analytical methods for the determination of chlorohexidine

14
This article was downloaded by: [Ryerson University] On: 21 February 2013, At: 08:21 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Critical Reviews in Analytical Chemistry Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/batc20 Analytical Methods for the Determination of Chlorhexidine: A Review Flávia Angélica Másquio Fiorentino a , Marcos Antonio Corrêa b & Hérida Regina Nunes Salgado a b a Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Araraquara, UNESP, Araraquara, SP, Brazil b Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas de Araraquara, UNESP, Araraquara, SP, Brazil Version of record first published: 06 May 2010. To cite this article: Flávia Angélica Másquio Fiorentino , Marcos Antonio Corrêa & Hérida Regina Nunes Salgado (2010): Analytical Methods for the Determination of Chlorhexidine: A Review, Critical Reviews in Analytical Chemistry, 40:2, 89-101 To link to this article: http://dx.doi.org/10.1080/10408340903232020 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Upload: santhi-kumar

Post on 12-Apr-2015

265 views

Category:

Documents


8 download

DESCRIPTION

Review article

TRANSCRIPT

Page 1: Analytical Methods for the Determination of Chlorohexidine

This article was downloaded by: [Ryerson University]On: 21 February 2013, At: 08:21Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK

Critical Reviews in Analytical ChemistryPublication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/batc20

Analytical Methods for the Determination ofChlorhexidine: A ReviewFlávia Angélica Másquio Fiorentino a , Marcos Antonio Corrêa b & Hérida Regina NunesSalgado a ba Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de CiênciasFarmacêuticas de Araraquara, UNESP, Araraquara, SP, Brazilb Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas deAraraquara, UNESP, Araraquara, SP, BrazilVersion of record first published: 06 May 2010.

To cite this article: Flávia Angélica Másquio Fiorentino , Marcos Antonio Corrêa & Hérida Regina Nunes Salgado (2010):Analytical Methods for the Determination of Chlorhexidine: A Review, Critical Reviews in Analytical Chemistry, 40:2, 89-101

To link to this article: http://dx.doi.org/10.1080/10408340903232020

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematicreproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form toanyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contentswill be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses shouldbe independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly inconnection with or arising out of the use of this material.

Page 2: Analytical Methods for the Determination of Chlorohexidine

Critical Reviews in Analytical Chemistry, 40:89–101, 2010Copyright c© Taylor and Francis Group, LLCISSN: 1040-8347 print / 1547-6510 onlineDOI: 10.1080/10408340903232020

Analytical Methods for the Determinationof Chlorhexidine: A Review

Flavia Angelica Masquio Fiorentino,1 Marcos Antonio Correa,2 and HeridaRegina Nunes Salgado1,2

1Programa de Pos-graduacao em Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas deAraraquara, UNESP, Araraquara, SP, Brazil2Departamento de Farmacos e Medicamentos, Faculdade de Ciencias Farmaceuticas de Araraquara,UNESP, Araraquara, SP, Brazil

Chlorhexidine is a type of antiseptic belonging to biguanidic group and it is large, used indentistry, human, and veterinary medicine because it is active against Gram-positive andGram-negative microorganisms. It can be incorporated in several types of preparations andfor this reason are necessary effective analytical procedures for quality control and pharma-codynamic and pharmacokinetic studies. Chlorhexidine can be analyzed by many types ofassays, however the HPLC is the most used method. In this review, various methods to analyzechlorhexidine including spectrometry, chromatography, colorimetric reaction, solid phase ex-traction, and capillary electrophoresis are presented and the application of these methods forthe determination of chlorhexidine in biological fluids and formulations are discussed.

Keywords review, chlorhexidine, methods of analysis.

INTRODUCTIONGeneral Aspects of Chlorhexidine

Antiseptics are products which destroy microorganisms orinhibit their reproduction or metabolism (1). The antisepticsdamage coagulation protoplasmatic or denaturation of proteins,cell lyses by structural change of the cell membrane, decreaseof surface tension, inhibition of essential enzymes and they areused just to prevent infections because they destroy microor-ganisms in external surface and in the skin (2, 3). The use ofantiseptics started in 1847 (4) and chlorhexidine, a type of an-tiseptic, was synthesized in the 1940s and commercialized in1954 (5).

Chlorhexidine is an excellent cationic antiseptic belonging tobiguanidic group, chemically known as 1,1′–hexamethylenebis{5–(p-chlorophenyl) biguanide} (Figure 1) (6, 7). It has a va-riety of salts, as digluconate (Figure 2), acetate (Figure 3), glu-conate, and hydrochloride (Figure 4) (7, 8).

Chlorhexidine has many types of uses because is possibleincorporate it into many types of products, for example, in soaps,

Address correspondence to Prof. Herida Regina Nunes Salgado,Programa de Pos-graduacao em Ciencias Farmaceuticas, Faculdade deCiencias Farmaceuticas de Araraquara, UNESP, Rodovia Araraquara-Jau, km 1, CEP 14801-902, Araraquara, SP, Brazil; E-mail: [email protected]

oral rinse, mouthwash, solution of irrigation, gel, spray, and gum(9) and it has an extensive safety record, strong binding potentialthat results in effectiveness and low cost (10).

It is used in veterinary medicine as a disinfectant for cleansingwounds, skin, instruments, and equipment (11) and for treatmentof dermatitis and piodermitis (12). In clinical practice, it isused for antisepsis of skin, hands, and mucous membranes andis currently recommended for treatment of wounds and burns(13, 14) and for preparation of patients in procedures (15). Indentistry it is used as a mouth antiseptic, for prevention ofdental plaque formation and treatment of gingivitis, to eliminateoral pathogens, as an endodontic irrigant, and as an intracanalmedication (11, 16).

The use of chlorhexidine has been suggested in spermicidesto prevent the transmission of the HIV virus since it does notbreak the vaginal epithelium, has in vitro activity against thevirus, and may prevent contraception because it spreads in thecervical mucus at concentrations of about 1 mg/mL and preventsthe entry of sperm (17). Also, WHO recommends chlorhexidinefor cleansing umbilical cords because it can markedly reducethe risk of omphalitis (10). Stevens and coworkers (18), Haand Cheung (19), and Abad-Villar and collaborators (20)describe the use of chlorhexidine to preserve ophthalmicsolution and to disinfect contact lenses because of its lowtoxicity.

89

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 3: Analytical Methods for the Determination of Chlorohexidine

90 SALGADO ET AL.

FIG. 1. Chemical structure of chlorhexidine. CAS: 55-56-1.

