 MB  0.22 MB  0.27 MB  0.14 MB  0.25 MB 

    Column  0.01 MB  0.04 MB  0.05 MB  0.02 MB  0.04 MB 

    Middle ground  0.09 MB  0.31 MB  0.38 MB  0.19 MB  0.36 MB 

    NOTES: (1) All negative moments correspond to the face of the supports.

    (2) Torsional rigidity of the edge beam is such that it verifies One 2.5(3) L L

    In the above methods slab only analyzed in the intermediate strips so in Table 15summarizes the coefficients used in this article shows.

  • 8/18/2019 Analysis of Slab by Different Methods

    11/28

     

    EJ  One  Axis2 ITEM  CALCULA

     RESULT  ITEM CALCULA

     RESULT 

    L2  3.5 / 2 1.75 m L2  (3.50 + 4) 3.75 m

    L1  A-B 3.8 m

    L1  A-B 3.8 m

    B-C 4.2 m B-C 4.2 mC-D 4.5 m C-D 4.5 m

    L2 /0.46

    L2 /0.99

    0.42 0.890.39 0.83

    Mo  A-B 2.74 T * m

    Mo  A-B 5.88 T * m

    B-C 3.42 T * m B-C 7.32 T * mC-D 3.97 T * m C-D 8.51 T * m

    AXI 

    hree ITEM CALCULA

     RESULT 

    L2  (3 + 4) / 2 3.5 m

    L1  A-B 3.8 mB-C 4.2 mC-D 4.5 m

    L2 /L1 

    0.920.830.77

    Mo  A-B 5.49 T * mB-C 6.84 T * mC-D 7.94 T * m

    EJE4 

    ITEM Calcul  r stumps L2  3/2 1.5 m

    L1  A-B 3.8 m

    B-C 4.2 mC-D 4.5 m

    L2 /L1 

    0.39

    0.360.33

    Mo  A-B 2.35 T * m

    B-C 2.93 T * m

    C-D 3.40 T * m

    Table 15 Summ ary coeff icients us ed  

    LIST OF

    LIGHTS 

    L2 / L1 

    INTERMEDIATE BAND MOMENTS 

    (1)

    Neg. Foreign

    (2)

    Positive

    (3)

    Neg. interior

    (4)

    Positive

    (5)

    Neg. interior

    0.5 0.02 MB 0.06 MB 0.07 MB 0.03 MB 0.06 MB

    1.0 0.04 MB 0.14 MB 0.17 MB 0.09 MB 0.16 MB

    2.0 0.09 MB 0.31 MB 0.38 MB 0.19 MB 0.36 MB

    Parallel to the axis X 6 strips are designed for this in Tables 16 calculations per strip asregards relations between light and calculating the overall time shown.

    Figure 6 Cut paral lel to the X axis beams  

    Table 16 Relationships b etween l ight and calculation of global moments  

    For best results it is desirable to interpolate the values of the table 15 with the relationsbetween light calculated in Table 16.

    Table 17 Coeff icients obtained by interpolation and l inear extrapolation  

    LIST OF

    LIGHTS 

    L2 /

    GAZA MOMENTS MIDDLE PILLAR 1 

    (1) 

    Neg. Foreign 

    (2) 

    Positive 

    (3) 

    Neg. interior  

    (4) 

    Positive 

    (5) 

    Neg. interior  

    0.39   0,016Mo   0.047 MB   0.055 MB   0.023 MB   0.047 MB  

    0.42   0.017 MB   0.050 MB   0.059 MB   0.025 MB   0.050 MB  

    0.46   0.018 MB   0.055 MB   0.064 MB   0.028 MB   0.055 MB  

    0.5  0.02 MB  0.06 MB  0.07 MB  0.03 MB  0.06 MB 

    LIST OF

    LIGHTS 

    L2 / L1 

    GAZA MOMENTS MIDDLE PILLAR 2 

    (1)

    Neg. Foreign

    (2)

    Positive

    (3)

    Neg. interior

    (4)

    Positive

    (5)

    Neg. interior

    0.5 0.02 MB 0.06 MB 0.07 MB 0.03 MB 0.06 MB0.83   0.033 MB   0.113 MB   0.136 MB   0.07 MB   0.126 MB  

    0.89   0.036 MB   0.122 MB   0.148 MB   0.077 MB   0.138 MB  

    0.99   0.04 MB   0.14 MB   0.17 MB   0.09 MB   0.16 MB  

    1.0 0.04 MB 0.14 MB 0.17 MB 0.09 MB 0.16 MB

    LIST OF

    LIGHTS 

    L2 /

    GAZA MOMENTS MIDDLE PILLAR 3 

    (1) 

    Neg. Foreign 

    (2) 

    Positive 

    (3) 

    Neg. interior  

    (4) 

    Positive 

    (5) 

    Neg. interior  

    0.5  0.02 MB  0.06 MB  0.07 MB  0.03 MB  0.06 MB 

    0.77   0.031 MB   0.103 MB   0.124 MB   0.062 MB   0.114 MB  

    0.82   0.033 MB   0.111 MB   0.134 MB   0.07 MB   0.126 MB  

    0.92   0.037 MB   0.127 MB   0.154 MB   0.08 MB   0.144 MB  

    1.0  0.04 MB  0.14 MB  0.17 MB  0.09 MB  0.16 MB 

  • 8/18/2019 Analysis of Slab by Different Methods

    12/28

    EJEB 

    ITEM CALCULA 

    RESULT 

    L2  (3.8 + 4.2) 4 m

    L1 

    1-2 3.5 m

    2-3 4 m

    3-4 Three m

    L2 /L1 

    1.14

    1.001.33

    Mo 1-2 5.22 T * m2-3 7.02 T * m

    3-4 3.70 T * m

    EXEC 

    ITEM  CALCULA 

    RESULT 

    L2  (4.2 + 4.5) 4.35 m 

    L1 

    1-2  3.5 m 

    2-3  4  m 

    3-4  T

     