Chlorhexidine is active against Gram-positive bacteria andless effective for Gram-negative bacteria, fungi, and speciesof Proteus; it has activity only for certain types of envelopedviruses, including hepatitis virus, herpes simplex, HIV, cy-tomegalovirus, influenza, and respiratory syncytial virus. Formycobacteria, chlorhexidine presents minimal activity; againstendospores and cysts of protozoan the activity is nil (3, 8, 9,17, 21). The anti-microbial activity against spores is much dis-cussed. Some authors say it has low activity (21, 22), whileothers say it does not (8, 11, 23). Martindale (17) and Bambaceand coworkers (24) complement the chlorhexidine is effectiveagainst spores only in high temperatures.

Chlorhexidine acts on the cell membrane causing disrup-tion and its consequent loss of intracellular material, respiratoryinhibition, and cytoplasmic coagulation (9, 25). The links inthe cell membrane probably occur between the positive chargeof chlorhexidine with the negative charge of carboxyl groupsavailable for proteoglycans and the phosphate groups of te-icoic and lipoteicoic acids in bacterial inner wall. Regardingthe metabolism, chlorhexidine inhibits the enzyme complex re-sponsible for the incorporation of glycosis in the bacterial cell(5). The action of chlorhexidine is inhibited by nicotinic acid,but it the exact mechanism of this inhibition is not known; it isbelieved to occur by blocking the receptors of chlorhexidine byacid (26).

Side effects are significant discoloration of the teeth, restora-tions, and back of the tongue, flaking, and oral sensitivity; thereis also a bitter taste and interference with the taste for a few hoursafter the mouthwash (27). When it is associated with soap, itcan cause local or systemic toxicity; change in the normal floraof the skin predisposes it to the colonization by Gram-negativebacteria (28). Contact with strong chlorhexidine solution in eyesand sensitive tissue can cause irritation, when ingested, it can

FIG. 2. Chemical structure of chlorhexidine digluconate. CAS:18472-51-0.

FIG. 3. Chemical structure of chlorhexidine acetate. CAS: 56-95-1

cause gastrointestinal irritation, vomiting, and dizziness, whilesystemic toxicity is rare (17, 21).

ANALYTICAL METHODS FOR DETERMINATION OFCHLORHEXIDINE

Development and validation of analytical methods is very im-portant for the pharmaceutical industry to guarantee the qualityof the commercialized products. Several techniques have beendeveloped for the determination of chlorhexidine and the offi-cial method for salts of chlorhexidine described in the literatureis an aqueous titration using 0.1 M perchloric acid (6, 29) andhigh performance liquid chromatography (HPLC) (7). For irri-gation solution and mouthwash with chlorhexidine, HPLC is thedescribed method in the European and British Pharmacopoeias(6, 29). The United States Pharmacopoeia (7) describes HPLCto analyze oral rinse with chlorhexidine gluconate. All theseofficial compendiums describe HPLC to analyze related sub-stances. The United States Pharmacopoeia (7) describes HPLCto analyze p-chloroaniline and the European and British Phar-macopoeias (6, 29) describe a colorimetric method. For analysisof chlorhexidine and its salts, gas chromatography (GC), (30)and HPLC; are the methods presented in the literature (31) to an-alyze impurities and related substances, catalytic oxidizer andHPLC (18), GC (32), and HPLC (33) are the methods men-tioned. The parameters used in these analyses are presented inTables 1 and 2.

In biological fluids, chlorhexidine is determined by severalmethods. For studies or the retention of chlorhexidine in themouth is determined by radiolabelled chlorhexidine (14C) (34),by direct UV spectroscopy (35), by fluorometry (36), by HPLC(37–39), and by solid phase microextraction (40) in saliva; by

FIG. 4. Chemical structure of chlorhexidine hydrochloride.CAS: 3697-42-5.

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 4: Analytical Methods for the Determination of Chlorohexidine

ANALYTICAL METHODS FOR CHX, REVIEW 91

TABLE 1Parameters described in the literature to analyze chlorhexidine and its salts.

Reference Method λ(nm) Mobile phase or solvent Column Linearity Sample

USP (2008) HPLC 239 Solution A: sodiumphosphate buffer pH3.0 with triethylaminein water, mixing withacetonitrile SolutionB: acetonitrile

L1 Gluconate

EP (2005) Titration Perchloric acid SaltsEP (2005) Titration Perchloric acid SaltsSiefert et al. (1975) Gas chromatography 63Ni detector Supelco 50–200 ppm AcetateDoub et al. (1996) Gradient HPLC 230 Phase A: ammonium

acetate pH 5.0 PhaseB: acetonitrile

Nucleosil C18 10 µg/mL to10 mg/mL

Gluconate

HPLC in urine (41, 42), in urine and serum, (43–45) and in serum(46), by liquid chromatography-electrospray ionization massspectrometry (LC-ESI-MS) in hemolyzed blood (47), and de-termination of the elimination lifetime of chlorhexidine residuesin milk of cow (25). The parameters used in these analyses arepresented in Table 3.

In pharmaceutical products with chlorhexidine, HPLC is themethod most used to analyze this antiseptic (7, 11, 19, 48–55); solid-phase extraction (SPE) with UV spectrophotometry(56), gas-liquid chromatography (57), liquid chromatography(6, 29), capillary electrophoresis (CE) (20, 58), flow injectionextraction-spectrophotometry (59, 60); and voltametry (DPV)(61) also are used to assess it. The parameters used in theseanalyses are presented in Table 4.

Chlorhexidine has been incorporated in products to have con-trolled release delivery in the skin and in the mouth to prevent thebiofilm formation and for the treatment of periodontal disease.HPLC is the method frequently used to analyze the liberation ofchlorhexidine (62–67); however, spectrophotometry also can beused (68). The parameters used in these analyses are presentedin Table 5.

The percutaneous absorption of chlorhexidine digluconatesolution was assessed by reverse phase adsorption chromatog-raphy (69). The parameters used in this analyze is presented inTable 6.

DISCUSSION AND CONCLUSIONThere are many methods described to analyze chlorhexidine,

its degradation products, and impurities in the literature. How-ever, HPLC is the most used. The physico-chemical propertiesof chlorhexidine indicate that HPLC with UV detection shouldbe the analytical technique of choice (41). The method related inthe European and British Pharmacopoeias (6, 29), colorimetricreaction, is loss-sensitive and accurate; the methods proposedby Revelle and coworkers (33) and by Doub et al. (31) only

separate and identify the impurities of chlorhexidine, but do notquantity them.

The spectroscopic method proposed by Jensen andChristensen (35) to analyze chlorhexidine in biological fluidsis no, specific for chlorhexidine because recovery compoundsof saliva, but is a simple method and easy to carry out. How-ever, fluorescence described by Vries and coworkers (36) is aneasy and exact method to determine chlorhexidine in aqueoussolution and in saliva. The method proposed by Bosnevoll andcoworkers (34) assesses the quantity of chlorhexidine retainedin the mouth 24 hours after the use of 0.2% chlorhexidine diglu-conate aqueous solution.