    L2 /L1 

    1.24 

    1.09 

    1.45 

    Mo 

    1-2  5.69  T * m 

    2-3  7.64  T * m 

    3-4  4.02  T * m 

    EJED ITEM Calcul  RESULTADO L2  4.5 / 2 2.25 m

    L1 1-2 3.5 m2-3 4 m3-4 3m

    L2 /L 

    0.64ne  0.56

    0.75

    Mo 1-2 2.94 T * m2-3 3.95 T * m3-4 2.08 T * m

    LIST OF

    LIGHTS 

    L2 /

    MOMENTS INTERMEDIATE BAND HUB 4 

    (1)

    Neg. Foreign

    (2)

    Positive

    (3)

    Neg. interior

    (4)

    Positive

    (5)

    Neg. interior

    0.33   0.013 MB   0.040 MB   0.046 MB   0.020 MB   0.040 MB  

    0.36   0.014 MB   0.043 MB   0.050 MB   0.022 MB   0.043 MB  

    0.39   0.016 MB   0.047 MB   0.055 MB   0.023 MB   0.047 MB  

    0.5 0.02 MB 0.06 MB 0.07 MB 0.03 MB 0.06 MB

    To summarize the coefficients and moments calculated for the different bands can be seenin Tables 18 and 19 respectively of this article:

    Table 18 Summ ary of coeff ic ients for ca lcu la t ing m oments  

    COEFFICIENTS FOR INTERMEDIATE BAND 

    AXIS   A-B B-C C-D

    Neg. Foreign Positive Neg. interior Positive Neg. interior Positive Neg. Foreign

    One  0,018   0,055   0.059  0,025   0,050   0,047   0,016  

    2 0,040   0,140   0.148   0.077   0,138   0,113  0,033 

    T

     

    0,037   0,127   0.134  0,070   0.126   0,103  0,031 

    4 0,016   0,047   0,050   0,022   0,043  0,040   0,013 

    Table 19 Summary o f in termediate str ip m oments  

    MOMENTS INTERMEDIATE BAND T * m 

    AXIS   A-B B-C C-D

    Neg. Foreign Positive Neg. interior Positive Neg. interior Positive Neg. Foreign

    One  0,049  0,151  0,202   0,086   0,171  0.187   0.064 

    2 0,235   0.823  1,083  0.564  1,010   0.962   0,281 

    T

     

    0,203  0.697   0.917   0,479  0,862   0.818   0.246  

    4 0,038   0,110   0,147   0.064  0.126   0.136   0,044 

    For the Y axis parallel strips 7, in Tables 20 to calculations made by each strip as regardsrelations between light and calculating the overall time shown.

    Figure 7 Cut paral lel to the Y axis beams  

    Table 20 Relations hips betw een light and calculation o f global mom ents  EJEA 

    ITEM  CALCULA 

    RESULT L2  3.8 / 2 1.9 m

    L1 

    1-2 3.5 m2-3 4 m

    3-4 T

     

    m

    L2 /L1 

    0.54

    0.480.63

    Mo 

    1-2 2.48 T * m2-3 3.33 T * m3-4 13.76 T * m

    Coefficient calculations are performed by linear interpolation formula and global timemoments are determined in each of the intermediate strips such

  • 8/18/2019 Analysis of Slab by Different Methods

    13/28

    as was done in parallel to the axis X, in Tables 21 and 22 slots are displayed in summary and

    moments calculated coefficients for each band respectively. 

    Table 21 Summary of coefficients for calculating moments 

    COEFFICIENTS FOR INTERMEDIATE BAND 

    AXIS  1-2 2-3 3-4

    Neg. Foreign Positive Neg. interior Positive Neg. interior Positive Neg. Foreign A  0,020   0,060   0,062   0,026   0,053  0.073  0,023 

    B 0,047   0,095   0,170   0,090   0,160   0.143  0,057  

    C 0,050   0,110   0,181  0,095   0,170   0,160   0,060  

    D 0,026   0,078   0.082   0,037   0,072   0,100   0,030  

    Table 22 Summary o f in termediate str ip m oments  

    MOMENTS INTERMEDIATE BAND T * m 

    AXIS  1-2 2-3 3-4

    Neg. Foreign Positive Neg. interior Positive Neg. interior Positive Neg. Foreign

     A  0,050   0.149  0.206   0,087   0,176   0,128   0,040  

    B  0,245   0.496   1,193  0.632   1,123  0.529  0.211 

    C   0,285   0.626   1,383  0.726   1,299  0.643  0.241 

    D  0,076   0,229  0.687   0.687   0.687   0,208   0,062  

    9. METHOD OF FEDERAL DISTRICT(3) 

    This method is originally based on one by Siess and Newmark, is a method of coefficientslike the method Ing. Romo above, to calculate times medians and edge and to its use must beentered data of spacings between axes and distributed load per square meter and factored.

    Error! Figure 8 Core and Edge Strips  

    It is based on the following equation:

     Mri ai * wr * Lx2

      (8) 

  • 8/18/2019 Analysis of Slab by Different Methods

    14/28

    TIME  OF Lesser l ight / greater Light (Lx / Ly)  

    NEGATIVE EDGE INTERIOR SHORT

    1.00  0.90  0.80  0.70  0.60  0.5  0 

    315 357 403 451 506 568 998

    LARGO 297 326 350 372 391 409 516

    NEGATIVE EDGE BATCH LARGO 190 206 222 236 248 258 326

    POSITIVE SHORT 133 167 202 240 292 329 630

    LARGO 129 129 131 133 137 142 179

    TIME  OF Lesser l ight / greater Light (Lx / Ly )  

    NEGATIVE EDGE INTERIOR SHORT

    1.00  0.90  0.80  0.70  0.60  0.5  0 

    324  371  419  471  530  598  1060 

    LARGO 324  360  394  429  455  475  6

    NEGATIVE EDGE BATCH SHORT 190  219  250  277  321  362  651 

    LARGO 190  206  222  236  248  258  326 

    POSITIVE SHORT 137  176  216  259  306  358  751 

    LARGO 137  138  140  142  146  152  191 

    Where Lx is the shortest length of the panel analyzed, Ly is the long length, ai is thecoefficient found in the tables of the method and wr is the last distributed load per square meter.

    n used in the method andobtain the results of moments, you enter this table with realación of minor / major lights in eachpanel?.