The chromatographic methods to analyze chlorhexidine insaliva are laborious, requiring lengthy and complicated ex-traction processes; however, they are more sensitive and spe-cific than other techniques such as colorimetric, titration, flu-orescence, and spectrophotometric methods. The solid-phasemicro extraction allows one to assess several aspects suchas connection and stability of chlorhexidine in the salivaand its pharmacokinetic effects after use of chlorhexidine so-lution. However, it requires many steps for extraction andbecause of this, it is laborious and requires more analysistime.

The method presented by Usui and coworkers (47) is moresensitive and selective than the HPLC-UV method and it alsosupplies more information about the identification of chlorhex-idine and its impurities.

To determine chlorhexidine in urine, HPLC is the most usedmethod. The method described by Wainwright and Cooke (42)allows detecting p-chloroaniline in the urine, but only chlorhex-idine was quantified. The HPLC technique associated with SPE,described by Below and collaborators (45), allows one to de-termine the quantification limit of chlorhexidine in biologicalfluids and in pharmaceutical products and also verify the pres-ence of p-chloroaniline and 1-chloro-4-nitrobenzene, but itsquantification is not exact.

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 5: Analytical Methods for the Determination of Chlorohexidine

92 SALGADO ET AL.

TABLE 2Parameters described in the literature to analyze impurities and degradation products of chlorhexidine

Reference Method �(nm)Mobile phase

or solvent Column Linearity Product found

USP (2008) HPLC 239 Solution A:sodiumphosphatebuffer pH 3.0withtriethylamine inwater, mixingwithacetonitrileSolution B:acetonitrile

L1 Relatedsubstances andp-chloroaniline

EP (2005), BP(2005)

Gas chromatogra-phy andcolorimetricreaction

Nitrogen OV – 225 4- chloroaniline

EP (2005), BP(2005)

HPLC 254 Sodium octane-sulphonate:glacial aceticacid: water:methanol

Nucleosil C18 Relatedsubstances

Gavlick, Davis(1994)

Gas chromatogra-phy

Helium J&W ScientificDB-1

0.956–10ppm

p-chloroaniline

Revelle et al.(1993)

Isocratic HPLCwith diodearray detector,HPLC-MS*,NMR**

PHLC andHPLC-in: 230RMN: 299.92MHz

HPLC andHPLC-MS:buffer acetatepH 5.0:methanolNMR: D2O ouCD3OD

HPLC and HPLCin Zorbax CN

11 impuritiescalled: B, B1,C, D, D1, D2,E, F, G, G1, H

Stevens et al.(1986)

HPLC-UVdetectorCatalyticoxidizer (CO)

220 H3PO4: sodium 1-heptanesulfonate:CH3CN, pH 2.2

Regis ChemicalC6 Oxygen 300mL/min for CO

1–80µg/mL

p-chloroanilinep-chlorophenylbiguanide andphenyl-biguanide

MS*—mass spectroscopy; NMR**—nuclear ressonance magnetic.

In pharmaceutical preparations, HPLC is the most usedmethod; however, it is necessary to extract the chlorhexidineof the products and in some cases this process is lengty. Themethod described by Miribel and coworkers (57) needed sev-eral steps. Moreover, mass spectroscopy and nuclear resonancemagnetic are carried out to verify the chemical structure ofchlorhexidine. The methods proposed by Gavlick (54) andBauer and coworkers (50) allow the quantification of chlorhexi-dine and chloroaniline. The method proposed by Abad-Villarand coworkers (20) was successful and the detection limitfor chlorhexidine is comparable with the best value reportedfor HPLC with UV-detection; this method is useful in oph-

thalmic drug penetration studies due to its simplicity, sensi-tivity, and limited requirement on sample volume. The othermethod of CE described by Okamoto and coworkers (58) alsowas useful to separate and to quantify seven compounds in anointment.

Calatayud and coworkers (59) described a method that usesthe precipitation of chlorhexidine with thymol blue; this pre-cipitation is evaluated by flow injection. This method was fastand simple. The method proposed by Perez-Ruiz and coworkers(1999) (60) might be applicable for many types of pharmaceu-tical preparations and also has instrumental simplicity whencompared with HPLC.

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 6: Analytical Methods for the Determination of Chlorohexidine

TAB

LE

3Pa

ram

eter

sde

scri

bed

inth

elit

erat

ure

toan

alyz

ech

lorh

exid

ine

inbi

olog

ical

fluid

s

Ref

eren

ceM

etho

(nm

)M

obile

phas

eor

solv

ent

Col

umn

Lin

eari

tySa

mpl

e

Bos

nevo

llet

al.

(197

4)L

iqui

dsc

intil

latio

nsp

ectr

omet

erR

eten

tion

ofch

lorh

exid

ine

6.9

±1.

4m

g

Saliv

a

Jens

en,C

hris

tens

en(1

971)

UV

250

Chl

orof

orm

5–25

µg/

mL

;25–

200

µg/

mL

Saliv

a

Vri

eset

al.(

1991

)flu

ores

cenc

e54

1D

yeeo

sin-

Y6.

7–20

µg/

mL

Saliv

aL

amet

al.(

1993

)H

PLC

with

UV

dete

ctor

260

Ace

toni

trile

:soc

ium

acet

ate

buff

er:

hept

anes

ulfo

nic

acid

pH5.

0

Bek

man

Ultr

asph

ere

OD

SC

18

0.05

–20

µg/

mL

Saliv

a

Med

licot

teta

l.(1

994)

HPL

Cw

ithdu

alde

tect

or25

4A

cetr

onitr

ile:g

laci

alac

etic

acid

:sod

ium

laur

ylsu

lpha

te

Exs

ilO

DS-

BC

182–

30µ

g/m

LSa

liva

Peso

nem

etal

.(19

95)

HPL

Cw

ithdu

alde

tect

or26

0A

ceto

nitr

ile:b

uffe

r(d

isod

ium

hydr

ogen

phos

phat

e,1-

hept

anes

ulfo

nic

acid

,tri

ethy

lam

ine)

pH2.

5

LiC

hros

pher

100

RP-

180.

5–10

g/m

LSa

liva

Mus

teat

a,Pa

wlis

zyn

(200

5)So

lidph

ase

mic

roex

trac

tion

HPL

C-M

San

d*E

SI-M

S:ac

eton

itrile

:wat

er(a

cidi

ficat

edw

ithfo

rmic

acid

pH3.

2)

Zor

bax

Ecl

ipse

C18

0.05

–40

µg/

mL

Saliv

a

Gaf

fney

,Coo

ke(1

984)

HPL

Cw

ithU

Vde

tect

or26

0M

etha

nol:

sodi

umac

etat

ebu

ffer

pH5.