    Table 23 Coeff icients for tw o-way slab dropp ed beams  

    BOARD  TIME  OF 0  0.5  0.6  0.7  0.8  0.9  One 

    INTERIOR ALL CONTINUOUS

    EDGES NEG. INSIDE EDGE

    SHORT 998  553  489  432  381  333  288 

    LARGO 516  409  391  371  347  320  288 

    POSITIVE SHORT 630  312  268  228  192  158  126 

    LARGO 175  139  134  130  128  127  126 

    SHORT SIDE EDGE BATCH  NEG. INSIDE EDGE SHORT 998  568  506  451  403  357  315 

    LARGO 516  409  391  372  350  326  297 

    NEG. EDGES DISCONTINUED LARGO 326  258  248  236  222  206  190 

    POSITIVE SHORT 630  329  292  240  202  167  133 

    LARGO 179  142  137  133  131  129  129 

    LONG SIDE EDGE BATCH NEG. INSIDE EDGE SHORT 1060  583  514  453  397  346  297 

    LARGO 587  465  442  411  379  317  315 

    NEG. EDGES DISCONTINUED SHORT 651  362  321  283  250  219  190 

    POSITIVE SHORT 751  334  285  241  202  164  129 

    LARGO 185  147  142  138  135  134  133 

    CORNER TWO ADJACENT SIDES

    DISCONTINUED  

    NEG. INSIDE EDGE SHORT 1060  598  530  471  419  371  324 

    LARGO 6 475  455  429  394  360  324 

    NEG. EDGES DISCONTINUED SHORT 651  362  321  277  250  219  190 

    LARGO 326  258  248  236  222  206  190 POSITIVE SHORT 751  358  306  259  216  176  137 

    LARGO 191  152  146  142  140  138  137 

    These moments are coefficients for rectangular panels in the central strips of the panels, to theextreme fringes multiply by a factor of 0.6.

    For this article the method can be summarized in Table 24 and Figure 9 Slab downstandbeams.

    Table 24 Coeff icients metho d Federal Distr ict  

    Panel type 1 Type 2 Panel

    TIME  OF Lesser light / greater Light (Lx / Ly)  

    NEGATIVE SHORT

    1.00  0.90  0.80  0.70  0.60  0.5  0 

    288 333 381 432 489 553 998

    LARGO 288 320 347 371 391 409 516

    POSITIVE SHORT 126 158 192 228 268 312 630

    LARGO 126 127 128 130 134 139 175

    3 Panel type Type 4 Panel 

    TIME  OF Lesser l ight / greater Light (Lx / Ly)  

    NEGATIVE EDGE INTERIOR SHORT

    1.00  0.90  0.80  0.70  0.60  0.5  0 

    297 346 397 453 514 583 1060

    LARGO 315 317 379 411 442 465 587

    NEGATIVE EDGE BATCH LARGO 190 219 250 283 321 362 651

    POSITIVE SHORT 129 164 202 241 285 334 751

    LARGO 133 134 135 138 142 147 185

  • 8/18/2019 Analysis of Slab by Different Methods

    15/28

    PANEL  TIME   FEDERAL DISTRICT  

    2-3-C-D 

    Mx -0.611 

    0,288 

    My -0.554 

    0.218 

    3-4-A-B Mx  -0.403 0.209 

    My -0.377 

    0,133 

    3-4-B-C 

    Mx -0.422 

    0,223 

    My -0.386 

    0.13 

    3-4-C-D 

    Mx -0,465 

    0,228 

    My -0.415 

    0.136 

    Panel type 1 Type 2 Panel 3 Panel type Type 4 Panel 

    Figure 9 Models used by the meth od of th e Federal Distr ict  

    METHOD FOR APPLYING THIS MUST BE MET THESE LIMITATIONS: 

      The boards are approximately rectangular.

      Load distribution acting on the slab is approximately uniform in each board.

      The negative experiences in the common support of two adjacent boards do not differ from

    each other in more than 50% of the least of them.  The ratio of live load to dead load is not greater than 2.5 for monolithic slabs with their

    support, nor greater than 1.5 in other cases.

    Results obtained in times per meter panels 9 are proposed exercise in Table 25:

    Table 25 Summ ary of mom ents / m calcul ated with the method of the Federal Distr ict  

    PANEL   TIME   FEDERAL D ISTRICT  

    1-2-A-B 

    Mx -0.466 

    0,217 

    My -0.455 

    0,178 

    1-2-B-C 

    Mx  -0.491 0.244 

    My -0.463 

    0.174 

    1-2-C-D 

    Mx -0.556 

    0.291 

    My -0.519 

    0,181 

    2-3-A-B 

    Mx -0.433 

    0,202 

    My -0.409 

    0,173 

    2-3-B-C 

    Mx -0.522 

    0.238 

    My -0.511 

    0.213 

    10. MODELING WITH ETABS. (8) 

    The model used has the following main features:

    Columns and beams: cracked stiffness values recommended by the CEC2000, beam-column Knots are used: they are rigid with a length of area equal to half the real,

  • 8/18/2019 Analysis of Slab by Different Methods

    16/28

    Slab: tile compression of 5 cm thick is formed by membrane-like shell elements but with reducedrigidity f11y f22 5%; nerves are rectangular beams 10x15 cm every 50 cm, and bending stiffnessalong the local axis 3 reduced to 50%; geometrically tile is above the nerves.

    For this article the following results were obtained by nerve center, to not test all the nervesof each panel has taken the central nerves (Figure 10) and in some cases an average between twonerves located in the center of the panel should remembered that if a nerve parallel to the Y axismoments you will see in the nerve around the axis X and vice versa discussed.

    In Figure 11 it can be seen a sketch of the shape of the times nerves.

    Central Nerves

    Figure 10 Central Nerves  

    Figure 11 Sketch moment s acting on a slab  

    In Figure 10 and 11 it should be noted that the horizontal elements which absorb greatermoments are beams structure and therefore in a slab strips not receive both columns time asmedians and the high location of the beams nerves the central part of a slab need larger armed.

  • 8/18/2019 Analysis of Slab by Different Methods

    17/28

    PANEL   TIME   ETABS  

    2-3-C-D

    Mx-0.472

    0,207

    My-0.479

    0,176

    3-4-A-B

    Mx-0.316

    0.142

    My-0.292

    0.097

    3-4-B-C

    Mx-0.33

    0.15

    My0.303

    0,093

    3-4-C-D

    Mx-0.342

    0.163

    My-0.326

    0,092

    Table 26 Summ ary of mom ents / nerve calculated ETABS  

    PANEL   TIME   ETABS  

    1-2-A-B 

    Mx -0.37 

    0.143 

    My -0.35 

    0.134 

    1-2-B-C  Mx 

    -0.389 

    0.156 

    My -0.366 

    0,129 

    1-2-C-D 

    Mx -0.417 

    0.18 

    My -0.396 

    0,129 

    2-3-A-B 

    Mx -0.404 

    0.158 

    My -0.414 

    0,177 

    2-3-B-C 

    Mx -0.425 

    0,157 

    My -0.438 

    0,171 

    11. COMPARISON OF RESULTS 

    Shown in Table 27 calculated by different methods but in different formats, these formats arespecific methods are now.

    Table 27 Moments Design 

    COMPARISON OF FINDINGS MOMENTS 

    PANEL   TIME   ING. ROMO   V. RIGIDAS   M. DIRECT   FEDERAL DISTRICT   ETABS  

    TYPE   T * m / m   T * m / str ip   T * m / str ip   T * m / T * m / nerve  

    1-2-A-B 

    Mx -1.227  -0.749  -1.433  -0.466  -0.37 

    0.651  0,433  0.613  0,217  0.143 

    My -1.102  -0.639  -1.29  -0.455  -0.35 

    0.533  0.369  0,998  0,178  0.134 

    1-2-B-C 

    Mx -1.091  -0.658  -1.433  -0.491  -0.389 

    0.563  0.434  0.62  0.244  0.156 

    My -1.04  -0.818  -1.29  -0.463  -0.366 

    0.467  0.326  0.671  0.174  0,129 

    1-2-C-D 

    Mx -1.48  -0.943  -1.336  -0.556  -0.417 

    0.826  0.556  0.62  0.291  0.18 

    My -1.093  -0.576  -1.2  -0.519  -0.396 

    0,459  0,295  1.13  0,181  0,129 

    2-3-A-B 

    Mx -1.139  -0.944  -1.433  -0.433  -0.404 

    0.549  0.385  0.759  0,202  0.158 

    My -1.014  -0.578  -1.29  -0.409  -0.414 

    0.48  0.376  0,998  0,173  0,177 

    2-3-B-C 

    Mx -1.027  -0.843  -1.433  -0.522  -0.425 

    0.484  0.388  0.759  0.238  0,157 

    My -0.961  -0.762  -1.29  -0.511  -0.438 

    0.422  0.348  0.671  0.213  0,171 

    2-3-C-D 

    Mx -1.343  -1.164  -1.336  -0.611  -0.472 

    0.683  0,495  0.701  0,288  0,207 

    My -0.985  -0.512  -1.2  -0.554  -0.479 

    0,398  0.365  1.13  0.218  0,176 

    3-4-A-B 

    Mx -1.074  -0.683  -1.349  -0.403  -0.316 

    0.597  0,405  0.64  0.209  0.142 

    My -0.806  -0.426  -1.106  -0.377  -0.292 

    0,344  0.257  0.773  0,133  0.097 

    3-4-B-C 

    Mx -0.993  -0.636  -1.349  -0.422  -0.33 

    0.544  0.41  0.664  0,223  0.15 

    My -0.785  -0.558  -1.106  -0.386  0.303 

    0.307  0.221  0.569  0.13  0,093 

    3-4-C-D 

    Mx -1.202  -0.825  -1.255  -0,465  -0.342 

    0.686  0.49  0.664  0,228  0.163 

    My 

    -0.774  -0.363  -1.033  -0.415  -0.326 

    0.282  0.226  0.29  0.136  0,092 

  • 8/18/2019 Analysis of Slab by Different Methods

    18/28

    In order to compare the responses is necessary to transform the values to a standard, inthis case this is just the moment nerve, therefore the method of Ing, Romo and the method ofFederal District values obtained are divided by two in rigid for the width of the central strip andagain for 2 (two ribs per meter) beams, in the direct method also to the width of the central strip, butin this case is formed by two central semifranjas ( estimates are about an axis) and then for twohere also, in the case of model values ETABS midribs are used, The results are shown in Table 28.