0

µB

onda

pak

C18

1–10

µg/

mL

Uri

ne

Wai

nwri

ght,

Coo

ke(1

986)

HPL

Cw

ithU

Vde

tect

or26

0M

etha

nol:

amm

onia

solu

tion:

amm

oniu

mni

trat

e

Part

isil

silic

a50

–200

µg/

mL

Uri

ne

(Con

tinu

edon

next

page

)

93

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 7: Analytical Methods for the Determination of Chlorohexidine

TAB

LE

3Pa

ram

eter

sde

scri

bed

inth

elit

erat

ure

toan

alyz

ech

lorh

exid

ine

inbi

olog

ical

fluid

s(C

onti

nued

)

Ref

eren

ceM

etho

(nm

)M

obile

phas

eor

solv

ent

Col

umn

Lin

eari

tySa

mpl

e

Hus

ton

etal

.(19

82)

HPL

Cw

ithU

Vde

tect

or23

8To

luen

e-4-

sulp

honi

cac

idin

met

hano

l:w

ater

OD

SW

ater

s1–

20µ

g/m

LU

rine

and

bloo

d

Bro

ugha

met

al.

(198

6)H

PLC

with

UV

dete

ctor

260

Met

hano

l:w

ater

with

sodi

umhe

ptan

esul

fona

te

Bon

dapa

kC

1820

.2–8

08ng

/mL

Seru

man

dur

ine

Bel

owet

al.(

2004

)G

radi

entH

PLC

with

UV

,com

bine

dw

ithso

lidph

ase

extr

actio

n

250

Ace

toni

trile

:buf

fer

solu

tion

(am

mon

iaso

lutio

nan

dac

etic

acid

)pH

8.7

(elu

ant

A)

Ace

toni

trile

:ac

etic

acid

(elu

ant

B)

Sepa

ratio

nco

lum

nL

una

C18

Det

ectio

nat

2.5

mg/

Lan

d25

mg/

LSe

rum

and

urin

e

Kud

oet

al.(

2002

)H

PLC

with

UV

dete

ctor

260

Ace

toni

trile

:wat

erw

ith0.

05%

trifl

uoro

acet

icac

id,

0.05

%he

ptafl

uoro

buty

ric

acid

and

0.1%

detr

ieth

ylam

ine

Cap

cell

Pak

C18

0.05

–50

µg/

mL

Seru

m

Usu

ieta

l.(2

006)

HPL

C-E

SI-M

S*H

PLC

-MS:

isoc

ratic

HPL

C

LC

-MS:

acet

onitr

ile:

wat

er:

trifl

uoro

acet

icac

id

LC

-MS:

TSK

gel

OD

S10

0V

0.1–

11µ

g/m

LH

emol

yzed

bloo

d

Heb

erte

tal.

(200

3)H

PLC

with

phot

odio

dear

ray

dete

ctor

258

Ace

tate

buff

er(p

H3.

6):a

ceto

nitr

ileSu

pelc

oD

isco

very

RP-

Am

ide

C16

1–10

g/m

LSa

liva

*Liq

uid

chro

mat

ogra

phy—

eles

tros

pray

ioni

zatio

nan

dm

ass

spec

trop

hoto

met

ry.

94

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 8: Analytical Methods for the Determination of Chlorohexidine

TAB

LE

4Pa

ram

eter

sde

scri

bed

inth

elit

erat

ure

toan

alyz

ech

lorh

exid

ine

inph

arm

aceu

tical

prod

ucts

Ref

eren

ceM

etho

(nm

)M

obile

phas

eor

solv

ent

Col

umn

Lin

eari

tySa

mpl

e

Bai

ley

etal

.(19

75)

HPL

Cw

ithU

Vde

tect

or25

4A

ceto

nitr

ile:0

.02

N

sulp

huri

cac

idin

wat

erPa

rtis

il10

–600

µg/

mL

Ant

isep

ticso

lutio

n,ta

lc,

lotio

n,or

alge

l,ob

stet

ric

crea

mB

auer

etal

.(19

84)

HPL

Cw

ithva

riab

le–

wav

elen

gth

dete

ctor

294

Ace

toni

trile

:pot

assi

umdi

hydr

ogen

phos

phat

ebu

ffer

solu

tion

with

tetr

abut

hyla

mm

oniu

mhy

drog

ensu

lpha

tepH

5.9

µB

onda

pck

C18

0.64

–2.5

g/m

LPa

still

e

Bau

eret

al.(

1983

)H

PLC

with

vari

able

–w

avel

engt

hde

tect

or

262

Buf

fer

solu

tion

with

sodi

umac

etat

epH

3.5:

acet

onitr

ilew

ithla

uryl

sulp

hate

sodi

um

µB

onda

pack

CN

100.

6–1.

g/m

LPa

still

e

Gag

liard

etal

.(1

985)

Gra

dien

tHPL

Cw

ithU

Vde

tect

or26

4A

ceto

nitr

ile:w

ater

with

sodi

umpe

rchl

orat

ean

dT

MA

B*

Erb

asil

C18

0.02

–6µ

g/m

LC

ream

Hu

etal

.(19

91)

HPL

Cw

ithU

Vde

tect

or25

4Po

tass

ium

dihy

drog

enph

osph

ate

buff

erso

lutio

npH

3.5:

met

hano

l

Nuc

leos

ilC

182.

72–4

36µ

g/m

LSo

lutio

nsfo

rso

ftco

ntac

tlen

ses

Gav

lick

(199

2)G

radi

entH

PLC

with

phot

odio

de-a

rray

dete

ctor

239

Phas

eA

:ace

toni

trile

Phas

eB

:buf

fer

TFA

pH2.

0

Supl

espk

b-10

019

.1–1

46pp

mH

andw

ash

prod

uct

Ha,

Che

ung

(199

6)G

radi

entH

PLC

with

UV

-Vis

dete

ctor

and

phot

odio

dear

ray

dete

ctor

235

Phas

eA

:ace

toni

trile

:am

mon

ium

acet

ate

pH5.

0Ph

ase

B:p

hosp

hate

buff

er:a

ceto

nitr

ile

Ham

ilton

PRP-

1So

lutio

nw

ith30

ppm

ofch

lorh

exid

ine

Eye

-dro

pso

lutio

n

Ric

hard

etal

.(1

984)

Gra

dien

tHPL

Cw

ithU

Vde

tect

or25

4Ph

ase

A:s

odiu

mac

etat

ebu

ffer

solu

tion

pH4.

0:ac

etic

acid

:met

hano

l:so

dium

hept

anes

ulph

onat

eso

lutio

n(9

2.1

0.2:

4.8:

2.9)

Phas

eB

:iqu

alph

ase

A,b

utin

prop

ortio

n4.

8:0.

4:91

.9:2

.9

µB

onda

pck

C18

0.31

2–10

mg/

100

mL

Eye

-dro

p,op

htha

lmic

prep

arat

ion

and

cont

actl

ens

solu

tions

(Con

tinu

edon

next

page

)

95

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 9: Analytical Methods for the Determination of Chlorohexidine

TAB

LE

4Pa

ram

eter

sde

scri

bed

inth

elit

erat

ure

toan

alyz

ech

lorh

exid

ine

inph

arm

aceu

tical

prod

ucts

(Con

tinu

ed)

Ref

eren

ceM

etho

(nm

)M

obile

phas

eor

solv

ent

Col

umn

Lin

eari

tySa

mpl

e

Hav

lıkov

aet

al.

(200

7)H

PLC

with

UV

-Vis

dete

ctor

239

Ace

toni

trile

:sod

ium

phos

phat

ebu

ffer

solu

tion

cont

aini

ngtr

ieth

ylam

ine

pH3.

0

Zor

bax

SBPh

enyl

colu

mn

51.2

–178

.5µ

g/m

LV

eter

inar

yoi

ntm

ent

Bon

azzi

etal

.(1

995)

Solid

-pha

seex

trat

ion

(SPE

)an

dU

Vsp

ectr

osco

py(c

onve

ntio

nal

and

deri

vativ

e)

256

(UV

)24

8(1

D)

241

(2D

)So

lven

t:m

etha

nol-

phos

phat

ebu

ffer

solu

tion

pH4.

5

SPE

C18

(par

aSP

E)

7.3–

36.5

µg/

mL

Cre

ams

Izum

oto

etal

.(1

997)

HPL

Cw

ithU

Vde

tect

oran

dga

sch

rom

atog

raph

y(G

C)

270

2-pr

opan

ol:p

hosp

hate

buff

erpH

3.0

Zor

bax

RX

-C8(f

orH

PLC

)C

hrom

osor

bW

(for

GC

)

60–1

40%

ofth

eas

say

conc

entr

atio

n

Oin

tmen

t

Mir

ibel

etal

.(1

983)

Gas

liqui

dch

rom

atog

raph

y,m

ass

spec

trom

etry

and

nucl

ear

mag

netic

reso

nanc

e

Nitr

ogen

(for

gas

chro

mat

ogra

phy)

3%O

V-1

01on

Chr

omos

orb

WH

P(g

as)

0.2–

2m

g/m

LC

ream

and

oint

men

ts

Cal

atay

udet

al.

(198

7)Fl

owin

ject

ion

with

turb

idim

etri

cde

tect

ion

610

Thy

mol

blue

10.5

–63.

g/m

LSo

lutio

n

Pere

z-R

uiz

etal

.(1

997)

flow

inje

ctio

nex

trac

tion

spec

-tr

opho

tom

etri

c

422

Bro

mop

heno

lblu

e57

840–

5784

µg/

mL

Tabl

ets,

solu

tion,

toot

hpas

te

Oka

mot

oet

al.

(200

1)C

apill

ary

elec

trop

hore

sis

230

80nM

TD

A,2

0nM

amm

oniu

mch

lori

de,2

0nM

trie

thyl

amin

ean

d40

mM

acet

icac

idin

acet

onitr

ile:w

ater

(80:

20)

Fuse

dsi

lica

capi

llari

esof

50µ

mi.d

.and

375

µm

o.d.

25–7

g/m

LO

intm

ent

96

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 10: Analytical Methods for the Determination of Chlorohexidine

Aba

d-V

illar

etal

.(2

006)

Cap

illar

yel

ectr

opho

resi

s2.

3M

acet

icac

idco

ntai

ning

twee

n20

Fuse

dsi

lica

capi

llari

esof

25µ

mi.d

.and

375

µm

o.d.

10µ

g/m

L–

20m

g/m

LE

yedr

ops

Wan

g,T

sai,

2001

Vol

tam

etry

HPL

C24

0T

hree

-ele

ctro

desy

stem

:w

orki

ngel

ectr

ode

(Hg2+

/G

CE

and

Hg2+

/Au)

,pla

tinum

coun

ter

and

satu

rate

dca

lom

elel

ectr

ode

Met

hano

l:wat

er(8

0:20

and

90:1

0)co

ntai

ning

phos

phat

eor

acet

ate

buff

er

µB

onda

pack

C18

5–40

ppm

5–40

ppm

Ant

iper

spir

ant

toot

hpas

te,

garg

lem

ount

hwas

h,an

tisep

ticliq

uid

BP

(200

5),E

P(2

005)

HPL

C25

4So

dium

octa

nesu

lpho

nate

inm

ixtu

reof

glac

iala

cetic

acid

,wat

eran

dm

etha

nol

Nuc

leos

ilC

18Ir

riga

tion

solu

tion

and

mou

thw

ash

USP

(200

8)G

radi

enta

ndis

ocra

ticH

PLC

239

Solu

tion

A:s

odiu

mph

osph

ate

buff

erso

lutio

nw

ithtr

ieth

ylam

ine

pH3.

0:ac

eton

itrile

Solu

tion

B:

acet

onitr

ile

L1

Ora

lrin

se

BP

(200

5),E

P(2

005)

HPL

C25

4So

dium

octa

nesu

lpho

nate

inm

ixtu

reof

glac

iala

cetic

acid

,wat

eran

dm

etha

nol

Nuc

leos

ilC

18Ir

riga

tion

solu

tion

and

mou

thw

ash

∗ TM

AB

isef

fect

ive

inde

activ

atin

gre

sidu

alne

gativ

ely-

char

ged

sila

noli

nsi

tes

ofth

ebo

nded

-pha

se.