    Table 28 Moments design / web 

    COMPARISON OF FINDINGS MOMENTS

    PANEL  TIME   ING. ROMO   V. RIGIDAS   M. DIRECT   FEDERAL DISTRICT   ETABS  

    TYPE   T * m / nerve   T * m / nerve   T * m / nerve   T * m / nerve   T * m / nerve  

    1-2-A-B

    Mx-0.614 -0.197 -0.377 -0.233 -0.370

    0.326 0.114 0.161 0.109 0.143

    My-0.551 -0.183 -0.369 -0.228 -0.350

    0.267 0,105 0,285 0.089 0.134

    1-2-B-C

    Mx-0.546 -0.157 -0.341 -0.246 -0.389

    0.282 0,103 0.148 0,122 0.156

    My-0.520 -0.234 -0.369 -0.232 -0.366

    0.234 0,093 0,192 0,087 0,129

    1-2-C-D

    Mx-0.740 -0.210 -0.297 -0.278 -0.4170.413 0,124 0,138 0,146 0,180

    My-0.547 -0.165 -0.343 -0.260 -0.396

    0,230 0.084 0.323 0.091 0,129

    2-3-A-B

    Mx-0.570 -0.248 -0.377 -0.217 -0.404

    0,275 0.101 0,200 0.101 0.158

    My-0.507 -0.145 -0.323 -0.205 -0.414

    0,240 0.094 0,250 0,087 0,177

    2-3-B-C

    Mx-0.514 -0.201 -0.341 -0.261 -0.425

    0,242 0,092 0,181 0.119 0,157

    My-0.481 -0.191 -0.323 -0.256 -0.438

    0.211 0,087 0,168 0,107 0,171

    2-3-C-D

    Mx-0.672 -0.259 -0.297 -0.306 -0.472

    0.342 0,110 0.156 0,144 0,207My

    -0.493 -0.128 -0.300 -0.277 -0.479

    0,199 0.091 0.283 0.109 0,176

    3-4-A-B

    Mx-0.537 -0.180 -0.355 -0.202 -0.316

    0.299 0,107 0,168 0,105 0.142

    My-0.403 -0.142 -0.369 -0.189 -0.292

    0,172 0,086 0.258 0,067 0.097

    3-4-B-C

    Mx-0.497 -0.151 -0.321 -0.211 -0.330

    0.272 0.098 0.158 0.112 0,150

    My-0.393 -0.186 -0.369 -0.193 0.303

    0.154 0,074 0,190 0,065 0,093

    3-4-C-D

    Mx-0.601 -0.183 -0.279 -0.233 -0.342

    0,343 0.109 0.148 0.114 0.163

    My

    -0.387 -0.121 -0.344 -0.208 -0.326

    0,141 0,075 0.097 0,068 0,092

  • 8/18/2019 Analysis of Slab by Different Methods

    19/28

    12. ANALYSIS OF RESULTS 

     Analyzing a lightened slab type 20 cm thick M. Romo, beams Rigid, Direct Method, Methodof Mexico City and ETABS model to compare the results was performed Ing methods were used..

    TOTAL RESULTS OF ARTICLE

    - The method of Ing. M. Romo gives thehighest values are 58% higher than theresults obtained with ETABS.

    - The method of rigid beams gives lower valuesin 42% of those obtained with ETABS.

    - The Direct Method gives similar values 7%more than those obtained with ETABS.

    - The method gives lower values DistritoFederal 34% of those obtained with ETABS.

    160

    140

    120

    100

    80

    60

    40

    20

    % TOTAL WITH RESPECT TO ETABS  

    0

    ING. ROMO M. V. HARD LIVE DISTRICTFEDERAL ETABS

    NEGATIVE RESULTS OF ARTICLE TOTALTIME AROUND THE SHAFT AND

    - The method of Ing. M. Romo gives thehighest values, 29% more than the resultsobtained with ETABS.

    - The method of rigid beams gives lower valuesby 54% of those obtained with ETABS.

    - The Direct Method gives values 20% lowerthan those obtained with ETABS.

    - The method gives values of the Federal

    District39% smaller than those produced by ETABS.

    140

    120

    100

    80

    60

    40

    20

    % TIME AND NEGATIVE WITH RESPECT TO ETABS 

    0

    ING. ROMO V. RIGIDAS M.

    DIRECT

    FEDERAL

    DISTRICT

    ETABS

    TOTAL TIME POSITIVE RESULTS OF ARTICLE AROUND THE SHAFT AND

    - The method Ing.M. Romo gives values 58%higher than the moments obtained withETABS.

    - The method of rigid beams gives lowervalues in 31% of those obtained with

    ETABS.- The Direct Method gives the values 73%

    higher than those obtained with ETABS.- The method gives the Federal District

    values lower by 35% than those obtainedwith ETABS.

    180

    160

    140

    120

    100

    80

    60

    40

    20

    % TIME AND POSITIVE RELATIONSHIP WITH A ETABS  

    0

    ING. ROMO M. V. HARD LIVE DISTRICT

    FEDERAL

    ETABS

  • 8/18/2019 Analysis of Slab by Different Methods

    20/28

     

    NEGATIVE RESULTS OF ARTICLE TOTALTIME AROUND THE SHAFT X

    - The method of Ing. M. Romo gives thehighest values are higher by 54% to theresults obtained with ETABS.

    - The method of rigid beams gives lowervalues in 48% of those obtained withETABS.

    - The Direct Method gives values 18% lessthan those obtained with ETABS.

    - The method gives lower values DistritoFederal 37% of those obtained with ETABS.

    160

    140

    120

    100

    80

    60

    40

    20

    % X NEGATIVE MOMENT WITH RESPECT TO ETABS 

    0

    ING. ROMO M. V. HARD LIVE DISTRICT

    FEDERAL

    ETABS

    TOTAL TIME POSITIVE RESULTS OF ARTICLE AROUND THE SHAFT X

    - The method of Ing. M. Romo gives highervalues by 92% to the results obtained withETABS.

    - The method of rigid beams gives lowervalues by 34% to those obtained withETABS.

    - The Direct Method gives the values 6%lower than those obtained with ETABS.

    - The method of the Federal District giveslower values by 26% to those obtained withETABS.

    200

    180

    160

    140

    120

    100

    80

    60

    40

    20

    % TIME RELATIONSHIP WITH A POSITIVE X ETABS  

    0

    ING. ROMO M. V. HARD LIVE DISTRICTFEDERAL

    ETABS

    CORNER PANELS NEGATIVE RESULTSTIME AROUND THE SHAFT AND

    - The method of Ing. M. Romo gives highervalues 34% higher than the results obtainedwith ETABS.

    - The method of rigid beams gives lowervalues in 59% of those obtained withETABS.

    - The Direct Method gives values 21% lowerthan those obtained with ETABS.

    - The method gives lower values DistritoFederal 39% of those obtained with ETABS.

    140

    120

    100

    80

    60

    40

    20

    % TIME AND NEGATIVE IN CORNER PANEL 

    0

    ING. ROMO M. V. HARD LIVE DISTRICT

    FEDERAL

    ETABS

  • 8/18/2019 Analysis of Slab by Different Methods

    21/28

    CORNER PANELS POSITIVE RESULTSTIME AROUND THE SHAFT AND

    - The method of Engineer, M, Romogives values 34% more thanthe moments obtained with ETABS.

    - The method of rigid beams giveslower values in 59% of those obtainedwith ETABS.

    - The Direct Method gives values 21%lower than those obtained withETABS.

    - The method gives lower valuesDistrito Federal 39% of thoseobtained with ETABS.

    250

    200

    150

    100

    50

    0

    % TIME AND POSITIVE IN CORNER PANEL 

    ING. ROMO M. V. HARD LIVE DISTRICT

    FEDERAL

    ETABS

    NEGATIVE RESULTS PANELS TIME AROUND CORNER AXIS X

    - The method of Ing. M. Romo gives thehighest values, 65% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues by 45% of those obtained withETABS.

    - The Direct Method gives values 20%lower than those obtained with ETABS.

    - The method gives lower values DistritoFederal 37% of those obtained withETABS.

    180

    160

    140

    120

    100

    80

    60

    40

    20

    0

    % X NEGATIVE MOMENT CORNER PANEL 

    ING. ROMO M. V. HARD LIVE DISTRICTFEDERAL

    ETABS

    POSITIVE RESULTS PANELS TIME AROUNDCORNER AXIS X

    - The method of Ing. M. Romo gives thehighest values, 110% more than themoments obtained with ETABS.

    - The method gives lower values rigidbeams 30% of those obtained withETABS.

    - The Direct Method gives values 10%lower than those obtained with ETABS.

    - The method gives lower values DistritoFederal 27% of those obtained withETABS.

    250

    200

    150

    100

    50

    0

    % TIME X POSITIVE IN CORNER PANEL 

    ING. ROMO M. V. HARD LIVE DISTRICT

    FEDERAL

    ETABS

  • 8/18/2019 Analysis of Slab by Different Methods

    22/28

     

    INTERIM RESULTS WHICH SIDE PANELS OUTSIDE GREATER IS PARALLEL TO THE AXIS X

    NEGATIVE TIME AROUND THE SHAFT AND

    - The method of Ing. M. Romo gives thehighest values, 25% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues by 49% of those obtained withETABS.

    - The Direct Method gives values 21%lower than those obtained with ETABS.

    - The method gives lower values DistritoFederal 38% of those obtained withETABS.

    140

    120

    100

    80

    60

    40

    20

    0

    % TIME AND NEGATIVE IN OUTER PANEL 

    ING. ROMO M. V. HARD LIVE DISTRICT

    FEDERAL

    ETABS

    INTERIM RESULTS WHICH SIDE PANELS OUTSIDE GREATER IS PARALLEL TO THE AXIS X

    POSITIVE TIME AROUND THE SHAFT AND

    - The method of Ing. M. Romo gives thehighest values, 53% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues in 32% of those obtained withETABS.

    - The Direct Method gives higher values  44% higher than those obtainedwith ETABS.

    - The method gives lower values DistritoFederal 34% of those obtained withETABS.

    160

    140

    120

    100

    80

    60

    40

    20

    % TIME AND POSITIVE IN OUTER PANEL 

    0

    ING. ROMO M. V. HARD LIVE DISTRICT

    FEDERAL

    ETABS

    INTERIM RESULTS WHICH SIDE PANELS OUTSIDE GREATER IS PARALLEL TO THE AXIS X

    NEGATIVE TIME AROUND THE SHAFT X

    - The method of Ing. M. Romo gives thehighest values, 44% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues by 53% of those obtained withETABS.

    - The Direct Method gives values 19%lower than those obtained with ETABS.

    - The method gives the FederalDistrict

    values below 36% of those obtained withETABS.

    160

    140

    120

    100

    80

    60

    40

    20

    % X NEGATIVE TIME IN OUTER PANEL 

    0

    ING. ROMO M. V. HARD LIVE DISTRICT

    FEDERAL

    ETABS

  • 8/18/2019 Analysis of Slab by Different Methods

    23/28

    INTERIM RESULTS WHICH SIDE PANELS OUTSIDE GREATER IS PARALLEL TO THE AXIS X

    POSITIVE TIME AROUND THE SHAFT X

    - The method of Ing. M. Romo gives thehighest values, 76% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues in 39% of those obtained withETABS.

    - The Direct Method gives values 8% lowerthan those obtained with ETABS.

    - The method gives lower values DistritoFederal 26% of those obtained withETABS.

    180

    160

    140

    120

    100

    80

    60

    40

    20

    % X POSITIVE MOMENT IN OUTER PANEL 

    0

    ING. ROMO M. V. HARD LIVE DISTRICT

    FEDERAL

    ETABS

    INTERIM RESULTS EXTERIOR PANELS UNDER WHOSE SIDE IS PARALLEL TO THE AXIS

    XNEGATIVE TIME AROUND THE SHAFT AND

    - The method of Ing. M. Romo gives thehighest values, 22% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues by 65% of those obtained withETABS.

    - The Direct Method gives values 35% lowerthan those obtained with ETABS.

    - The method gives lower values DistritoFederal 51% of those obtained with

    ETABS.