97

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 11: Analytical Methods for the Determination of Chlorohexidine

98 SALGADO ET AL.

TABLE 5Parameters described in the literature to analyze the liberation of chlorhexidine in pharmaceutical products

Reference Method λ (nm)Mobile phase

or solvent Column Linearity Sample

Medlicottet al.(1996)

UV spectroscophyHPLC with dualdetector

254 Sodiumcitrate/sodiumhydroxide buffer(for UV)Acetonitrile:glacial aceticacid: sodiumlaurylsulphate(for HPLC)

C18ODS-B Exsil 1 – 60 µg/mL Poly(ε-caprolactone)

Yue et al.(2004)

HPLC withUV-Vis detector

280 Methanol: waterpH 3.0

C18 Nova-Pak Theorical loadingof 10 – 40%

Biodegradablepoly(dl-lacticacid—co—glycolic acid)microspheres bycomplexationwithcyclodextrins

Paler et al.(2004)

RP HPLC 270 Propanol(40%):0.05MNaH2PO4 (40%)and sodiumdodecyl sulphate(0.4%), pH 3.0

C18Joneschromatography

Chlorhexidineacetate in glassionomer cements

Rasimick etal. (2008)

HPLC withUV-Vis detector

288 C18 Waters XBridge

10–150 ppmchlorhexidine

Precipitate ofchlorhexidineand EDTA

Farkas etal. (2007)

UV spectroscopy 255 1–20.0 µg/mL Chlorhexidine andits salts incrystallinestructures

Medlicottet al.(1999)

HPLC with dualdetector

254 Acetronitrile:glacial aceticacid: sodiumlaurylsulphate

Exsil ODS-B C18 2–30 µg/mL Saliva

Giunchediet al.(2002)

RP- HPLC 257 Acetonitrile:buffer(0.1 M disodiumhydrogenphosphate, 0.005M 1-heptanesulfonicacid and 0.05 Mtriethylamine)(35:65

Nucleosil RP-18 Saliva

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 12: Analytical Methods for the Determination of Chlorohexidine

ANALYTICAL METHODS FOR CHX, REVIEW 99

TABLE 6Parameters described in the literature to analyze the liberation of chlorhexidine in the skin

Reference Method λ(nm)Mobile phase

or solvent Column Linearity Sample

Lafforgue (1997) RP adsorptionchromatography

254 Acetonitrile: 50 mMacetate buffer(50:50), pH 3.15

0–20 mg/mL Intact andstripped skin

The voltametric method described by Wang and Tsai (2001)(61) to analyze chlorhexidine in pharmaceutical preparationsmight be performed without separation from the fatty constitu-tents and simple extraction procedure, different than the HPLCmethod compared by these authors.

The method presented by Palmer and coworkers (66) wasuseful to demonstrate that chlorhexidine might be incorporate,in glass ionomer cements because it is released into solution.Rasimick and coworkers (67) describe a method that was usefulto quantify chlorhexidine and EDTA in the precipitate formedbetween the association of these products. These results demon-strate that it can be used in dentistry with efficiency. The spectro-scopic method describe by Farkas and coworkers (68) demon-strated that different liquid crystalline structures might be usedto control the release of chlorhexidine and its salts. The authorsconcluded that this method is more simple than HPLC methods.

The methods described by Medlicott and coworkers (63)and Giunchedi and coworkers (64) were also useful to analyzechlorhexidine in the controlled system delivery.

The method described by Lafforgue and coworkers (69) wassimple and important to demonstrate that when the skin is dam-aged the amount of chlorhexidine absorbed and stored is largerthen the skin is intact.

Pharmaceutical products have to obey the law and ensuretheir efficacy without a raise in risk of the life of the consumer.It is necessary for the routine quality control of pharmaceuticalproducts to employ well-characterized and fully validated ana-lytical methods to yield reliable results that can be satisfactorilyinterpreted. The analytical methods are constantly undergoingchanges and improvements, and in many instances, they are atthe cutting edge of the technology (70). This review is importantbecause it presents several methods to analyze chlorhexidine andtheir advantages with technological improvement.

ACKNOWLEDGMENTSThe authors acknowledge to CAPES (Brasılia, Brazil) and

CNPq (Brasılia, Brazil).

REFERENCES1. P. G. Mazzola, T. C. V. Penna, and A. M. S. Martins, Determination

of decimal reduction time (D value) of chemical agents used inhospitals for disinfection purposes. BMC Infectious Disease 3(24)(2003):1–10.

2. A. R. R. Genaro, (Ed.) Remington: The Science and Pratice ofPharmacy. 21st. (Williams & Wilkins, Philadelphia, 2005), Ch.90, 1626–1628.

3. D. J. Weber, W. A. Rutala, and E. E. Sickbert-Bennett, Outbreaksassociated with contaminated antiseptics and disinfectants. Antimi-crobial Agents Chemotheraphy 51(12) (2007):4217–4224.

4. I. E. Alcamo, Fundamentals of Microbiology, 6th ed. (Jones andBarttlett Publ.: Sudbury, Massachusetts, 2001).

5. F. B. Zanatta and C. K. Rosing, Chlorhexidine: Action’s mech-anism and recent evidences of it’s efficacy over supragingivalbiofilm context. Scientifica 1(2) (2007):35–43.

6. European Pharmacopoeia, 5th ed. (Council of Europe (ed.), Stras-bourg, 2005).

7. United States Pharmacopoeia 31st ed, National Formulary XXVI;Rockville, MD, US Pharmacopoeial Convention: 2008.

8. British Pharmaceutical Codex 1973. (Her Majesty’s StationeryOffice, London 1973).

9. L. Thomas, J. Y. Maillard, R. J. W. Lambert, and A. D. Russell, De-velopment of resistance to chlorhexidine diacetate in Pseudomonasaeruginosa and the effect of a residual concentration. Journal ofHospital Infection 46 (2000):297–303.

10. C. L. Mullany, G. L. Darmstadt, S. K. Khatry, J. Katz, S. C. Leclerq,S. Shrestha, R, Adhikari, and J. M. Tielsch, Topical applicationsof chlorhexidine to the umbilical cord for prevention of omphalitisand neonatal mortality in southern Nepal: A community-based,cluster-randomised trial. Lancet 367 (2006):910–918.

11. L. Havlıkova, L. Matysova, L. Novakova, R. Hajkova, and P.Solich, HPLC determination of chlorhexidine gluconate and p-chloroaniline in topical ointment. Journal of Pharmaceutical andBiomedical Analysis 43 (2007):1169–1173.

12. N. Perrins and R. Bond, Synergistic inhibition of the growth invitro of Microsporum canis by miconazole and chlorhexidine. Vet-erinary Dermatology 14 (2003):99–102.

13. T. J. Karpanen, T. Worthington, E. R. Hendry, B. R. Conway,and P. A. Lambert, Antimicrobial efficacy of chlorhexidine diglu-conate alone and in combination with eucalyptus oil, tea tree oiland thymol against planktonic and biofilm cultures of Staphylo-coccus epidermidis. Journal of Antimicrobial Chemotherapy 62(2008):1031–1036.

14. T. Gajadhar, A. Lara, P. Sealy, and A. A. Adesiyun, Microbialcontamination of desinfectants and antiseptics in four major hos-pitals in Trinidad. Revista Panamericana de Salud Publica 14(3)(2003):193–200.

15. L. R. Trabulsi and F. Alterthum, Microbiologia, 4th ed. (Sao Paulo,Atheneu, 2005).

16. C. V. G. Amorin, C. E. Aun, and M. P. Mayer, Sus-ceptibility of some oral microorganisms to chlorhexidine

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 13: Analytical Methods for the Determination of Chlorohexidine

100 SALGADO ET AL.

and paramonochlorophenol. Brazilian Oral Research 18(3)(2004):242–246.