    140

    120

    100

    80

    60

    40

    % TIME AND NEGATIVE IN OUTER PANEL 

    20

    0

    ING. ROMO M. V. HARD LIVE DISTRICTFEDERAL

    ETABS

    INTERIM RESULTS EXTERIOR PANELS UNDER WHOSE SIDE IS PARALLEL TO THE AXISX

    POSITIVE TIME AROUND THE SHAFT AND

    - The method of Ing. M. Romo gives thehighest values, 36% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues in 47% of those obtained withETABS.

    - The Direct Method gives higher values  16% more than those obtained withETABS.

    - The method gives lower values DistritoFederal 51% of those obtained withETABS.

    140

    120

    100

    80

    60

    40

    20

    % TIME AND POSITIVE IN OUTER PANEL 

    0

    ING. ROMO M. V. HARD LIVE DISTRICTFEDERAL

    ETABS

  • 8/18/2019 Analysis of Slab by Different Methods

    24/28

    - The method of Ing. M. Romo gives thehigher values, 10% more than the 120ETABS times obtained.

    - The method of rigid beams gives values 100

    under 57% of those obtained with

    40

    INTERIM RESULTS EXTERIOR PANELS UNDER WHOSE SIDE IS PARALLEL TO THE AXISX

    NEGATIVE TIME AROUND THE SHAFT X

    - The method of Ing. M. Romo gives thehighest values, 41% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues in 39% of those obtained withETABS.

    - The Direct Method gives values 22% lessthan those obtained with ETABS.

    - The method gives lower values DistritoFederal 46% of those obtained withETABS.

    160

    140

    120

    100

    80

    60

    40

    % X NEGATIVE TIME IN OUTER PANEL 

    20

    0

    ING. ROMO M. V. HARD LIVE DISTRICT

    FEDERAL

    ETABS

    INTERIM RESULTS EXTERIOR PANELS UNDER WHOSE SIDE IS PARALLEL TO THE AXIS

    X

    POSITIVE TIME AROUND THE SHAFT X

    - The method of Ing. M. Romo gives thehighest values, 74% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues by 36% of those obtained withETABS.

    - The Direct Method gives higher values by5% more than those obtained with ETABS.

    - The method gives lower values Distrito

    Federal 36% of those obtained with ETABS.

    180

    160

    140

    120

    100

    80

    60

    40

    20

    % X POSITIVE MOMENT IN OUTER PANEL 

    0

    ING. ROMO M. V. HARD LIVE DISTRICT

    FEDERAL

    ETABS

    RESULTS CENTRAL PANELS

    NEGATIVE TIME AROUND THE SHAFT AND

    % TIME AND NEGATIVE IN CENTRAL PANEL 

    ETABS.  80 - The Direct Method gives values 38% less than

    those obtained with ETABS.60

     

    - The method gives the Federal Districtvalues below 42% of those obtained withETABS.

    20

    0

    ING. ROMO M. V. HARD LIVE DISTRICTFEDERAL

    ETABS

  • 8/18/2019 Analysis of Slab by Different Methods

    25/28

    POSITIVE RESULTS PANELS CENTRALTIME AROUND THE SHAFT AND

    - The method of Ing. M. Romo gives thehighest values, 23% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues by 49% of those obtained withETABS.

    - The Direct Method gives values 18% lessthan those obtained with ETABS.

    - The method gives the Federal Districtvalues below 38% of those obtained withETABS.

    140

    120

    100

    80

    60

    40

    % TIME AND POSITIVE IN CENTRAL PANEL 

    20

    0

    ING. ROMO M. V. HARD LIVE DISTRICTFEDERAL

    ETABS

    POWER PANELS NEGATIVE RESULTS

    TIME AROUND THE SHAFT X

    - The method of Ing. M. Romo gives thehighest values, 21% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues by 53% of those obtained withETABS.

    - The Direct Method gives values 23% lowerthan those obtained with ETABS.

    - The method gives lower values DistritoFederal 39% of those obtained with ETABS.

    140

    120

    100

    80

    60

    40

    % X NEGATIVE IN CENTRAL TIME PANEL 

    20

    0

    ING. ROMO M. V. HARD LIVE DISTRICTFEDERAL

    ETABS

    POSITIVE RESULTS PANELS CENTRALTIME AROUND THE SHAFT X

    - The method of Ing. M. Romo gives thehighest values, 21% more than themoments obtained with ETABS.

    - The method of rigid beams gives lowervalues by 53% of those obtained withETABS.

    - The Direct Method gives values 23% lowerthan those obtained with ETABS.

    - The method gives lower values DistritoFederal 39% of those obtained with ETABS.

    160

    140

    120

    100

    80

    60

    40

    20

    % X POSITIVE IN CENTRAL TIME PANEL 

    0

    ING. ROMO M. V. HARD LIVE DISTRICTFEDERAL

    ETABS

  • 8/18/2019 Analysis of Slab by Different Methods

    26/28

    mi 

    13. CALCULATION OF ARMOR. (2) 

     Already obtained the design time by different methods and with them the next step is tocalculate the armor of the slab, some authors differ in the methods of conception of nerves, somesee them as beams, fifura 12 and consider the contribution the tile compression, others simply workwith nerves as rectangular beams, the aim of this article is not compare these forms of calculationbut interesting show armor for the proposed exercise, it then uses the values obtained with the

    method of lng. Marcelo Romo. Which are the highest values obtained and designed considering theslab below the nerves as beams and calculation is based on the ACI 318 indicating beams analysisand the results are shown in Table 29.

    As CALCULATION OF UPPER AND LOWER minimum Effective height of the slab (d) 

    Figure 12 Equiv alent B eam T  

    d = 20 - 2 to 1.2 / 2 = 17.4 cm

    As MINIMUM TOP 

    210  2  AceOne 0.8 *

     Ace2 1.6*

    4200

    210

    4200 

    100 * 17.4 * 4,803cm

    17.4 * 20 * 1,921cm2 2 

     AceTh

    ree

    14

    420017.4 * 20 * 1.16 cm2 

    SUPERIOR Asmin = 1,921 cm Acemin SUP / NERVE = 1,921 / 2 = 0.9605 cm  

    As MINIMUM BOTTOM 

    210  2  AceOne 0.8 *

    144200 

    17.4 * 20 * 0.961 cm

    2

     AceTh

    ree4200 

    17.4 * 20 * 1.16 cm

    Ace BOTTOM = 1.16 cm2 2 

    Asmin INF / NERVE = 1.16 / 2 = 0.58 cm 

    Table 29 Calculation Of A rmo r  

    Panel  Moo  B  P   Ace  As min  Def As (cm2)  As / nerve 

    nerve 

    1-2-A-BMx

    1227 20 0.00575 2,001 1,921 2,001 1,001  120.651 100 0.00057 0.996 1.16 1.16 0.58  10

  • 8/18/2019 Analysis of Slab by Different Methods

    27/28

     

    My1102 20 0.00512 1,783 1,921 1,921 0.9605  120.533 100 0.00046 0.815 1.16 1.16 0.58  10

    1-2-B-C

    Mx1091 20 0.00507 1,764 1,921 1,921 0.9605  120.563 100 0.00049 0,861 1.16 1.16 0.58  10

    My1040 20 0.00482 1,676 1,921 1,921 0.9605  120.467 100 0.00041 0.713 1.16 1.16 0.58  10

    1-2-C-D

    Mx-1.48 20 0.00705 2,454 1,921 2,454 1,227  140.826 100 0.00073 1,267 1.16 1,267 0.6335  10

    My1093 20 0.00508 1,767 1,921 1,921 0.9605  120.459 100 0.00040 0.701 1.16 1.16 0.58  10

    2-3-A-B

    Mx1139 20 0.00531 1,847 1,921 1,921 0.9605  120.549 100 0.00048 0.839 1.16 1.16 0.58  10

    My1014 20 0.00469 1,632 1,921 1,921 0.9605  120.48 100 0.00042 0.733 1.16 1.16 0.58  10

    2-3-B-C

    Mx1027 20 0.00475 1,654 1,921 1,921 0.9605  120.484 100 0.00043 0.74 1.16 1.16 0.58  10

    My-0961 20 0.00443 1,541 1,921 1,921 0.9605  12

    0.422 100 0.00037 0.644 1.16 1.16 0.58  10

    2-3-C-D

    Mx1343 20 0.00634 2,206 1,921 2,206 1,103  120.683 100 0.00060 1,046 1.16 1.16 0.58  10

    My-0985 20 0.00455 1,582 1,921 1,921 0.9605  120.398 100 0.000 0.947 1.16 1.16 0.58  10

    3-4-A-B

    Mx1074 20 0.00498 1,735 1,921 1,921 0.9605  120.597 100 0.00052 0.913 1.16 1.16 0.58  10

    My-0806 20 0.00368 1,281 1,921 1,921 0.9605  120.344 100 0.00030 0,525 1.16 1.16 0.58  10

    3-4-B-C

    Mx-0993 20 0.00459 1,596 1,921 1,921 0.9605  120.544 100 0.00048 0.832 1.16 1.16 0.58  10

    My

    -0785 20 0.00358 1,246 1,921 1,921 0.9605  120.307 100 0.00027 0.468 1.16 1.16 0.58  10

    3-4-C-D

    Mx1202 20 0.00562 1,957 1,921 1,957 0.9785  120.686 100 0.00060 1.05 1.16 1.16 0.58  10

    My-0774 20 0.00353 1,228 1,921 1,921 0.9605  120.282 100 0.00025 0,430 1.16 1.16 0.58  10

    13.CONCLUSIONES, 

     Analysis of a slab lightened bidirectional type 20 cms thick M. Romo, beams Rigid, Direct Method,the Method Federal district and ETABS model was performed Ing methods were used. To compareresults.

    - The method of Ing. M. Romo gives the highest values in relation to negative moments.- The Direct Method gives lower values than in the negative moments in 18-20% of those

    obtained with ETABS.- The rigid beams method gives results in minor negative moments in 54-48% of those

    obtained with ETABS.- The method gives results in Distrito Federal minor negative moments in 26-35% of those

    obtained with ETABS.

  • 8/18/2019 Analysis of Slab by Different Methods

    28/28

    - Variations in the positive moments are considerable between the methods discussed butremember that are much smaller than the negative moments.

    - The results obtained with ETABS results show conservative but not so far from the othermethods such as the Ing. Romo.

    - Other methods for the analysis and design of two-way slabs but the results ETABS usercan be sure that if you use the model proposed in this paper the results will be reliable.

    - The direct method is a good alternative for manual calculation and whether to use amethod of coefficients Method Engineer Romo is a good choice.

    - Importantly, the armed resulting from using any of these methods in this article almostentirely minimal assembly, expressed in rods ø12 to ø10 negative arming and for thepositive.

    REFERENCES 

    1. Colombian Association of Earthquake Engineering, Colombian standards for EarthquakeResistant Design and Construction NSR-98, Volume 2, 1998.

    2.  ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318M-02) andCommentary (ACI 318RM-02), ACI International, 2002.

    3. Cuevas González - Robles, Fundamentals of Reinforced Concrete, Limusa Noriega Editores,1996.

    4. INEN, Ecuadorian Code of Practice, CPE INEN5: 2001 Part 1, Chapter 12, INEN, 2001.5.  Arthur Nilson, Design of Concrete Structures, McGraw Hill, 1999.6. Parker - Ambrose, Simplified Reinforced Concrete Design, Limusa Wiley, 2003.7. Marcelo Romo, Stitching Concrete, ESPE, 1995.8. Manuals ETABS Nonlinear Version 8.26, CSI Computers and Structures.9. Http // www.Inti.gov.ar / CIRSOC / complementary / chapter 19.pdf

    http://www.inti.gov.ar/http://www.inti.gov.ar/