17. Martindale: The complete drug reference, 35th ed. (PharmaceuticalPress, London, 2007).

18. L. E. Stevens, J. R. Durrwachter, and D. O. Helton, Analysis ofchlorhexidine sorption in soft contact lenses by catalytic oxidationof (14C) chlorhexidine and by liquid chromatography. Journal ofPharmaceutical Science 75(1) (1986):83–86.

19. Y. Ha and A. P. Cheung, New stability-indicating high performanceliquid chromatography assay and proposed hydrolytic pathways ofchlorhexidine. Journal of Pharmaceutical and Biomedical Analy-sis 14 (1996):1327–1334.

20. E. M. Abad-Villar, S. F. Etter, M. A. Thiel, and P. C. Hauser, De-termination of chlorhexidine digluconate and polyhexamethylenebiguanide in eye drops by capillary electrophoresis with contactlessconductivity detection. Analytica Chimica Acta 561 (2006):133–137.

21. G. J. Tortora, B. R. Funke, and C. L. Case, Microbiologia, 8th ed.(Artmed, Porto Alegre, Brazil, 2006).

22. E. A. Neidle and J. A. Yagiela, Farmacologia e terapeutica paradentistas, 3rd ed. Guanabara Koogan, Rio de Janeiro, 1991.

23. G. Wu and X. Liu, Characterization of predominant bacteria iso-lates from clean rooms in a pharmaceutical production unit. Jour-nal of Zhejiang University Science B 8(9) (2007):666–672.

24. A. M. J. Bambace, E. J. A. Barros, S. S. F. Santos, and A. O. C.Jorge, Eficacia de solucoes aquosas de clorexidina para desinfe-tantes de superfıcies. Revista Biociencia 9(2) (2003):73–81.

25. V. R. Hebert, J. R. Diddleton, E. Tomaszewska, and L. K.Fox, Methodology for quantifying residues of chlorhexidine inraw dairy milk. Journal of Agricultural and Food Chemistry 51(2003):567–570.

26. H. Baker, O. Frank, B. DeAngelis, and E. R. Baker, Biocidalaction of chlorhexidine is annulled by nicotinic acid. AntimicrobialAgents Chemotheraphy 38(10) (1994):2458–2459.

27. E. N. Southern, G. B. McCombs, S. L. Tolle, and K. Marinak, Thecomparative effects of 0.12% chlorhexidine and herbal oral rinseon dental plaque-induced gingivitis. Journal of Dental Hygiene80(1) (2006):1–9.

28. P. P. Gontijo-Filho, M. L. N. Morais, H. M. S. Loureiro, andG. R. G. Armoa, Avaliacao in vitro de alguns saboes medici-nais disponıveis no Brasil. Revista Brasileira de Cirurgia 74(4)(1984):181–183.

29. British Pharmacopoeia 2005 (Her Majesty’s Stationery Office,London, 2005).

30. K. Siefert, D. Casagrande, and H. Silberman, Analysis of chlorhex-idine via gas-liquid chromatography. Journal of Chromatography109 (1975):193–198.

31. W. H. Doub, D. D. Ruhi, B. Hart, P. R. Mehelic, and L. K.Revelle, Gradient liquid chromatographic method for determina-tion of chlorhexidine and its degradation products in bulk material.Journal of AOAC International 79(3) (1996):636–639.

32. W. K. Gavlick and P. K. Davis, Gas chromatographic determinationof p-chloroaniline in a chlorhexidine digluconate-containing alco-hol foam surgical scrub product. Journal of AOAC International77(3) (1994):583–586.

33. L. K. Revelle, W. H. Doub, R. T. Wilson, M. H. Harris,and A. M. Rutter, Identification and isolation of chlorhexidinedigluconate impurities. Pharmaceutical Research 10(12) (1993):1777–1784.

34. P. Bosnevoll, P. Lokken, G. Rolla, and P. N. Paus, Retention ofchlorhexidine in the human oral cavity after mouth rinses. Archivesof Oral Biology 19 (1974):209–212.

35. J. E. Jensen and F. Christensen, A study of the elimination ofchlorhexidine from the oral cavity using a new spectrophotometricmethod. Journal of Periodontal Research 6 (1971):306–311.

36. J. de Vries, J. Ruben, and J. Arends, Determination of chlorhex-idine in saliva and in aqueous solutions. Caries Research 25(1991):410–414.

37. Y. W. F. Lam, D. C. N. Chan, S. Y. Rodriguez, J. H. Lintakoon, andT-H. LAM, Sensitive high-performance liquid chromatographicassay for the determination of chlorhexidine in saliva. Journal ofChromatography 612 (1993):166–171.

38. N. J. Medlicott, D. G. Ferry, I. G. Tucker, M. J. Rathbone, D. W.Holborow, and D. S. Jones, High performance liquid chromato-graphic (HPLC) assay for the determination of chlorhexidine insaliva film. Journal of Liquid Chromatography 17(7) (1994):1605–1620.

39. J. Pesonem, J. Holmalahti, and J. Pohjola, Determination ofchlorhexidine in saliva using high-performance liquid chromatog-raphy. Journal of Chromatography B: Biomedical Applications665 (1995):222–225.

40. F. M. Musteata and J. Pawliszyn, Assay of stability, free and totalconcentration of chlorhexidine in saliva by solid phase microex-traction. Journal of Pharmaceutical and Biomedical Analysis 37(2005):1015–1024.

41. M. H. Gaffney, M. Cooke, and R. Simpson, Improved method forthe determination of chlorhexidine in urine. Journal of Chromatog-raphy 306 (1984):303–313.

42. P. Wainwright and M. Cooke, Direct determination of chlorhexi-dine in urine by high-performance liquid chromatography. Analyst111 (1986):1343–1344.

43. C. E. Houston, P. Wainwright, M. Cooke, and R. Simpson, High-performance liquid chromatographic method for the determinationof chlorhexidine. Journal of Chromatography 237 (1982):457–464.

44. L. R. Brougham, H. Cheng, and K. A. Pittman, Sensitive high-performance liquid chromatographic method for the determinationof chlorhexidine in human serum and urine. Journal of Chromatog-raphy 383 (1986):365–373.

45. H. Below, N. Lehan, and A. Kramer, HPLC determination ofthe antiseptic agent chlorhexidine and its degradation products4-chloroaniline and 1-chloro-4-nitrobenzene in serum and urine.Microchimica Acta 146 (2004):129–135.

46. K. Kudo, N. Ikeda, A. Kiyoshima, Y. Hino, N. Nishida, and N. In-oue, Toxicological analysis of chlorhexidine in human serum usingHPLC on a polymer-coated ODS column. Journal of AnalyticalToxicology 26 (2002):119–122.

47. K. Usui, T. Hishinuma, H. Yamamguchi, N. Tachiiri, and J. Goto,Determination of chlorhexidine (CHD) and nonylphenolethoxy-lates (NPEOn) using LC-ESI-MS method and application tohemolyzed blood. Journal of Chromatography B 831 (2006):105–109.

48. F. Bailey, P. N. Brittain, and B. F. Williamson, Automated chro-matographic determination of chlorhexidine in pharmaceuticalpreparations. Journal of Chromatography 109 (1975):305–312.

49. M. Bauer, L. Mailhe, D. Menard, and J.-P. Rouanet, Dosagede la chlorhexidine et de la tetracaine dans des preparationspharmaceutiques par chromatographie liquide de paires d’ions

Dow

nloa

ded

by [

Rye

rson

Uni

vers

ity]

at 0

8:21

21

Febr

uary

201

3

Page 14: Analytical Methods for the Determination of Chlorohexidine

ANALYTICAL METHODS FOR CHX, REVIEW 101

sur phase graffee type nitrile. Journal of Chromatography 259(1983):360–366.

50. M. Bauer, C. Degude, and L. Mailhe, Simultaneous determi-nation of chlorhexidine, tetracaine and their degradation prod-ucts by ıon-pair chromatography. Journal of Chromatography 315(1984):457–464.

51. A. Richard, M. Elbaz, and G. Andermann, Determination of 4-chloroaniline and chlorhexidine digluconate by ion-pair reversed-phase high-performance liquid chromatography. Journal of Chro-matography 298 (1984):356–359.

52. L. Gagliardi, A. Amato, A. Basili, G. Cavazzutti, E. Federici,F. Chimenti, M. G. Casanova, E. Gattavecchia, and D. Tonelli,Determination of preservatives in cosmetic products by ion-pairreversed-phase high performance liquid chromatography. III. Jour-nal of Chromatography 348 (1985):321–326.

53. O. Y.-P. Hu, S.-Y., Wang, Y.-J. Fang, Y.-H. Chen, and M.-L. King,Simultaneous determination of thimerosal and chlorhexidine insolutions for soft contact lenses and its applications in stabilitystudies. Journal of Chromatography 523 (1991):321–326.

54. W. K. Gavlick, High-performance liquid chromatographic analysisof chlorhexidine and p-chloroaniline using a specialty columnand a photodiode-array detector. Journal of Chromatography 623(1992):375–380.

55. S. Izumoto, Y. Machida, H. Nishi, K. Nakamura, H. Nakai, T.Sato, Chromatography of crotamiton and its applications to thedetermination of active ingredients in ointments. Journal of Phar-maceutical and Biomedical Analysis 15 (1997):1457–1466.

56. D. Bonazzi, V. Andrisano, R. Gatti, and V. Cavrini, Analysis ofpharmaceutical creams: A useful approach based on solid-phaseextraction (SPE) and UV spectrophotometry. Journal of Pharma-ceutical and Biomedical Analysis 13 (1995):1321–1329.

57. L. Miribel, J. L. Brazier, F. Comet, and D. Lecompte, Gas-liquidchromatographic determination of chlorhexidine in pharmaceu-tical formulations. Journal of Chromatography 268 (1983):321–328.

58. H. Okamoto, A. Uetake, R. Tamaya, T. Nakajima, K. Sagara, andY. Ito, Simultaneous determination of ingredients in an ointment byhydrophobic interaction electrokinetic chromatography. Journal ofChromatography A 929 (2001):133–141.

59. J. M. Calatayud, P. C. Falco, and A. S. Sanpedro, Turbidimetric de-termination of chlorhexidine using flow injection analysis. Analyst112 (1987):87–90.

60. T. Perez-Ruiz, C. Matınez-Lozano, A. Sanz, and A. Sanchez, Flow-injection extraction-spectrophotometric method for the determina-tion of chlorhexidine in pharmaceutical preparations. Journal ofPharmaceutical and Biomedical Analysis 21 (1999):709–714.

61. L.-H. Wang and S.-J. Tsai, Voltametric behavior of chlorhexidineat a film mercury electrodes and its determination in cosmetic andoral hygiene products. Analytica Chimica Acta 441 (2001):107–116.

62. N. J. Medlicott, I. G. Tucker, M. J. Rathbone, D. W. Holborow,and D. S. Jones, Chlorhexidine release from poly(ε-caprolactone)films prepared by solvent evaporation. International Journal ofPharmaceutics 143 (1996):25–35.

63. N. J. Medlicott, D. W. Holborow, M. J. Rathbone, D. S. Jones, andI. G. Tucker, Local delivery of chlorhexidine using a tooth-bondeddelivery system. Journal of Controlled Release 61 (1999):337–343.

64. P. Giunchedi, C. Juliano, E. Gavini, M. Cossu, and M. Sorrenti, For-mulation and in vivo evaluation of chlorhexidine buccal tablets pre-pared using drug-loaded chitosan microspheres. European Journalof Pharmaceutics and Biopharmaceutics 53 (2003):233–239.

65. I. C. Yue, J. Poff, M. E. Cortes, R. D. Sinisterra, C. B. Faris, P. Hild-gen, R. Langer, and V. P. Shastri, A novel polymeric chlorhexidinedelivery device for the treatment of periodontal disease. Biomate-rials 25 (2004):3743–3750.

66. G. Palmer, F. H. Jones, R. W. Billington, and G. J. Pearson,Chlorhexidine release from an experimental glass ionomer cement.Biomaterials 25 (2004):5423–5431.

67. B. J. Rasimick, B. S. M. Nekich, B. S. M. M. Hladek, B. S. B.L. Musikant, and A. S. Deutsch. Interaction between chlorhex-idine digluconate and EDTA. Basic Research—Technology 34(2008):1521–1523.

68. E. Farkas, D. Kiss, and R. Zelko, Study on the release of chlorhex-idine base and salts from different liquid crystalline structures.International Journal of Pharmaceutics 340 (2007):71–75.

69. C. Lafforgue, L. Carret, F. Falson, M. E. Reverdy, and J. Freney,Percutaneous absorption of a chlorhexidine digluconate solution.International Journal of Pharmaceutics 147 (1997):243–246.

70. M. J. Souza, R. R. Kulmann, L. M. Silva, D. R. Nogueira, andE. S. Zimmermann, Development and in-house validation of amicrobiological assay for determination of cefepime in injectablepreparation. Journal of AOAC International 89(5) (2006):1367–1372.D

ownl

oade

d by

[R

yers

on U

nive

rsity

] at

08:

21 2

1 Fe

brua

ry 2

013